This commit is contained in:
Nikhil Jain 2026-01-30 12:15:37 -08:00
commit 72369b4a56
No known key found for this signature in database
33 changed files with 1285 additions and 94 deletions

View File

@ -213,6 +213,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
- [LARS](https://github.com/abgulati/LARS) (AGPL)
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
- [LlamaLib](https://github.com/undreamai/LlamaLib) (Apache-2.0)
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
- [LMStudio](https://lmstudio.ai/) (proprietary)

View File

@ -75,6 +75,8 @@ add_library(${TARGET} STATIC
ngram-cache.h
ngram-map.cpp
ngram-map.h
ngram-mod.cpp
ngram-mod.h
peg-parser.cpp
peg-parser.h
preset.cpp

View File

@ -3396,7 +3396,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
add_opt(common_arg(
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]",
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]",
string_format("type of speculative decoding to use when no draft model is provided (default: %s)\n",
common_speculative_type_to_str(params.speculative.type).c_str()),
[](common_params & params, const std::string & value) {
@ -3410,6 +3410,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K;
} else if (value == "ngram-map-k4v") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V;
} else if (value == "ngram-mod") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MOD;
} else {
throw std::invalid_argument("unknown speculative decoding type without draft model");
}

View File

@ -171,6 +171,7 @@ enum common_speculative_type {
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, // simple self-speculative decoding
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, // self-speculative decoding with n-gram keys only
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, // self-speculative decoding with n-gram keys and 4 m-gram values
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, // self-speculative decoding with 3-level n-gram cache
COMMON_SPECULATIVE_TYPE_COUNT // number of types, unknown type
};
@ -252,6 +253,8 @@ struct common_params_model {
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_ngram_mod;
struct common_params_speculative {
common_speculative_type type = COMMON_SPECULATIVE_TYPE_NONE; // type of speculative decoding
@ -269,6 +272,8 @@ struct common_params_speculative {
uint16_t ngram_check_rate = 1; // check rate for ngram lookup
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
std::shared_ptr<common_ngram_mod> ngram_mod;
std::string lookup_cache_static; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic; // path of dynamic ngram cache file for lookup decoding // NOLINT

View File

@ -12,6 +12,7 @@
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
namespace jinja {

View File

@ -7,6 +7,21 @@
#include <cstdio>
#include <sstream>
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
std::ostringstream oss;
oss << '[';
for (size_t i = 0; i < length; ++i) {
if (i > 0) {
oss << ", ";
}
oss << inp[start + i];
}
oss << ']';
return oss.str();
}
// n-gram simple
//
@ -100,8 +115,6 @@ llama_tokens common_ngram_simple_draft(
// maximum number of counted values of a ngram map value.
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length);
void common_ngram_map_draft(common_ngram_map & map,
const llama_tokens & inp, llama_token sampled,
llama_tokens & draft) {
@ -347,21 +360,3 @@ void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted) {
n_accepted, curr_value.n_accepted);
curr_value.n_accepted = n_accepted;
}
// Helper functions.
//
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
std::ostringstream oss;
oss << '[';
for (size_t i = 0; i < length; ++i) {
if (i > 0) {
oss << ", ";
}
oss << inp[start + i];
}
oss << ']';
return oss.str();
}

View File

@ -11,6 +11,7 @@
//
#include "llama.h"
#include "common.h"
#include <vector>

60
common/ngram-mod.cpp Normal file
View File

@ -0,0 +1,60 @@
#include "ngram-mod.h"
//
// common_ngram_mod
//
common_ngram_mod::common_ngram_mod(uint16_t n, size_t size) : n(n), used(0) {
entries.resize(size);
reset();
}
size_t common_ngram_mod::idx(const entry_t * tokens) const {
size_t res = 0;
for (size_t i = 0; i < n; ++i) {
res = res*6364136223846793005ULL + tokens[i];
}
res = res % entries.size();
return res;
}
void common_ngram_mod::add(const entry_t * tokens) {
const size_t i = idx(tokens);
if (entries[i] == EMPTY) {
used++;
}
entries[i] = tokens[n];
}
common_ngram_mod::entry_t common_ngram_mod::get(const entry_t * tokens) const {
const size_t i = idx(tokens);
return entries[i];
}
void common_ngram_mod::reset() {
std::fill(entries.begin(), entries.end(), EMPTY);
used = 0;
}
size_t common_ngram_mod::get_n() const {
return n;
}
size_t common_ngram_mod::get_used() const {
return used;
}
size_t common_ngram_mod::size() const {
return entries.size();
}
size_t common_ngram_mod::size_bytes() const {
return entries.size() * sizeof(entries[0]);
}

38
common/ngram-mod.h Normal file
View File

@ -0,0 +1,38 @@
#pragma once
#include <cstdint>
#include <vector>
#include <cstddef>
//
// common_ngram_mod
// ref: https://github.com/ggml-org/llama.cpp/pull/19164
//
// basic n-gram hasher
struct common_ngram_mod {
using entry_t = int32_t;
static constexpr entry_t EMPTY = -1;
common_ngram_mod(uint16_t n, size_t size);
size_t idx(const entry_t * tokens) const;
void add(const entry_t * tokens);
entry_t get(const entry_t * tokens) const; // return -1 if not found
void reset();
size_t get_n() const;
size_t get_used() const;
size_t size() const;
size_t size_bytes() const;
private:
size_t n; // ngram size to hash
size_t used;
std::vector<entry_t> entries;
};

