From b536eb023368701fe3564210440e2df6151c3e65 Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Wed, 4 Feb 2026 20:20:40 +0100 Subject: [PATCH 01/26] codeowners : add danbev for examples/debug (#19332) * codeowners : add danbev for examples/debug * Add @pwilkin to CODEOWNERS for debug --------- Co-authored-by: Piotr Wilkin (ilintar) --- CODEOWNERS | 1 + 1 file changed, 1 insertion(+) diff --git a/CODEOWNERS b/CODEOWNERS index e573a3d2e6..9d252c9b8d 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -27,6 +27,7 @@ /examples/batched.swift/ @ggerganov /examples/batched/ @ggerganov /examples/convert-llama2c-to-ggml/ @ggerganov +/examples/debug/ @danbev @pwilkin /examples/deprecation-warning/ @ggerganov /examples/diffusion/ @am17an /examples/embedding/ @ggerganov From e6e934c5ea1540522171ec91eee05d37909286d1 Mon Sep 17 00:00:00 2001 From: Aaron Teo Date: Thu, 5 Feb 2026 05:15:03 +0800 Subject: [PATCH 02/26] vendor: update cpp-httplib version (#19313) Signed-off-by: Aaron Teo --- scripts/sync_vendor.py | 4 +- vendor/cpp-httplib/httplib.cpp | 238 ++++++++++++++++++++++++++------- vendor/cpp-httplib/httplib.h | 102 ++++++++++++-- 3 files changed, 285 insertions(+), 59 deletions(-) diff --git a/scripts/sync_vendor.py b/scripts/sync_vendor.py index 0771942d49..1ff6a9a40f 100755 --- a/scripts/sync_vendor.py +++ b/scripts/sync_vendor.py @@ -12,8 +12,8 @@ vendor = { # "https://github.com/mackron/miniaudio/raw/refs/tags/0.11.23/miniaudio.h": "vendor/miniaudio/miniaudio.h", "https://github.com/mackron/miniaudio/raw/669ed3e844524fcd883231b13095baee9f6de304/miniaudio.h": "vendor/miniaudio/miniaudio.h", - "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.1/httplib.h": "vendor/cpp-httplib/httplib.h", - "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.1/LICENSE": "vendor/cpp-httplib/LICENSE", + "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.2/httplib.h": "vendor/cpp-httplib/httplib.h", + "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.2/LICENSE": "vendor/cpp-httplib/LICENSE", "https://raw.githubusercontent.com/sheredom/subprocess.h/b49c56e9fe214488493021017bf3954b91c7c1f5/subprocess.h": "vendor/sheredom/subprocess.h", } diff --git a/vendor/cpp-httplib/httplib.cpp b/vendor/cpp-httplib/httplib.cpp index d707e65fd3..ba5f9c8ff9 100644 --- a/vendor/cpp-httplib/httplib.cpp +++ b/vendor/cpp-httplib/httplib.cpp @@ -117,6 +117,8 @@ time_t parse_http_date(const std::string &date_str) { #ifdef _WIN32 return _mkgmtime(&tm_buf); +#elif defined _AIX + return mktime(&tm_buf); #else return timegm(&tm_buf); #endif @@ -1376,7 +1378,7 @@ int getaddrinfo_with_timeout(const char *node, const char *service, // Allocate on the heap, so the resolver thread can keep using the data. auto state = std::make_shared(); - state->node = node; + if (node) { state->node = node; } state->service = service; state->hints = *hints; @@ -2896,10 +2898,20 @@ bool parse_range_header(const std::string &s, Ranges &ranges) try { return; } - const auto first = - static_cast(lhs.empty() ? -1 : std::stoll(lhs)); - const auto last = - static_cast(rhs.empty() ? -1 : std::stoll(rhs)); + ssize_t first = -1; + if (!lhs.empty()) { + ssize_t v; + auto res = detail::from_chars(lhs.data(), lhs.data() + lhs.size(), v); + if (res.ec == std::errc{}) { first = v; } + } + + ssize_t last = -1; + if (!rhs.empty()) { + ssize_t v; + auto res = detail::from_chars(rhs.data(), rhs.data() + rhs.size(), v); + if (res.ec == std::errc{}) { last = v; } + } + if ((first == -1 && last == -1) || (first != -1 && last != -1 && first > last)) { all_valid_ranges = false; @@ -2974,25 +2986,17 @@ bool parse_accept_header(const std::string &s, return; } -#ifdef CPPHTTPLIB_NO_EXCEPTIONS { - std::istringstream iss(quality_str); - iss >> accept_entry.quality; - - // Check if conversion was successful and entire string was consumed - if (iss.fail() || !iss.eof()) { + double v = 0.0; + auto res = detail::from_chars( + quality_str.data(), quality_str.data() + quality_str.size(), v); + if (res.ec == std::errc{}) { + accept_entry.quality = v; + } else { has_invalid_entry = true; return; } } -#else - try { - accept_entry.quality = std::stod(quality_str); - } catch (...) { - has_invalid_entry = true; - return; - } -#endif // Check if quality is in valid range [0.0, 1.0] if (accept_entry.quality < 0.0 || accept_entry.quality > 1.0) { has_invalid_entry = true; @@ -5570,13 +5574,26 @@ bool Server::read_content(Stream &strm, Request &req, Response &res) { strm, req, res, // Regular [&](const char *buf, size_t n) { + // Prevent arithmetic overflow when checking sizes. + // Avoid computing (req.body.size() + n) directly because + // adding two unsigned `size_t` values can wrap around and + // produce a small result instead of indicating overflow. + // Instead, check using subtraction: ensure `n` does not + // exceed the remaining capacity `max_size() - size()`. + if (req.body.size() >= req.body.max_size() || + n > req.body.max_size() - req.body.size()) { + return false; + } + // Limit decompressed body size to payload_max_length_ to protect // against "zip bomb" attacks where a small compressed payload // decompresses to a massive size. - if (req.body.size() + n > payload_max_length_ || - req.body.size() + n > req.body.max_size()) { + if (payload_max_length_ > 0 && + (req.body.size() >= payload_max_length_ || + n > payload_max_length_ - req.body.size())) { return false; } + req.body.append(buf, n); return true; }, @@ -5666,22 +5683,29 @@ bool Server::read_content_core( // oversized request and fail early (causing connection close). For SSL // builds we cannot reliably peek the decrypted application bytes, so keep // the original behaviour. -#if !defined(CPPHTTPLIB_OPENSSL_SUPPORT) && !defined(_WIN32) +#if !defined(CPPHTTPLIB_OPENSSL_SUPPORT) if (!req.has_header("Content-Length") && !detail::is_chunked_transfer_encoding(req.headers)) { - socket_t s = strm.socket(); - if (s != INVALID_SOCKET) { - // Peek up to payload_max_length_ + 1 bytes. If more than - // payload_max_length_ bytes are pending, reject the request. - size_t to_peek = - (payload_max_length_ > 0) - ? (std::min)(payload_max_length_ + 1, static_cast(4096)) - : 1; - std::vector peekbuf(to_peek); - ssize_t n = ::recv(s, peekbuf.data(), to_peek, MSG_PEEK); - if (n > 0 && static_cast(n) > payload_max_length_) { - // Indicate failure so connection will be closed. - return false; + // Only peek if payload_max_length is set to a finite value + if (payload_max_length_ > 0 && + payload_max_length_ < (std::numeric_limits::max)()) { + socket_t s = strm.socket(); + if (s != INVALID_SOCKET) { + // Peek to check if there is any pending data + char peekbuf[1]; + ssize_t n = ::recv(s, peekbuf, 1, MSG_PEEK); + if (n > 0) { + // There is data, so read it with payload limit enforcement + auto result = detail::read_content_without_length( + strm, payload_max_length_, out); + if (result == detail::ReadContentResult::PayloadTooLarge) { + res.status = StatusCode::PayloadTooLarge_413; + return false; + } else if (result != detail::ReadContentResult::Success) { + return false; + } + return true; + } } } return true; @@ -6656,7 +6680,8 @@ void ClientImpl::close_socket(Socket &socket) { } bool ClientImpl::read_response_line(Stream &strm, const Request &req, - Response &res) const { + Response &res, + bool skip_100_continue) const { std::array buf{}; detail::stream_line_reader line_reader(strm, buf.data(), buf.size()); @@ -6677,8 +6702,8 @@ bool ClientImpl::read_response_line(Stream &strm, const Request &req, res.status = std::stoi(std::string(m[2])); res.reason = std::string(m[3]); - // Ignore '100 Continue' - while (res.status == StatusCode::Continue_100) { + // Ignore '100 Continue' (only when not using Expect: 100-continue explicitly) + while (skip_100_continue && res.status == StatusCode::Continue_100) { if (!line_reader.getline()) { return false; } // CRLF if (!line_reader.getline()) { return false; } // next response line @@ -7463,7 +7488,8 @@ bool ClientImpl::write_content_with_provider(Stream &strm, } bool ClientImpl::write_request(Stream &strm, Request &req, - bool close_connection, Error &error) { + bool close_connection, Error &error, + bool skip_body) { // Prepare additional headers if (close_connection) { if (!req.has_header("Connection")) { @@ -7582,7 +7608,59 @@ bool ClientImpl::write_request(Stream &strm, Request &req, } } + // After sending request line and headers, wait briefly for an early server + // response (e.g. 4xx) and avoid sending a potentially large request body + // unnecessarily. This workaround is only enabled on Windows because Unix + // platforms surface write errors (EPIPE) earlier; on Windows kernel send + // buffering can accept large writes even when the peer already responded. + // Check the stream first (which covers SSL via `is_readable()`), then + // fall back to select on the socket. Only perform the wait for very large + // request bodies to avoid interfering with normal small requests and + // reduce side-effects. Poll briefly (up to 50ms as default) for an early + // response. Skip this check when using Expect: 100-continue, as the protocol + // handles early responses properly. +#if defined(_WIN32) + if (!skip_body && + req.body.size() > CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_THRESHOLD && + req.path.size() > CPPHTTPLIB_REQUEST_URI_MAX_LENGTH) { + auto start = std::chrono::high_resolution_clock::now(); + + for (;;) { + // Prefer socket-level readiness to avoid SSL_pending() false-positives + // from SSL internals. If the underlying socket is readable, assume an + // early response may be present. + auto sock = strm.socket(); + if (sock != INVALID_SOCKET && detail::select_read(sock, 0, 0) > 0) { + return false; + } + + // Fallback to stream-level check for non-socket streams or when the + // socket isn't reporting readable. Avoid using `is_readable()` for + // SSL, since `SSL_pending()` may report buffered records that do not + // indicate a complete application-level response yet. + if (!is_ssl() && strm.is_readable()) { return false; } + + auto now = std::chrono::high_resolution_clock::now(); + auto elapsed = + std::chrono::duration_cast(now - start) + .count(); + if (elapsed >= CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_TIMEOUT_MSECOND) { + break; + } + + std::this_thread::sleep_for(std::chrono::milliseconds(1)); + } + } +#endif + // Body + if (skip_body) { return true; } + + return write_request_body(strm, req, error); +} + +bool