View File

@ -6,6 +6,7 @@
#include "log.h"
#include "ngram-cache.h"
#include "ngram-map.h"
#include "ngram-mod.h"
#include "sampling.h"
#include <algorithm>
@ -23,6 +24,7 @@ const std::vector<enum common_speculative_type> common_speculative_types = {
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V,
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE
};
@ -33,6 +35,7 @@ const std::map<std::string, enum common_speculative_type> common_speculative_typ
{"ngram_simple", COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE},
{"ngram_map_k", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K},
{"ngram_map_k4v", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V},
{"ngram_mod", COMMON_SPECULATIVE_TYPE_NGRAM_MOD},
{"ngram_cache", COMMON_SPECULATIVE_TYPE_NGRAM_CACHE}
};
@ -110,6 +113,8 @@ static bool common_speculative_are_compatible(
struct common_speculative_state {
const enum common_speculative_type type;
// TODO: rename to n_call_draft, n_gen_drafts, n_acc_drafts, n_gen_tokens, n_acc_tokens
// TODO: add n_call_begin, n_call_accept
size_t drafts_call_count = 0; // number of times this implementation was called.
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
@ -119,6 +124,8 @@ struct common_speculative_state {
// TODO: track performance of most recent calls
const bool gen_perf = true; // whether to generate performance stats.
// TODO: rename to t_draft_us
// TODO: add t_begin_us, t_accept_us
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
common_speculative_state(enum common_speculative_type type) : type(type) {}
@ -509,6 +516,132 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state {
}
};
struct common_speculative_state_ngram_mod : public common_speculative_state {
common_ngram_mod & mod;
// the last position in the prompt that was added to the ngram container
size_t i_last = 0;
// length of the last drafted ngram (number of tokens returned by draft)
size_t n_draft_last = 0;
// consecutive accept rounds with low acceptance fraction (< 0.5)
int n_low = 0;
// enable trace logging if LLAMA_TRACE is set
const bool verbose;
common_speculative_state_ngram_mod(enum common_speculative_type type, common_ngram_mod & mod)
: common_speculative_state(type), mod(mod), verbose(std::getenv("LLAMA_TRACE") != nullptr) {
static_assert(sizeof(llama_token) == sizeof(common_ngram_mod::entry_t));
}
void begin(const llama_tokens & prompt) override {
i_last = 0;
n_draft_last = 0;
const size_t n = mod.get_n();
if (prompt.size() < n) {
return;
}
for (size_t i = 0; i < prompt.size() - n; ++i) {
mod.add(prompt.data() + i);
}
i_last = prompt.size() - n;
const double f = (double)mod.get_used() / (double)mod.size();
LOG_INF("%s: ngram_mod occupancy = %zu/%zu (%.2f)\n", __func__, mod.get_used(), mod.size(), f);
constexpr double f_thold = 0.25;
if (f > f_thold) {
LOG_WRN("%s: ngram_mod occupancy %.2f exceeds threshold (%.2f) - resetting\n", __func__, f, f_thold);
mod.reset();
}
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
GGML_UNUSED(params);
n_draft_last = 0;
const size_t cur_len = prompt_tgt.size();
if (cur_len < mod.get_n()) {
return;
}
const size_t n = mod.get_n();
// add new ngrams in chunks
if (i_last + 32 < cur_len) {
for (size_t i = i_last; i < cur_len - n; ++i) {
mod.add(prompt_tgt.data() + i);
}
i_last = cur_len - n;
}
result.resize(n + params.n_max);
for (size_t i = 0; i < n - 1; ++i) {
result[i] = prompt_tgt[cur_len - n + 1 + i];
}
result[n - 1] = id_last;
for (int i = 0; i < params.n_max; ++i) {
const llama_token token = mod.get(result.data() + i);
if (token == common_ngram_mod::EMPTY) {
if (i < params.n_min) {
result.clear();
return;
}
result.resize(n + i);
break;
}
result[n + i] = token;
}
// only return the m tokens that were drafted
for (size_t i = 0; n + i < result.size(); ++i) {
result[i] = result[n + i];
}
result.resize(result.size() - n);
// store length of drafted ngram for later acceptance analysis
n_draft_last = result.size();
}
void accept(uint16_t n_accepted) override {
if (verbose) {
LOG_INF("%s: accepted %d tokens from %zu drafted tokens\n", __func__, n_accepted, n_draft_last);
}
// compute acceptance fraction if we have a recorded draft length
if (n_draft_last > 0) {
const double f_acc = (double)n_accepted / (double)n_draft_last;
if (f_acc < 0.5) {
n_low++;
if (n_low >= 3) {
LOG_WRN("%s: low acceptance streak (%d) resetting ngram_mod\n", __func__, n_low);
mod.reset();
n_low = 0;
}
} else {
n_low = 0;
}
}
}
};
struct common_speculative_state_ngram_cache : public common_speculative_state {
uint16_t n_draft;
bool save_dynamic;
@ -650,6 +783,7 @@ std::string common_speculative_type_to_str(enum common_speculative_type type) {
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: return "ngram_simple";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K: return "ngram_map_k";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: return "ngram_map_k4v";
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: return "ngram_mod";
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: return "ngram_cache";
default: return "unknown";
}
@ -666,8 +800,8 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
// initialization of the speculative decoding system
//
common_speculative * common_speculative_init(
const common_params_speculative & params,
llama_context * ctx_tgt) {
common_params_speculative & params,
llama_context * ctx_tgt) {
llama_context * ctx_dft = nullptr;
if (params.model_dft) {
ctx_dft = llama_init_from_model(params.model_dft, params.cparams_dft);
@ -687,6 +821,7 @@ common_speculative * common_speculative_init(
bool has_ngram_simple = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE);
bool has_ngram_map_k = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
bool has_ngram_map_k4v = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V);
bool has_ngram_mod = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MOD);
// In a more complex implementation we could use the same implementation but with different parameters.
// This was initially used in PR-18471 but removed to simplify the code.
@ -701,6 +836,22 @@ common_speculative * common_speculative_init(
// This implementation can guess tokens with high acceptance rate but is more expensive.
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, params));
}
if (has_ngram_mod) {
// shared instance for all speculative decoding contexts
if (!params.ngram_mod) {
params.ngram_mod = std::make_shared<common_ngram_mod>(params.ngram_size_n, 4*1024*1024);
LOG_INF("%s: initialized ngram_mod with n=%d, size=%zu (%.3f MB)\n", __func__,
params.ngram_size_n, params.ngram_mod->size(),
(float)(params.ngram_mod->size_bytes())/1024/1024);
if (params.ngram_size_n < 16) {
LOG_WRN("%s: ngram_mod n=%d is too small - poor quality is possible, see: https://github.com/ggml-org/llama.cpp/pull/19164\n", __func__, params.ngram_size_n);
}
}
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MOD, params));
}
if (has_ngram_cache) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, params));
}
@ -758,6 +909,11 @@ common_speculative * common_speculative_init(
));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: {
GGML_ASSERT(config.params.ngram_mod);
impls.push_back(std::make_unique<common_speculative_state_ngram_mod>(config.type, *config.params.ngram_mod));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: {
auto state = create_state_ngram_cache(
params.lookup_cache_static, params.lookup_cache_dynamic, config);
@ -822,8 +978,7 @@ llama_tokens common_speculative_draft(
if (!result.empty()) {
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
common_speculative_type_to_str(impl.get()->type).c_str(),
prompt_tgt.size(),
common_speculative_type_to_str(impl.get()->type).c_str(), prompt_tgt.size(),
impl.get()->drafts_call_count, result.size());
spec->curr_impl = impl.get(); // set current implementation for stats
@ -869,6 +1024,7 @@ void common_speculative_print_stats(const common_speculative * spec) {
str_perf = "";
}
// TODO: report time for begin() and accept()
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
common_speculative_type_to_str(impl->type).c_str(),
impl->drafts_call_count,

View File

@ -15,8 +15,8 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
std::string common_speculative_type_to_str(enum common_speculative_type type);
common_speculative * common_speculative_init(
const common_params_speculative & params,
llama_context * ctx_tgt);
common_params_speculative & params,
llama_context * ctx_tgt);
void common_speculative_free(common_speculative * spec);

View File

@ -8806,6 +8806,7 @@ class GraniteMoeModel(GraniteModel):
gate, up = data_torch.split(ffn_dim, dim=-2)
yield from ModelBase.modify_tensors(self, gate, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), bid)
yield from ModelBase.modify_tensors(self, up, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), bid)
return
has_experts = bool(self.hparams.get('num_local_experts'))

View File

@ -97,7 +97,7 @@ Legend:
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
@ -114,7 +114,7 @@ Legend:
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | | ✅ | ❌ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | | ✅ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |

View File

@ -29,8 +29,8 @@
"SYCL0","EXP","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","EXPM1","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","EXPM1","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
@ -71,8 +71,8 @@
"SYCL0","EXP","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","EXPM1","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","EXPM1","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@ -113,8 +113,8 @@
"SYCL0","EXP","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","EXPM1","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","EXPM1","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
@ -155,8 +155,8 @@
"SYCL0","EXP","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","EXPM1","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","EXPM1","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@ -10052,10 +10052,10 @@
"SYCL0","CUMSUM","type=f32,ne=[375960,1,1,1]","support","0","no","SYCL"
"SYCL0","CUMSUM","type=f32,ne=[20481,4,1,1]","support","0","no","SYCL"
"SYCL0","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","0","no","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","0","no","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","1","yes","SYCL"
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","1","yes","SYCL"
"SYCL0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","0","no","SYCL"
"SYCL0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","0","no","SYCL"
"SYCL0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","0","no","SYCL"

Can't render this file because it is too large.

View File

@ -50,6 +50,12 @@ int main(int argc, char ** argv) {
const int N = 5; // n-gram size
const int G = 15; // max verification n-grams
// lookahead requires W + G + 1 sequences for parallel Jacobi decoding
params.n_parallel = W + G + 1;
// unified KV cache is required for coupled sequences in batch splitting
params.kv_unified = true;
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
@ -115,7 +121,7 @@ int main(int argc, char ** argv) {
// seq_id == 0 : the current input token
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
// seq_id [W + 1, W + G] : verification n-grams
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
llama_batch batch = llama_batch_init(llama_n_ctx(ctx), 0, W + G + 1);
// target model sampling context
struct common_sampler * smpl = common_sampler_init(model, params.sampling);

View File

@ -106,7 +106,7 @@ int main(int argc, char ** argv){
std::vector<llama_token> draft;
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
llama_batch batch_tgt = llama_batch_init(llama_n_ctx(ctx), 0, 1);
const auto t_dec_start = ggml_time_us();

View File

@ -1124,6 +1124,7 @@ struct ggml_tensor_extra_gpu {
struct ggml_cuda_graph_node_properties {
void * node_data;
ggml_op node_op;
enum ggml_type node_type;
int32_t flags;
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];

View File

@ -2920,6 +2920,7 @@ static void ggml_cuda_graph_node_set_properties(ggml_cuda_graph_node_properties
memset(props, 0, sizeof(ggml_cuda_graph_node_properties));
props->node_data = node->data;
props->node_op = node->op;
props->node_type = node->type;
props->flags = node->flags;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
props->ne[i] = node->ne[i];
@ -2944,6 +2945,10 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
return false;
}
if (node->type != props->node_type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (node->ne[i] != props->ne[i]) {
return false;
@ -3905,14 +3910,14 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
// Launch graph
CUDA_CHECK(cudaGraphLaunch(graph->instance, cuda_ctx->stream()));
#else
GGML_UNUSED(graph_key);
graph_evaluated_or_captured = true;
#endif // USE_CUDA_GRAPH
}
}
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
#ifdef USE_CUDA_GRAPH
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
if (graph->graph == nullptr) {
@ -3925,12 +3930,8 @@ static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, co
}
return graph->is_enabled();
#else
GGML_UNUSED(cuda_ctx);
GGML_UNUSED(graph_key);
return false;
#endif // USE_CUDA_GRAPH
}
#endif // USE_CUDA_GRAPH
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;

View File

@ -101,6 +101,8 @@ set(GGML_OPENCL_KERNELS
mul_mm_f32_f32_l4_lm
mul_mm_f16_f32_l4_lm
mul_mm_q8_0_f32_l4_lm
mul_mm_q8_0_f32_8x4
gemv_noshuffle_general_q8_0_f32
mul
norm
relu