ClientImpl::write_request_body(Stream &strm, Request &req, + Error &error) { if (req.body.empty()) { return write_content_with_provider(strm, req, error); } @@ -7758,8 +7836,20 @@ void ClientImpl::output_error_log(const Error &err, bool ClientImpl::process_request(Stream &strm, Request &req, Response &res, bool close_connection, Error &error) { - // Send request - if (!write_request(strm, req, close_connection, error)) { return false; } + // Auto-add Expect: 100-continue for large bodies + if (CPPHTTPLIB_EXPECT_100_THRESHOLD > 0 && !req.has_header("Expect")) { + auto body_size = req.body.empty() ? req.content_length_ : req.body.size(); + if (body_size >= CPPHTTPLIB_EXPECT_100_THRESHOLD) { + req.set_header("Expect", "100-continue"); + } + } + + // Check for Expect: 100-continue + auto expect_100_continue = req.get_header_value("Expect") == "100-continue"; + + // Send request (skip body if using Expect: 100-continue) + auto write_request_success = + write_request(strm, req, close_connection, error, expect_100_continue); #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (is_ssl()) { @@ -7774,14 +7864,48 @@ bool ClientImpl::process_request(Stream &strm, Request &req, } #endif + // Handle Expect: 100-continue with timeout + if (expect_100_continue && CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND > 0) { + time_t sec = CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND / 1000; + time_t usec = (CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND % 1000) * 1000; + auto ret = detail::select_read(strm.socket(), sec, usec); + if (ret <= 0) { + // Timeout or error: send body anyway (server didn't respond in time) + if (!write_request_body(strm, req, error)) { return false; } + expect_100_continue = false; // Switch to normal response handling + } + } + // Receive response and headers - if (!read_response_line(strm, req, res) || + // When using Expect: 100-continue, don't auto-skip `100 Continue` response + if (!read_response_line(strm, req, res, !expect_100_continue) || !detail::read_headers(strm, res.headers)) { - error = Error::Read; + if (write_request_success) { error = Error::Read; } output_error_log(error, &req); return false; } + if (!write_request_success) { return false; } + + // Handle Expect: 100-continue response + if (expect_100_continue) { + if (res.status == StatusCode::Continue_100) { + // Server accepted, send the body + if (!write_request_body(strm, req, error)) { return false; } + + // Read the actual response + res.headers.clear(); + res.body.clear(); + if (!read_response_line(strm, req, res) || + !detail::read_headers(strm, res.headers)) { + error = Error::Read; + output_error_log(error, &req); + return false; + } + } + // If not 100 Continue, server returned an error; proceed with that response + } + // Body if ((res.status != StatusCode::NoContent_204) && req.method != "HEAD" && req.method != "CONNECT") { @@ -9543,7 +9667,7 @@ bool SSLClient::load_certs() { last_openssl_error_ = ERR_get_error(); ret = false; } - } else { + } else if (!ca_cert_store_) { auto loaded = false; #ifdef _WIN32 loaded = @@ -9790,7 +9914,11 @@ bool SSLClient::verify_host_with_common_name(X509 *server_cert) const { bool SSLClient::check_host_name(const char *pattern, size_t pattern_len) const { - if (host_.size() == pattern_len && host_ == pattern) { return true; } + // Exact match (case-insensitive) + if (host_.size() == pattern_len && + detail::case_ignore::equal(host_, std::string(pattern, pattern_len))) { + return true; + } // Wildcard match // https://bugs.launchpad.net/ubuntu/+source/firefox-3.0/+bug/376484 @@ -9805,9 +9933,23 @@ bool SSLClient::check_host_name(const char *pattern, auto itr = pattern_components.begin(); for (const auto &h : host_components_) { auto &p = *itr; - if (p != h && p != "*") { - auto partial_match = (p.size() > 0 && p[p.size() - 1] == '*' && - !p.compare(0, p.size() - 1, h)); + if (!httplib::detail::case_ignore::equal(p, h) && p != "*") { + bool partial_match = false; + if (!p.empty() && p[p.size() - 1] == '*') { + const auto prefix_length = p.size() - 1; + if (prefix_length == 0) { + partial_match = true; + } else if (h.size() >= prefix_length) { + partial_match = + std::equal(p.begin(), + p.begin() + static_cast( + prefix_length), + h.begin(), [](const char ca, const char cb) { + return httplib::detail::case_ignore::to_lower(ca) == + httplib::detail::case_ignore::to_lower(cb); + }); + } + } if (!partial_match) { return false; } } ++itr; diff --git a/vendor/cpp-httplib/httplib.h b/vendor/cpp-httplib/httplib.h index 613020d12c..7c7790f41f 100644 --- a/vendor/cpp-httplib/httplib.h +++ b/vendor/cpp-httplib/httplib.h @@ -8,8 +8,8 @@ #ifndef CPPHTTPLIB_HTTPLIB_H #define CPPHTTPLIB_HTTPLIB_H -#define CPPHTTPLIB_VERSION "0.30.1" -#define CPPHTTPLIB_VERSION_NUM "0x001E01" +#define CPPHTTPLIB_VERSION "0.30.2" +#define CPPHTTPLIB_VERSION_NUM "0x001E02" /* * Platform compatibility check @@ -98,6 +98,22 @@ #define CPPHTTPLIB_CLIENT_MAX_TIMEOUT_MSECOND 0 #endif +#ifndef CPPHTTPLIB_EXPECT_100_THRESHOLD +#define CPPHTTPLIB_EXPECT_100_THRESHOLD 1024 +#endif + +#ifndef CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND +#define CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND 1000 +#endif + +#ifndef CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_THRESHOLD +#define CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_THRESHOLD (1024 * 1024) +#endif + +#ifndef CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_TIMEOUT_MSECOND +#define CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_TIMEOUT_MSECOND 50 +#endif + #ifndef CPPHTTPLIB_IDLE_INTERVAL_SECOND #define CPPHTTPLIB_IDLE_INTERVAL_SECOND 0 #endif @@ -286,8 +302,10 @@ using socket_t = int; #include #include #include +#include #include #include +#include #include #include #include @@ -305,6 +323,7 @@ using socket_t = int; #include #include #include +#include #include #include #include @@ -494,6 +513,69 @@ private: bool execute_on_destruction; }; +// Simple from_chars implementation for integer and double types (C++17 +// substitute) +template struct from_chars_result { + const char *ptr; + std::errc ec; +}; + +template +inline from_chars_result from_chars(const char *first, const char *last, + T &value, int base = 10) { + value = 0; + const char *p = first; + bool negative = false; + + if (p != last && *p == '-') { + negative = true; + ++p; + } + if (p == last) { return {first, std::errc::invalid_argument}; } + + T result = 0; + for (; p != last; ++p) { + char c = *p; + int digit = -1; + if ('0' <= c && c <= '9') { + digit = c - '0'; + } else if ('a' <= c && c <= 'z') { + digit = c - 'a' + 10; + } else if ('A' <= c && c <= 'Z') { + digit = c - 'A' + 10; + } else { + break; + } + + if (digit < 0 || digit >= base) { break; } + if (result > ((std::numeric_limits::max)() - digit) / base) { + return {p, std::errc::result_out_of_range}; + } + result = result * base + digit; + } + + if (p == first || (negative && p == first + 1)) { + return {first, std::errc::invalid_argument}; + } + + value = negative ? -result : result; + return {p, std::errc{}}; +} + +// from_chars for double (simple wrapper for strtod) +inline from_chars_result from_chars(const char *first, const char *last, + double &value) { + std::string s(first, last); + char *endptr = nullptr; + errno = 0; + value = std::strtod(s.c_str(), &endptr); + if (endptr == s.c_str()) { return {first, std::errc::invalid_argument}; } + if (errno == ERANGE) { + return {first + (endptr - s.c_str()), std::errc::result_out_of_range}; + } + return {first + (endptr - s.c_str()), std::errc{}}; +} + } // namespace detail enum SSLVerifierResponse { @@ -1848,10 +1930,11 @@ private: Result send_(Request &&req); socket_t create_client_socket(Error &error) const; - bool read_response_line(Stream &strm, const Request &req, - Response &res) const; + bool read_response_line(Stream &strm, const Request &req, Response &res, + bool skip_100_continue = true) const; bool write_request(Stream &strm, Request &req, bool close_connection, - Error &error); + Error &error, bool skip_body = false); + bool write_request_body(Stream &strm, Request &req, Error &error); void prepare_default_headers(Request &r, bool for_stream, const std::string &ct); bool redirect(Request &req, Response &res, Error &error); @@ -3243,10 +3326,11 @@ private: msg.id = value; } else if (field == "retry") { // Parse retry interval in milliseconds - try { - retry_ms = std::stoi(value); - } catch (...) { - // Invalid retry value, ignore + { + int v = 0; + auto res = + detail::from_chars(value.data(), value.data() + value.size(), v); + if (res.ec == std::errc{}) { retry_ms = v; } } } // Unknown fields are ignored per SSE spec From 11fb327bf3846f390e3af1cbe929da9287c618da Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sigbj=C3=B8rn=20Skj=C3=A6ret?= Date: Thu, 5 Feb 2026 02:27:38 +0100 Subject: [PATCH 03/26] vendor : add missing llama_add_compile_flags (#19322) * add missing llama_add_compile_flags * disable all warnings for ssl, crypto and fipsmodule --- vendor/cpp-httplib/CMakeLists.txt | 26 ++++++++++++++++++++++++-- 1 file changed, 24 insertions(+), 2 deletions(-) diff --git a/vendor/cpp-httplib/CMakeLists.txt b/vendor/cpp-httplib/CMakeLists.txt index 3d938d9f36..18974d64ca 100644 --- a/vendor/cpp-httplib/CMakeLists.txt +++ b/vendor/cpp-httplib/CMakeLists.txt @@ -3,9 +3,14 @@ license_add_file("cpp-httplib" "LICENSE") find_package(Threads REQUIRED) +llama_add_compile_flags() + add_library(${TARGET} STATIC httplib.cpp httplib.h) -if (NOT MSVC) - # disable warnings in 3rd party code + +# disable warnings in 3rd party code +if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC") + target_compile_options(${TARGET} PRIVATE /w) +else() target_compile_options(${TARGET} PRIVATE -w) endif() @@ -146,6 +151,23 @@ elseif (LLAMA_OPENSSL) endif() endif() +# disable warnings in 3rd party code +if(LLAMA_BUILD_BORINGSSL OR LLAMA_BUILD_LIBRESSL) + if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC") + target_compile_options(ssl PRIVATE /w) + target_compile_options(crypto PRIVATE /w) + if(LLAMA_BUILD_BORINGSSL) + target_compile_options(fipsmodule PRIVATE /w) + endif() + else() + target_compile_options(ssl PRIVATE -w) + target_compile_options(crypto PRIVATE -w) + if(LLAMA_BUILD_BORINGSSL) + target_compile_options(fipsmodule PRIVATE -w) + endif() + endif() +endif() + if (CPPHTTPLIB_OPENSSL_SUPPORT) target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT) # used