View File

@ -226,7 +226,8 @@ static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
return ADRENO_GPU_GEN::A7X;
}
if (strstr(device_name, "830")) {
if (strstr(device_name, "830") ||
strstr(device_name, "840")) {
return ADRENO_GPU_GEN::A8X;
}
@ -529,7 +530,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0, kernel_restore_block_q8_0_trans;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
cl_kernel kernel_convert_block_q4_0_noshuffle;
cl_kernel kernel_restore_block_q4_0_noshuffle;
@ -696,6 +697,8 @@ struct ggml_backend_opencl_context {
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
cl_kernel kernel_mul_mm_q8_0_f32_8x4;
cl_kernel CL_mul_mat_vec_q8_0_f32;
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
void free() {
@ -894,6 +897,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q8_0_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0_trans", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_q6_K = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q6_K", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q6_K = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q6_K", &err), err));
GGML_LOG_CONT(".");
@ -2290,6 +2294,46 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mm_q8_0_f32_8x4
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_q8_8x4_gemm {
#include "mul_mm_q8_0_f32_8x4.cl.h"
};
#else
const std::string kernel_src_q8_8x4_gemm = read_file("mul_mm_q8_0_f32_8x4.cl");
#endif
backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_q8_8x4_gemm.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mm_q8_0_f32_8x4", &err), err));
GGML_LOG_CONT(".");
}
// gemv_noshuffle_general_q8_0_f32
{
std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -DSIMDGROUP_WIDTH=" +
std::to_string(backend_ctx->adreno_wave_size);
if (backend_ctx->has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_CL_gemv_general {
#include "gemv_noshuffle_general_q8_0_f32.cl.h"
};
#else
const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general_q8_0_f32.cl");
#endif
cl_program prog = build_program_from_source(
backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
CL_CHECK((backend_ctx->CL_mul_mat_vec_q8_0_f32 = clCreateKernel(prog, "kernel_gemv_noshuffle", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -cl-fast-relaxed-math";
@ -3745,6 +3789,15 @@ inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ct
return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
}
inline bool enable_adreno_trans_weight(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
bool adreno_kernel = use_adreno_kernels(backend_ctx, tensor);
size_t elem_num = tensor->ne[0] * tensor->ne[1] * tensor->ne[2] * tensor->ne[3];
return ((elem_num < 128 * 1024 * 1024) && adreno_kernel); // max element num: 2**27
}
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
@ -4159,6 +4212,130 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
tensor->extra = extra;
// Transpose the weights and scales
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
if (enable_adreno_trans_weight(backend_ctx, tensor)) {
int M = tensor->ne[1]; // ne01
int K = tensor->ne[0]; // ne00
GGML_ASSERT(K % 32 == 0);
GGML_ASSERT(M % 4 == 0);
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
// Transpose weights
size_t q_size_bytes = K * M / 4 * sizeof(float);
cl_buffer_region region;
region.origin = 0;
region.size = q_size_bytes;
cl_mem qT_d = clCreateSubBuffer(
backend_ctx->prealloc_quant_trans.buffer,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&err);
CL_CHECK(err);
cl_mem q_d_image1D;
cl_mem qT_d_image1D;
cl_image_format img_fmt_1d;
cl_image_desc img_desc_1d;
img_fmt_1d = { CL_RGBA, CL_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 4 / 4;
img_desc_1d.buffer = extra->q;
q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
img_fmt_1d = { CL_RGBA, CL_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 4 / 4;
img_desc_1d.buffer = qT_d;
qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
int height_q = M / 4;
int width_q = K / 4 / 4;
kernel = backend_ctx->kernel_transpose_32;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
size_t local_size_q[3] = {4, 16, 1};
size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
// Transpose scales
size_t d_size_bytes = M * (K / 32) * 2;
region.origin = 0;
region.size = d_size_bytes;
cl_mem dT_d = clCreateSubBuffer(
backend_ctx->prealloc_scales_trans.buffer,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&err);
CL_CHECK(err);
cl_mem d_d_image1D;
cl_mem dT_d_image1D;
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_fmt_1d = { CL_R, CL_HALF_FLOAT };
img_desc_1d.image_width = M * K / 32;
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.buffer = extra->d;
d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 32 / 4;
img_desc_1d.buffer = dT_d;
dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
int height_s = M / 4;
int width_s = K / 32;
kernel = backend_ctx->kernel_transpose_16_4x1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
size_t local_size_s[3] = {4, 16, 1};
size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
// copy transposed buffer contents to original buffers
CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clReleaseMemObject(qT_d));
CL_CHECK(clReleaseMemObject(dT_d));
CL_CHECK(clReleaseMemObject(q_d_image1D));
CL_CHECK(clReleaseMemObject(d_d_image1D));
CL_CHECK(clReleaseMemObject(qT_d_image1D));
CL_CHECK(clReleaseMemObject(dT_d_image1D));
} // end transpose
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
return;
}
if (tensor->type == GGML_TYPE_Q6_K) {
@ -4448,6 +4625,36 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err);
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
if (enable_adreno_trans_weight(backend_ctx, tensor)) {
cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0_trans;
int ne00 = tensor->ne[0];
int ne01 = tensor->ne[1];
GGML_ASSERT(tensor->ne[2] == 1); // ???
GGML_ASSERT(tensor->ne[3] == 1); // ???
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), 1, 1};
size_t local_work_size[3] = {64, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clEnqueueReadBuffer(
queue, data_device, CL_TRUE, offset,
size, data, 0, NULL, NULL));
CL_CHECK(clReleaseMemObject(data_device));
return;
}
#endif
cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
@ -7947,6 +8154,252 @@ static void ggml_cl_mul_mat_kq_kqv_adreno(ggml_backend_t backend, const ggml_ten
CL_CHECK(clReleaseMemObject(D_sub_buffer));
}
static void ggml_cl_mul_mat_q8_0_f32_adreno(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const enum ggml_type src0t = src0->type;
const enum ggml_type src1t = src1->type;
GGML_ASSERT(src0t == GGML_TYPE_Q8_0);
GGML_ASSERT(src1t == GGML_TYPE_F32);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
GGML_ASSERT(src1->view_offs == 0);
GGML_ASSERT(dst->view_offs == 0);
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne10 = src1->ne[0];
const int ne12 = src1->ne[2];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
GGML_ASSERT(ne00 == ne10);
GGML_ASSERT((ne00 % 32) == 0);
GGML_ASSERT(ne0 == ne01);
cl_context context = backend_ctx->context;
cl_kernel kernel;
// init CL objects
cl_int status;
cl_image_format img_fmt_1d;
cl_image_desc img_desc_1d;
cl_buffer_region region;
cl_mem A_image1d;
cl_mem B_image1d;
cl_mem B_sub_buffer;
cl_mem S_image1d;
cl_mem D_image1d;
cl_mem D_sub_buffer;
int M = ne01;
int N = ne1;
int K = ne00;
// create an image for A
img_fmt_1d = { CL_R, CL_FLOAT};
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 4; // Divide by 4 for char -> float
img_desc_1d.buffer = extra0_q8_0->q;
A_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
CL_CHECK(status);
// create an image for Scale
img_fmt_1d = { CL_R, CL_HALF_FLOAT};
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 32; // Block size is 32
img_desc_1d.buffer = extra0_q8_0->d;
S_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
CL_CHECK(status);
// create a sub_buffer for B
region.origin = (extra1->offset); // + src1->view_offs);
region.size = K * N * sizeof(float);
B_sub_buffer = clCreateSubBuffer((extra1->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
CL_CHECK(status);
// create an image for B from sub_buffer: RGBA (OCL)
img_fmt_1d = {CL_RGBA, CL_FLOAT};
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = K * N / 4;
img_desc_1d.buffer = B_sub_buffer;
B_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
CL_CHECK(status);
// Create subbuffer and image1d_buffer for dst
region.origin = (extrad->offset); // + dst->view_offs;
region.size = M * N * sizeof(float);
D_sub_buffer = clCreateSubBuffer((extrad->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
CL_CHECK(status);
img_fmt_1d = {CL_R, CL_FLOAT};
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * N;
img_desc_1d.buffer = D_sub_buffer;
D_image1d = clCreateImage(context, CL_MEM_WRITE_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
CL_CHECK(status);
size_t local_work_size[3] = {1, 1, 1};
size_t global_work_size[3] = {1, 1, 1};
if (N == 1) {
kernel = backend_ctx->CL_mul_mat_vec_q8_0_f32;
int r2 = 1;
int r3 = 1;
cl_uint k_arg = 0;
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q8_0->d));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
size_t wavesize = backend_ctx->adreno_wave_size;
local_work_size[0] = wavesize;
local_work_size[1] = 4; // reduce factor
local_work_size[2] = 1;
global_work_size[0] = ((M + wavesize - 1) / wavesize) * wavesize;
global_work_size[1] = 4; // reduce factor
global_work_size[2] = 1;
} else {
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_mem B_image1d_trans = nullptr;
// for B transpose
cl_mem B_d = nullptr;
int padding;
//how many extra elements beyond multiple of 8
int extra_elements = N % 8;
//how much padding to add
padding = 0;
if (extra_elements > 0){
padding = 8 - extra_elements;
}
// Specify the starting offset (in bytes)
region.origin = 0;
// Specify the size of the sub-buffer (divide by 2 for FP16)
region.size = K * (N + padding) * sizeof(float)/2;
backend_ctx->prealloc_act_trans.allocate(context, region.size);
B_d = clCreateSubBuffer(
backend_ctx->prealloc_act_trans.buffer,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&status);
CL_CHECK(status);
cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
cl_image_desc image_desc_B_d_output = {
CL_MEM_OBJECT_IMAGE1D_BUFFER,
static_cast<size_t>(K * (N + padding)/4),
0, 0, 0, 0, 0, 0, 0, { B_d }
};
B_image1d_trans = clCreateImage(
context,
0,
&image_format_B_d_output,
&image_desc_B_d_output,
NULL,
&status);
CL_CHECK(status);
int height_B = N/4;
if (height_B == 0) {
height_B = 1;
}
int width_B = K/4;
int padded_height_B = (N + padding)/4;
kernel = backend_ctx->kernel_transpose_32_16;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_image1d));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d_trans));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
size_t local_size_t[2] = { 1, 16 };
size_t global_size_t[2] = {
static_cast<size_t>(width_B),
static_cast<size_t>(padded_height_B)
};
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
kernel = backend_ctx->kernel_mul_mm_q8_0_f32_8x4;
int N_with_padding = N + padding;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d_trans));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &K));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &M));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &N_with_padding));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &N));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
global_work_size[0] = (size_t)(N + 7) / 8;
global_work_size[1] = (size_t)(M + 3) / 4;
global_work_size[2] = 1;
local_work_size[0] = 2;
local_work_size[1] = 128;
local_work_size[2] = 1;
}
// enqueue kernel with profiling
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
// deallocate sub buffers and images
CL_CHECK(clReleaseMemObject(A_image1d));
CL_CHECK(clReleaseMemObject(B_sub_buffer));
CL_CHECK(clReleaseMemObject(B_image1d));
CL_CHECK(clReleaseMemObject(S_image1d));
CL_CHECK(clReleaseMemObject(D_sub_buffer));
CL_CHECK(clReleaseMemObject(D_image1d));
#else
GGML_UNUSED(src0);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
#endif
}
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -8064,6 +8517,13 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
int padding;
// <--------------------------------------------> //
// q8_0 x fp32
if (src0t == GGML_TYPE_Q8_0 && src1t == GGML_TYPE_F32 &&
enable_adreno_trans_weight(backend_ctx, src0)) {
ggml_cl_mul_mat_q8_0_f32_adreno(backend, src0, src1, dst);
return;
}
// q4_0 x fp32
if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
// TODO: remove duplicate definitions of image description + format -- move to top