in server.cpp if (APPLE AND CMAKE_SYSTEM_NAME STREQUAL "Darwin") From af252d0758b0d3ed67c57bad2a735abf53d21c55 Mon Sep 17 00:00:00 2001 From: will-lms Date: Thu, 5 Feb 2026 01:05:09 -0500 Subject: [PATCH 04/26] metal : add missing includes (#19348) --- ggml/src/ggml-metal/ggml-metal.cpp | 3 +++ 1 file changed, 3 insertions(+) diff --git a/ggml/src/ggml-metal/ggml-metal.cpp b/ggml/src/ggml-metal/ggml-metal.cpp index a616dcdb46..1c705362fb 100644 --- a/ggml/src/ggml-metal/ggml-metal.cpp +++ b/ggml/src/ggml-metal/ggml-metal.cpp @@ -7,6 +7,9 @@ #include "ggml-metal-context.h" #include "ggml-metal-ops.h" +#include +#include + #define GGML_METAL_NAME "MTL" #define GGML_METAL_MAX_DEVICES 16 From c342c3b93de358a4571941b41c35dc5ba2081145 Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Thu, 5 Feb 2026 01:38:59 -0600 Subject: [PATCH 05/26] vulkan: fix non-contig rope (#19299) --- ggml/src/ggml-vulkan/ggml-vulkan.cpp | 32 ++++-- .../ggml-vulkan/vulkan-shaders/rms_norm.comp | 5 +- .../vulkan-shaders/rope_funcs.glsl | 99 +++++++------------ .../vulkan-shaders/rope_multi.comp | 11 ++- .../ggml-vulkan/vulkan-shaders/rope_neox.comp | 11 ++- .../ggml-vulkan/vulkan-shaders/rope_norm.comp | 11 ++- .../vulkan-shaders/rope_params.glsl | 15 ++- .../vulkan-shaders/rope_vision.comp | 11 ++- 8 files changed, 100 insertions(+), 95 deletions(-) diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index cb7fa2c9cb..af57685a37 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -1263,25 +1263,30 @@ struct vk_op_diag_mask_push_constants { struct vk_op_rope_push_constants { uint32_t rope_mode; - uint32_t ncols; uint32_t nrows; uint32_t n_dims; float freq_scale; - uint32_t p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[2]; float theta_scale; uint32_t has_ff; - uint32_t ne02; - uint32_t s1; - uint32_t s2; int32_t sections[4]; uint32_t is_imrope; uint32_t is_back; uint32_t set_rows_stride; + uint32_t ne00; + uint32_t ne01; + uint32_t ne02; + uint32_t nb01; + uint32_t nb02; + uint32_t nb03; + uint32_t nb11; + uint32_t nb12; + uint32_t nb13; }; +static_assert(sizeof(vk_op_rope_push_constants) <= 128, "sizeof(vk_op_rope_push_constants) must be <= 128"); // For fused rms_norm+mul+rope(+view+set_rows) struct vk_op_rms_norm_mul_rope_push_constants { @@ -10405,12 +10410,22 @@ static vk_op_rope_push_constants ggml_vk_make_rope_constants(const ggml_tensor * uint32_t nb01 = src0->nb[1] / ggml_type_size(src0->type); uint32_t nb02 = src0->nb[2] / ggml_type_size(src0->type); + uint32_t nb03 = src0->nb[3] / ggml_type_size(src0->type); + + uint32_t nb11 = dst->nb[1] / ggml_type_size(dst->type); + uint32_t nb12 = dst->nb[2] / ggml_type_size(dst->type); + uint32_t nb13 = dst->nb[3] / ggml_type_size(dst->type); vk_op_rope_push_constants rope { - (uint32_t)mode, (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], - freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale, - has_ff, (uint32_t)src0->ne[2], nb01, nb02, + (uint32_t)mode, (uint32_t)ggml_nrows(src0), (uint32_t)n_dims, freq_scale, + freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale, has_ff, { sections[0], sections[1], sections[2], sections[3] }, is_imrope, backprop, set_rows_stride, + + (uint32_t)src0->ne[0], + (uint32_t)src0->ne[1], + (uint32_t)src0->ne[2], + nb01, nb02, nb03, + nb11, nb12, nb13, }; return rope; @@ -14798,6 +14813,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_OP_REPEAT_BACK: return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32; case GGML_OP_ROPE: + return ggml_is_contiguous_rows(op) && ggml_is_contiguous_rows(op->src[0]); case GGML_OP_ROPE_BACK: case GGML_OP_NONE: case GGML_OP_RESHAPE: diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp index 9d6d366542..55b89f19a7 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp @@ -112,12 +112,11 @@ void rms_norm(uint num_iters) { #if RMS_NORM_ROPE_FUSION barrier(); rope_params rp = p.rope; - uint rope_row = (samp*nchannels + channel)*nrows + row; for (uint t = 2*tid; t < ncols; t += 2*BLOCK_SIZE) { if (rp.rope_mode == GGML_ROPE_TYPE_NEOX) { - rope_neox(t, rope_row, rp); + rope_neox(t, row, channel, samp, rp); } else if (rp.rope_mode == GGML_ROPE_TYPE_NORMAL) { - rope_norm(t, rope_row, rp); + rope_norm(t, row, channel, samp, rp); } } #endif diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl index aacec98469..2e53459909 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl @@ -4,12 +4,12 @@ float rope_yarn_ramp(const float low, const float high, const uint i0) { return 1.0f - min(1.0f, max(0.0f, y)); } -uint rope_a_coord(const uint i0, const uint i01, const uint i02, rope_params p) { +uint rope_a_coord(const uint i0, const uint i01, const uint i02, const uint i03, rope_params p) { #if RMS_NORM_ROPE_FUSION // Per-row offset in shared memory const uint ix = i0; #else - const uint ix = i02*p.nb02 + i01*p.nb01 + i0; + const uint ix = i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i0; #endif return ix; } @@ -34,26 +34,19 @@ void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out sin_theta = sin(theta) * mscale; } -void rope_norm(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - - if (i0 >= ne0) { +void rope_norm(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - uint