View File

@ -274,6 +274,37 @@ kernel void kernel_restore_block_q8_0(
}
}
kernel void kernel_restore_block_q8_0_trans(
global uchar * src_q,
global half * src_d,
global block_q8_0 * dst,
uint ne00,
uint ne01
){
uint num_blk_per_row = ne00 / QK8_0;
global block_q8_0 * b = (global block_q8_0 *) dst + get_global_id(0) * num_blk_per_row;
global uchar * q = (global uchar *) src_q + get_global_id(0) * 4; // 4 8-bit packed
global half * d = (global half *) src_d + get_global_id(0);
for (uint blk = 0; blk < num_blk_per_row; blk++) {
b->d = *d;
for (uint i = 0; i < QK8_0; i+=4) {
b->qs[i] = q[0];
b->qs[i+1] = q[1];
b->qs[i+2] = q[2];
b->qs[i+3] = q[3];
q += 4 * ne01; // M stride
}
d += ne01;
b++;
}
}
//------------------------------------------------------------------------------
// kernel_convert_block_q6_K
// Convert the block_q6_K format to 3 separate arrays (AOS -> SOA).

View File

@ -0,0 +1,195 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#ifdef cl_qcom_reqd_sub_group_size
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#endif
#define QK8_0 32
#define N_SIMDGROUP 4
#define dequantizeBlockAccum_ns_sgbroadcast_1(total_sums, bits8, scale, y) \
float shared_y; \
char elem; \
\
shared_y = sub_group_broadcast(y.s0, 0); \
elem = (char)(bits8.s0 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s1, 0); \
elem = (char)((bits8.s0 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s2, 0); \
elem = (char)((bits8.s0 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s3, 0); \
elem = (char)((bits8.s0 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
\
shared_y = sub_group_broadcast(y.s4, 0); \
elem = (char)(bits8.s1 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s5, 0); \
elem = (char)((bits8.s1 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s6, 0); \
elem = (char)((bits8.s1 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s7, 0); \
elem = (char)((bits8.s1 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
\
shared_y = sub_group_broadcast(y.s0, 1); \
elem = (char)(bits8.s2 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s1, 1); \
elem = (char)((bits8.s2 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s2, 1); \
elem = (char)((bits8.s2 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s3, 1); \
elem = (char)((bits8.s2 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
\
shared_y = sub_group_broadcast(y.s4, 1); \
elem = (char)(bits8.s3 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s5, 1); \
elem = (char)((bits8.s3 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s6, 1); \
elem = (char)((bits8.s3 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s7, 1); \
elem = (char)((bits8.s3 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
\
shared_y = sub_group_broadcast(y.s0, 2); \
elem = (char)(bits8.s4 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s1, 2); \
elem = (char)((bits8.s4 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s2, 2); \
elem = (char)((bits8.s4 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s3, 2); \
elem = (char)((bits8.s4 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
\
shared_y = sub_group_broadcast(y.s4, 2); \
elem = (char)(bits8.s5 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s5, 2); \
elem = (char)((bits8.s5 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s6, 2); \
elem = (char)((bits8.s5 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s7, 2); \
elem = (char)((bits8.s5 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
\
shared_y = sub_group_broadcast(y.s0, 3); \
elem = (char)(bits8.s6 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s1, 3); \
elem = (char)((bits8.s6 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s2, 3); \
elem = (char)((bits8.s6 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s3, 3); \
elem = (char)((bits8.s6 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
\
shared_y = sub_group_broadcast(y.s4, 3); \
elem = (char)(bits8.s7 & 0x000000FF); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s5, 3); \
elem = (char)((bits8.s7 & 0x0000FF00) >> 8); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s6, 3); \
elem = (char)((bits8.s7 & 0x00FF0000) >> 16); \
total_sums += convert_int(elem) * scale * shared_y; \
shared_y = sub_group_broadcast(y.s7, 3); \
elem = (char)((bits8.s7 & 0xFF000000) >> 24); \
total_sums += convert_int(elem) * scale * shared_y; \
#ifdef ADRENO_GPU
REQD_SUBGROUP_SIZE_64
#endif
__kernel void kernel_gemv_noshuffle(
__read_only image1d_buffer_t src0_q, // quantized A
global half * src0_d, // A scales
__read_only image1d_buffer_t src1, // B
ulong offset1, // offset to B (0)
global float * dst, // C
ulong offsetd, // offset to C
int ne00, // K
int ne01, // M
int ne02, // 1
int ne10, // K
int ne12, // 1
int ne0, // M
int ne1, // N
int r2, // 1
int r3)
{
uint groupId = get_local_id(1);
uint gid = get_global_id(0);
ushort slid = get_sub_group_local_id();
uint K = ne00;
uint M = ne01;
uint LINE_STRIDE_A = M;
uint BLOCK_STRIDE_A = 8 * M; // 32 / 4 = 8
__private uint8 regA;
__private half regS;
__private float8 regB;
__private float totalSum = (float)(0.0f);
// loop along K in block granularity, skip 4 blocks every iter
#pragma unroll 1 /* tell compiler not to unroll */
for (uint k = groupId; k < (K / QK8_0); k += N_SIMDGROUP) {
regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of one rows
// first 4 fibers in each wave load 8 B values to its private scope
if (slid < 4) {
regB.s0123 = read_imagef(src1, (slid * 2 + k * 8));
regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8));
}
// load weights for one block in consecutive rows
regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x;
regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x;
regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x;
regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x;
regA.s4 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x;
regA.s5 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x;
regA.s6 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x;
regA.s7 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x;
dequantizeBlockAccum_ns_sgbroadcast_1(totalSum, regA, regS, regB);
}
// reduction in local memory, assumes #wave=4
__local float reduceLM[SIMDGROUP_WIDTH * 3];
if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum;
if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum;
if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum;
barrier(CLK_LOCAL_MEM_FENCE);
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
// 1 outputs per fiber in wave 0
if (groupId == 0) {
dst = (global float*)((global char*)dst + offsetd);
dst[gid] = totalSum;
}
}

View File

@ -0,0 +1,129 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#ifdef cl_qcom_reqd_sub_group_size
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#ifdef ADRENO_GPU
REQD_SUBGROUP_SIZE_128
#endif
kernel void kernel_mul_mm_q8_0_f32_8x4(
global const uint * src0_q,
global const half * src0_d,
__read_only image1d_buffer_t src1,
global float * dst,
int k,
int m,
int n,
int n_no_padding,
ulong offsetd
) {
int m_4 = m >> 2;
int n_4 = n >> 2;
int gy = get_global_id(0);
int gx = get_global_id(1);
int gx_2 = gx << 2;
dst = (global float *)((global char*)dst + offsetd);
half8 c0 = 0, c1 = 0, c2 = 0, c3 = 0;
half8 B;
half4 deq;
__global const uint* wptr = src0_q + gx_2;
__global const half* sptr = src0_d + gx_2;
for (int i = 0; i < k; i += 4) {
uint4 pack4 = vload4(0, wptr + (i / 4) * m);
half4 scale = vload4(0, sptr + (i / 32) * m);
char4 p0 = as_char4(pack4.s0);
char4 p1 = as_char4(pack4.s1);
char4 p2 = as_char4(pack4.s2);
char4 p3 = as_char4(pack4.s3);
// ------------------- j = 0 (k = i+0) -------------------
B.s0123 = read_imageh(src1, gy * 2 + (i + 0) * n_4);
B.s4567 = read_imageh(src1, gy * 2 + (i + 0) * n_4 + 1);
half4 wj0 = convert_half4((char4)(p0.s0, p1.s0, p2.s0, p3.s0)) * scale;
c0 += B * wj0.s0;
c1 += B * wj0.s1;
c2 += B * wj0.s2;
c3 += B * wj0.s3;
// ------------------- j = 1 (k = i+1) -------------------
B.s0123 = read_imageh(src1, gy * 2 + (i + 1) * n_4);
B.s4567 = read_imageh(src1, gy * 2 + (i + 1) * n_4 + 1);
half4 wj1 = convert_half4((char4)(p0.s1, p1.s1, p2.s1, p3.s1)) * scale;
c0 += B * wj1.s0;
c1 += B * wj1.s1;
c2 += B * wj1.s2;
c3 += B * wj1.s3;
// ------------------- j = 2 (k = i+2) -------------------
B.s0123 = read_imageh(src1, gy * 2 + (i + 2) * n_4);
B.s4567 = read_imageh(src1, gy * 2 + (i + 2) * n_4 + 1);
half4 wj2 = convert_half4((char4)(p0.s2, p1.s2, p2.s2, p3.s2)) * scale;
c0 += B * wj2.s0;
c1 += B * wj2.s1;
c2 += B * wj2.s2;
c3 += B * wj2.s3;
// ------------------- j = 3 (k = i+3) -------------------
B.s0123 = read_imageh(src1, gy * 2 + (i + 3) * n_4);
B.s4567 = read_imageh(src1, gy * 2 + (i + 3) * n_4 + 1);
half4 wj3 = convert_half4((char4)(p0.s3, p1.s3, p2.s3, p3.s3)) * scale;
c0 += B * wj3.s0;
c1 += B * wj3.s1;
c2 += B * wj3.s2;
c3 += B * wj3.s3;
}
int idx = (gy << 3) * m + (gx << 2);
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s0, c1.s0, c2.s0, c3.s0), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s1, c1.s1, c2.s1, c3.s1), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s2, c1.s2, c2.s2, c3.s2), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s3, c1.s3, c2.s3, c3.s3), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s4, c1.s4, c2.s4, c3.s4), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s5, c1.s5, c2.s5, c3.s5), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s6, c1.s6, c2.s6, c3.s6), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s7, c1.s7, c2.s7, c3.s7), 0, dst + idx);
}
}

View File

@ -123,6 +123,15 @@ static __dpct_inline__ T op_log(T x) {
return sycl::log(x);
}
template<typename T>
static __dpct_inline__ T op_softplus(T x) {
const float xf = (float) x;
const float ax = sycl::fabs(xf);
const float m = sycl::fmax(xf, 0.0f);
const float y = m + sycl::log1p(sycl::exp(-ax));
return (T) y;
}
template<typename T>
static __dpct_inline__ T op_neg(T x) {
return -x;
@ -695,6 +704,12 @@ static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor
});
}
static inline void ggml_sycl_op_softplus(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_softplus(x);
});
}
static inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_neg(x);
@ -1101,6 +1116,11 @@ void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_log(ctx, dst);
}
void ggml_sycl_softplus(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_softplus(ctx, dst);
}
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_neg(ctx, dst);

View File

@ -61,6 +61,8 @@ void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_softplus(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

View File

@ -2263,6 +2263,65 @@ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_ten
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
}
static void tri_f32_sycl(
const float * src,
float * dst,
const int64_t ne0,
const int64_t ne1,
const int64_t ne2,
const int64_t ne3,
const ggml_tri_type ttype,
dpct::queue_ptr main_stream
) {
const size_t total = (size_t) ne0 * (size_t) ne1 * (size_t) ne2 * (size_t) ne3;
main_stream->parallel_for(sycl::range<1>(total), [=](sycl::id<1> tid) {
const int64_t idx = (int64_t) tid[0];
const int64_t i0 = idx % ne0;
const int64_t t1 = idx / ne0;
const int64_t i1 = t1 % ne1;
bool keep = false;
switch (ttype) {
case GGML_TRI_TYPE_LOWER: keep = (i0 < i1); break;
case GGML_TRI_TYPE_LOWER_DIAG: keep = (i0 <= i1); break;
case GGML_TRI_TYPE_UPPER: keep = (i0 > i1); break;
case GGML_TRI_TYPE_UPPER_DIAG: keep = (i0 >= i1); break;
default: keep = false; break;
}
dst[idx] = keep ? src[idx] : 0.0f;
});
}
static void ggml_sycl_op_tri(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(src0->data);
float * dst_dd = static_cast<float *>(dst->data);
const ggml_tri_type ttype = (ggml_tri_type) ggml_get_op_params_i32(dst, 0);
const int64_t ne0 = src0->ne[0];
const int64_t ne1 = src0->ne[1];
const int64_t ne2 = src0->ne[2];
const int64_t ne3 = src0->ne[3];
tri_f32_sycl(src0_dd, dst_dd, ne0, ne1, ne2, ne3, ttype, main_stream);
}
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@ -3786,6 +3845,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_UNARY_OP_EXP:
ggml_sycl_exp(ctx, dst);
break;
case GGML_UNARY_OP_SOFTPLUS:
ggml_sycl_softplus(ctx, dst);
break;
case GGML_UNARY_OP_SGN:
ggml_sycl_sgn(ctx, dst);
break;
@ -3912,6 +3974,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_TRANSPOSE:
GGML_SYCL_DEBUG("%s: Tensor NO-OP\n", __func__);
break;
case GGML_OP_TRI:
ggml_sycl_op_tri(ctx, dst);
break;
case GGML_OP_DIAG_MASK_INF:
ggml_sycl_diag_mask_inf(ctx, dst);
break;
@ -4404,6 +4469,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_ELU:
return true;
case GGML_UNARY_OP_FLOOR:
@ -4616,6 +4682,13 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return true;
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;
case GGML_OP_TRI:
{
const ggml_tensor * src0 = op->src[0];
return src0 &&
op->type == GGML_TYPE_F32 &&
ggml_is_contiguous(src0);
}
case GGML_OP_DIAG_MASK_INF:
return true;
case GGML_OP_SOFT_MAX:

View File

@ -11956,7 +11956,8 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
}
}
if (mmq) {
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_quantize_q8_1, num_it);
vk_pipeline pipeline_quantize_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline_quantize_q8_1, num_it);
}
ggml_pipeline_allocate_descriptor_sets(ctx);

View File

@ -1 +1 @@
ebc3a0f4a56be1c9424a89fbec09962ac34fde85
a8db410a252c8c8f2d120c6f2e7133ebe032f35d

View File

@ -1772,8 +1772,6 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (const auto & layer : layers) {
@ -1791,7 +1789,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
// Read each range of cells of k_size length and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
@ -1818,7 +1816,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
// Read each range of cells of v_size length and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
@ -1852,7 +1850,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
// Read each range of cells of v_size_el length and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;