idst = i1*ne0 + i0; - const uint ix = rope_a_coord(i0, i01, i02, p); + uint idst = i0 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0, i1, i2, i3, p); // Fusion optimization: ROPE + VIEW + SET_ROWS. // The rope output is viewed as a 1D tensor and offset based on a row index in rope_data_i. if (p.set_rows_stride != 0) { - idst = i01*ne0 + i0; - idst += rope_data_i[i02].x * p.set_rows_stride; + idst = i1*p.nb11 + i0; + idst += rope_data_i[i2].x * p.set_rows_stride; } if (i0 >= p.n_dims) { @@ -63,7 +56,7 @@ void rope_norm(const uint i0, const uint i1, rope_params p) { return; } - const float theta_base = rope_data_pos[i02] * pow(p.theta_scale, i0/2.0f); + const float theta_base = rope_data_pos[i2] * pow(p.theta_scale, i0/2.0f); const float freq_factor = p.has_ff != 0 ? rope_data_ff[i0/2] : 1.0f; @@ -77,25 +70,19 @@ void rope_norm(const uint i0, const uint i1, rope_params p) { rope_data_d[idst + 1] = ROPE_D_TYPE(x0*sin_theta + x1*cos_theta); } -void rope_neox(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - - if (i0 >= ne0) { +void rope_neox(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - uint idst = i1*ne0 + i0/2; - const uint ix = rope_a_coord(i0/2, i01, i02, p); + uint idst = i0/2 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0/2, i1, i2, i3, p); // Fusion optimization: ROPE + VIEW + SET_ROWS. // The rope output is viewed as a 1D tensor and offset based on a row index in rope_data_i. if (p.set_rows_stride != 0) { - idst = i01*ne0 + i0/2; - idst += rope_data_i[i02].x * p.set_rows_stride; + idst = i1*p.nb11 + i0/2; + idst += rope_data_i[i2].x * p.set_rows_stride; } if (i0 >= p.n_dims) { @@ -105,7 +92,7 @@ void rope_neox(const uint i0, const uint i1, rope_params p) { return; } - const float theta_base = rope_data_pos[i02] * pow(p.theta_scale, i0/2.0f); + const float theta_base = rope_data_pos[i2] * pow(p.theta_scale, i0/2.0f); const float freq_factor = p.has_ff != 0 ? rope_data_ff[i0/2] : 1.0f; @@ -120,26 +107,19 @@ void rope_neox(const uint i0, const uint i1, rope_params p) { } -void rope_multi(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - uint ne2 = p.ne02; - - if (i0 >= ne0) { +void rope_multi(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - uint idst = i1*ne0 + i0/2; - const uint ix = rope_a_coord(i0/2, i01, i02, p); + uint idst = i0/2 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0/2, i1, i2, i3, p); // Fusion optimization: ROPE + VIEW + SET_ROWS. // The rope output is viewed as a 1D tensor and offset based on a row index in rope_data_i. if (p.set_rows_stride != 0) { - idst = i01*ne0 + i0/2; - idst += rope_data_i[i02].x * p.set_rows_stride; + idst = i1*p.nb11 + i0/2; + idst += rope_data_i[i2].x * p.set_rows_stride; } if (i0 >= p.n_dims) { @@ -156,26 +136,26 @@ void rope_multi(const uint i0, const uint i1, rope_params p) { float theta_base = 0.0; if (p.is_imrope != 0) { if (sector % 3 == 1 && sector < 3 * p.sections[1]) { - theta_base = rope_data_pos[i02 + ne2 * 1]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 1]*pow(p.theta_scale, i0/2.0f); } else if (sector % 3 == 2 && sector < 3 * p.sections[2]) { - theta_base = rope_data_pos[i02 + ne2 * 2]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 2]*pow(p.theta_scale, i0/2.0f); } else if (sector % 3 == 0 && sector < 3 * p.sections[0]) { - theta_base = rope_data_pos[i02]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2]*pow(p.theta_scale, i0/2.0f); } else { - theta_base = rope_data_pos[i02 + ne2 * 3]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 3]*pow(p.theta_scale, i0/2.0f); } } else { if (sector < p.sections[0]) { - theta_base = rope_data_pos[i02]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2]*pow(p.theta_scale, i0/2.0f); } else if (sector >= p.sections[0] && sector < sec_w) { - theta_base = rope_data_pos[i02 + ne2 * 1]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 1]*pow(p.theta_scale, i0/2.0f); } else if (sector >= sec_w && sector < sec_w + p.sections[2]) { - theta_base = rope_data_pos[i02 + ne2 * 2]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 2]*pow(p.theta_scale, i0/2.0f); } else if (sector >= sec_w + p.sections[2]) { - theta_base = rope_data_pos[i02 + ne2 * 3]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 3]*pow(p.theta_scale, i0/2.0f); } } @@ -191,20 +171,13 @@ void rope_multi(const uint i0, const uint i1, rope_params p) { rope_data_d[idst + p.n_dims/2] = ROPE_D_TYPE(x0*sin_theta + x1*cos_theta); } -void rope_vision(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - uint ne2 = p.ne02; - - if (i0 >= ne0) { +void rope_vision(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - const uint idst = i1*ne0 + i0/2; - const uint ix = rope_a_coord(i0/2, i01, i02, p); + const uint idst = i0/2 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0/2, i1, i2, i3, p); const int sect_dims = p.sections[0] + p.sections[1]; const int sec_w = p.sections[1] + p.sections[0]; @@ -213,11 +186,11 @@ void rope_vision(const uint i0, const uint i1, rope_params p) { float theta_base = 0.0; if (sector < p.sections[0]) { const uint p0 = sector; - theta_base = rope_data_pos[i02]*pow(p.theta_scale, p0); + theta_base = rope_data_pos[i2]*pow(p.theta_scale, p0); } else if (sector >= p.sections[0] && sector < sec_w) { const uint p0 = sector - p.sections[0]; - theta_base = rope_data_pos[i02 + ne2]*pow(p.theta_scale, p0); + theta_base = rope_data_pos[i2 + p.ne02]*pow(p.theta_scale, p0); } const float freq_factor = p.has_ff != 0 ? rope_data_ff[i0/2] : 1.0f; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp index f7587468a8..1528fbeeae 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_multi(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_multi(i0, i1, i2, i3, pc); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp index acb8ed7815..ad0896095d 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_neox(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_neox(i0, i1, i2, i3, pc); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp index 0033cdb224..11220817df 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_norm(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_norm(i0, i1, i2, i3, pc); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl index 939cf3c51c..ec6ceaca9b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl @@ -5,24 +5,29 @@ struct rope_params { uint rope_mode; - uint ncols; uint nrows; uint n_dims; float freq_scale; - uint p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[2]; float theta_scale; uint has_ff; - uint ne02; - uint nb01; - uint nb02; int sections[4]; uint is_imrope; uint is_back; uint set_rows_stride; + + uint ne00; + uint ne01; + uint ne02; + uint nb01; + uint nb02; + uint nb03; + uint nb11; + uint nb12; + uint nb13; }; #endif // !defined(GGML_ROPE_PARAMS) diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp index d93800b5e7..ca71efb2f5 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_vision(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_vision(i0, i1, i2, i3, pc); } From 3409ab842d988c3e0dc0d3110dd793a5e187d37e Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Thu, 5 Feb 2026 01:48:33 -0600 Subject: [PATCH 06/26] vulkan: Set k_load_shmem to false when K is too large (#19301) --- ggml/src/ggml-vulkan/ggml-vulkan.cpp | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index af57685a37..2f6570181a 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -3204,9 +3204,10 @@ static void ggml_vk_load_shaders(vk_device& device) { const uint32_t D_lsb = D ^ (D & (D-1)); uint32_t D_split = std::min(std::min(device->subgroup_size, 8u), D_lsb / 4); - // Nvidia prefers shared memory use to load large tiles of K + // Nvidia prefers shared memory use to load large tiles of K. + // Switch to loading from global memory when it would use too much shared memory. // AMD prefers loading K directly from global memory - const uint32_t k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA ? 1 : 0; + const uint32_t k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA && hsk < 256 ? 1 : 0; return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem}; }; @@ -8412,7 +8413,7 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co const uint32_t sfshstride = (hsk <= 128) ? (Br + 8) : Br; const uint32_t sfsh = Bc * sfshstride * acctype; - const bool k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA; + const bool k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA && hsk < 256; const uint32_t kshstride = (k_load_shmem ? hsk_pad : MatBr) / 4 + 2; const uint32_t vsh_stride = MatBc / 4 * row_split; const uint32_t ksh = ((kshstride >= vsh_stride) ? (Bc * kshstride) : (Bc * vsh_stride)) * f16vec4; From a498c75ad1d7019bc2cc1e5d83e11bb8a062861f Mon Sep 17 00:00:00 2001 From: Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com> Date: Thu, 5 Feb 2026 03:06:59 -0500 Subject: [PATCH 07/26] vulkan: fix GPU deduplication logic. (#19222) * vulkan: fix GPU deduplication logic. As reported in https://github.com/ggml-org/llama.cpp/issues/19221, the (same uuid, same driver) logic is problematic for windows+intel igpu. Let's just avoid filtering for MoltenVK which is apple-specific, and keep the logic the same as before 88d23ad5 - just dedup based on UUID. Verified that MacOS + 4xVega still reports 4 GPUs with this version. * vulkan: only skip dedup when both drivers are moltenVk --- ggml/src/ggml-vulkan/ggml-vulkan.cpp | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 2f6570181a..ff9cb7355c 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -5561,9 +5561,9 @@ static void ggml_vk_instance_init() { // Check if there are two physical devices corresponding to the same GPU // This handles the case where the same GPU appears with different drivers (e.g., RADV + AMDVLK on Linux), // see https://github.com/ggml-org/llama.cpp/pull/7582 for original deduplication. - // However, for MoltenVK on macOS, multiple GPUs on the same card may report the same UUID, - // see https://github.com/KhronosGroup/MoltenVK/issues/2683. Until this is fixed, we'll only deduplicate - // when drivers differ (same driver + same UUID = likely different GPUs) + // MoltenVK on macOS may report the same UUID for distinct GPUs on multi-GPU cards, + // see https://github.com/KhronosGroup/MoltenVK/issues/2683. Skip when both old/new + // driver is MoltenVK auto old_device = std::find_if( vk_instance.device_indices.begin(), vk_instance.device_indices.end(), @@ -5580,11 +5580,9 @@ static void