View File

@ -785,23 +785,21 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
io.write(&s_trans, sizeof(s_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Iterate and write all the R tensors first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
// skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
if (r_l[il] == nullptr) continue;
// Write key type
// Write R tensor type
const int32_t r_type_i = (int32_t)r_l[il]->type;
io.write(&r_type_i, sizeof(r_type_i));
// Write row size of key
// Write row size of R tensor
const uint64_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
io.write(&r_size_row, sizeof(r_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
// Write each range of cells of r_size_row length
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * r_size_row;
@ -814,15 +812,15 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
// skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
if (s_l[il] == nullptr) continue;
// Write value type
// Write S tensor type
const int32_t s_type_i = (int32_t)s_l[il]->type;
io.write(&s_type_i, sizeof(s_type_i));
// Write row size of value
// Write row size of S tensor
const uint64_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
io.write(&s_size_row, sizeof(s_size_row));
// Read each range of cells of s_size length each into tmp_buf and write out
// Write each range of S tensor rows
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * s_size_row;
@ -830,7 +828,7 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
// When S tensor is transposed, we also need the element size and get the element ranges from each row
const uint32_t mem_size = size;
for (uint32_t il = 0; il < n_layer; ++il) {
// skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
@ -838,7 +836,7 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
const uint32_t n_embd_s = hparams.n_embd_s();
// Write value type
// Write S tensor type
const int32_t s_type_i = (int32_t)s_l[il]->type;
io.write(&s_type_i, sizeof(s_type_i));
@ -851,7 +849,7 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_s; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
// Write each range of cells of s_size_el length
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * mem_size) * s_size_el;

View File

@ -8213,11 +8213,13 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
if (!mask && max_bias > 0.0f) continue;
for (float logit_softcap : {0.0f, 10.0f}) {
if (hsk != 128 && logit_softcap != 0.0f) continue;
for (int nh : { 4, }) {
for (int nh : { 1, 4 }) {
if (nh == 1 && hsk != 576) continue; // GLM 4.7 Flash
for (int nr3 : { 1, 3, }) {
if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
for (int nr2 : { 1, 4, 12 }) {
for (int nr2 : { 1, 4, 12, 20 }) {
if (nr2 == 12 && hsk != 128) continue;
if (nr2 == 20 && (nh != 1 || hsk != 576)) continue;
//for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
for (int kv : { 113, 512, 1024, }) {
if (nr2 != 1 && kv != 512) continue;

View File

@ -155,7 +155,7 @@ struct server_slot {
double t_prompt_processing; // ms
double t_token_generation; // ms
std::function<void(int /* slot_id */)> callback_on_release;
std::function<void(int /* id_slot */)> callback_on_release;
// Speculative decoding stats
int32_t n_draft_total = 0; // Total draft tokens generated
@ -705,6 +705,11 @@ private:
params_base.n_cache_reuse = 0;
SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
}
if (params_base.speculative.type != COMMON_SPECULATIVE_TYPE_NONE) {
params_base.speculative.type = COMMON_SPECULATIVE_TYPE_NONE;
SRV_WRN("%s\n", "speculative decoding is not supported by multimodal, it will be disabled");
}
}
if (!llama_memory_can_shift(llama_get_memory(ctx))) {
@ -754,16 +759,16 @@ private:
SRV_ERR("%s\n", "speculative decoding is not supported with multimodal");
return false;
}
SRV_WRN("%s", "speculative decoding context initialized\n");
SLT_INF(slot, "%s", "speculative decoding context initialized\n");
} else {
SRV_WRN("%s", "speculative decoding context not initialized\n");
SLT_INF(slot, "%s", "speculative decoding context not initialized\n");
}
}
SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
slot.callback_on_release = [this](int slot_id) {
queue_tasks.pop_deferred_task(slot_id);
slot.callback_on_release = [this](int id_slot) {
queue_tasks.pop_deferred_task(id_slot);
};
slot.reset();
@ -891,6 +896,9 @@ private:
}
server_slot * get_slot_by_id(int id_slot) {
// note: allow id_slot to be out of bounds (wrap around)
id_slot = id_slot % slots.size();
for (server_slot & slot : slots) {
if (slot.id == id_slot) {
return &slot;
@ -1760,7 +1768,7 @@ private:
break;
}
int id_slot = task.slot_action.slot_id;
const int id_slot = task.slot_action.id_slot;
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
@ -1798,7 +1806,7 @@ private:
case SERVER_TASK_TYPE_SLOT_RESTORE:
{
if (!check_no_mtmd(task.id)) break;
int id_slot = task.slot_action.slot_id;
const int id_slot = task.slot_action.id_slot;
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
@ -1847,7 +1855,7 @@ private:
if (!check_no_mtmd(task.id)) {
break;
}
int id_slot = task.slot_action.slot_id;
const int id_slot = task.slot_action.id_slot;
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
@ -3312,7 +3320,7 @@ void server_routes::init_routes() {
}
// TODO: get rid of this dynamic_cast
auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
auto * res_task = dynamic_cast<server_task_result_metrics*>(result.get());
GGML_ASSERT(res_task != nullptr);
// optionally return "fail_on_no_slot" error
@ -3335,8 +3343,8 @@ void server_routes::init_routes() {
}
std::string id_slot_str = req.get_param("id_slot");
int id_slot;
int id_slot;
try {
id_slot = std::stoi(id_slot_str);
} catch (const std::exception &) {
@ -3348,14 +3356,16 @@ void server_routes::init_routes() {
if (action == "save") {
return handle_slots_save(req, id_slot);
} else if (action == "restore") {
return handle_slots_restore(req, id_slot);
} else if (action == "erase") {
return handle_slots_erase(req, id_slot);
} else {
res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
return res;
}
if (action == "restore") {
return handle_slots_restore(req, id_slot);
}
if (action == "erase") {
return handle_slots_erase(req, id_slot);
}
res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
return res;
};
this->get_props = [this](const server_http_req &) {
@ -3898,7 +3908,7 @@ std::unique_ptr<server_res_generator> server_routes::handle_slots_save(const ser
{
server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
task.id = rd.get_new_id();
task.slot_action.slot_id = id_slot;
task.slot_action.id_slot = id_slot;
task.slot_action.filename = filename;
task.slot_action.filepath = filepath;
rd.post_task(std::move(task));
@ -3934,7 +3944,7 @@ std::unique_ptr<server_res_generator> server_routes::handle_slots_restore(const
{
server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
task.id = rd.get_new_id();
task.slot_action.slot_id = id_slot;
task.slot_action.id_slot = id_slot;
task.slot_action.filename = filename;
task.slot_action.filepath = filepath;
rd.post_task(std::move(task));
@ -3963,7 +3973,7 @@ std::unique_ptr<server_res_generator> server_routes::handle_slots_erase(const se
{
server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
task.id = rd.get_new_id();
task.slot_action.slot_id = id_slot;
task.slot_action.id_slot = id_slot;
rd.post_task(std::move(task));
}

View File

@ -153,7 +153,7 @@ struct server_task {
// used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
struct slot_action {
int slot_id;
int id_slot;
std::string filename;
std::string filepath;
};