ggml_vk_instance_init() { old_id.deviceLUIDValid && new_id.deviceLUIDValid && std::equal(std::begin(old_id.deviceLUID), std::end(old_id.deviceLUID), std::begin(new_id.deviceLUID)) ); + bool both_molten_vk = (new_driver.driverID == vk::DriverId::eMoltenvk && old_driver.driverID == vk::DriverId::eMoltenvk); - // Only deduplicate if same UUID AND different drivers - // (same driver + same UUID on MoltenVK = likely different GPUs on multi-GPU card) - bool different_driver = (old_driver.driverID != new_driver.driverID); - return same_uuid && different_driver; + return same_uuid && !both_molten_vk; } ); if (old_device == vk_instance.device_indices.end()) { From 7a4f97d19694ca4ffa643567c6c353dea976455b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 5 Feb 2026 10:08:45 +0200 Subject: [PATCH 08/26] metal : add diag (#19330) --- ggml/src/ggml-metal/ggml-metal-device.cpp | 20 ++++++++++ ggml/src/ggml-metal/ggml-metal-device.h | 1 + ggml/src/ggml-metal/ggml-metal-device.m | 4 +- ggml/src/ggml-metal/ggml-metal-impl.h | 19 ++++++++++ ggml/src/ggml-metal/ggml-metal-ops.cpp | 46 +++++++++++++++++++++++ ggml/src/ggml-metal/ggml-metal-ops.h | 1 + ggml/src/ggml-metal/ggml-metal.metal | 20 ++++++++++ 7 files changed, 110 insertions(+), 1 deletion(-) diff --git a/ggml/src/ggml-metal/ggml-metal-device.cpp b/ggml/src/ggml-metal/ggml-metal-device.cpp index 4cd3d93d81..6af0dd88d5 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.cpp +++ b/ggml/src/ggml-metal/ggml-metal-device.cpp @@ -176,6 +176,26 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows(ggml_me return res; } +ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag(ggml_metal_library_t lib, const ggml_tensor * op) { + char base[256]; + char name[256]; + + const int n = op->src[0]->ne[0]; + + snprintf(base, 256, "kernel_diag_%s", ggml_type_name(op->src[0]->type)); + snprintf(name, 256, "%s_n=%d", base, n); + + ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name); + if (!res.pipeline) { + res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr); + } + + res.nsg = 1; + res.smem = 0; + + return res; +} + ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat(ggml_metal_library_t lib, ggml_type tsrc) { char base[256]; char name[256]; diff --git a/ggml/src/ggml-metal/ggml-metal-device.h b/ggml/src/ggml-metal/ggml-metal-device.h index d898432712..84dcec3083 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.h +++ b/ggml/src/ggml-metal/ggml-metal-device.h @@ -108,6 +108,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_1d struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst); +struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag (ggml_metal_library_t lib, const struct ggml_tensor * op); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op); diff --git a/ggml/src/ggml-metal/ggml-metal-device.m b/ggml/src/ggml-metal/ggml-metal-device.m index 8a0b85c6e4..c8e737d418 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.m +++ b/ggml/src/ggml-metal/ggml-metal-device.m @@ -1152,8 +1152,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te return has_simdgroup_reduction; case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV7: - case GGML_OP_SOLVE_TRI: return true; + case GGML_OP_SOLVE_TRI: case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: return has_simdgroup_reduction; @@ -1235,6 +1235,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te return false; }; } + case GGML_OP_DIAG: + return true; case GGML_OP_OPT_STEP_ADAMW: case GGML_OP_OPT_STEP_SGD: return has_simdgroup_reduction; diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h index 640ade8f88..7f73cb97bb 100644 --- a/ggml/src/ggml-metal/ggml-metal-impl.h +++ b/ggml/src/ggml-metal/ggml-metal-impl.h @@ -792,6 +792,25 @@ typedef struct { uint64_t nb3; } ggml_metal_kargs_set_rows; +typedef struct { + int32_t ne00; + int32_t ne01; + int32_t ne02; + int32_t ne03; + uint64_t nb00; + uint64_t nb01; + uint64_t nb02; + uint64_t nb03; + int32_t ne0; + int32_t ne1; + int32_t ne2; + int32_t ne3; + uint64_t nb0; + uint64_t nb1; + uint64_t nb2; + uint64_t nb3; +} ggml_metal_kargs_diag; + typedef struct { int64_t ne00; int64_t ne01; diff --git a/ggml/src/ggml-metal/ggml-metal-ops.cpp b/ggml/src/ggml-metal/ggml-metal-ops.cpp index 753fcec317..e0ed6c7805 100644 --- a/ggml/src/ggml-metal/ggml-metal-ops.cpp +++ b/ggml/src/ggml-metal/ggml-metal-ops.cpp @@ -361,6 +361,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) { { n_fuse = ggml_metal_op_set_rows(ctx, idx); } break; + case GGML_OP_DIAG: + { + n_fuse = ggml_metal_op_diag(ctx, idx); + } break; case GGML_OP_L2_NORM: { n_fuse = ggml_metal_op_l2_norm(ctx, idx); @@ -1259,6 +1263,48 @@ int ggml_metal_op_set_rows(ggml_metal_op_t ctx, int idx) { return 1; } +int ggml_metal_op_diag(ggml_metal_op_t ctx, int idx) { + ggml_tensor * op = ctx->node(idx); + + ggml_metal_library_t lib = ctx->lib; + ggml_metal_encoder_t enc = ctx->enc; + + GGML_TENSOR_LOCALS(int32_t, ne0, op->src[0], ne); + GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb); + GGML_TENSOR_LOCALS(int32_t, ne, op, ne); + GGML_TENSOR_LOCALS(uint64_t, nb, op, nb); + + ggml_metal_kargs_diag args = { + /*.ne00 =*/ne00, + /*.ne01 =*/ne01, + /*.ne02 =*/ne02, + /*.ne03 =*/ne03, + /*.nb00 =*/nb00, + /*.nb01 =*/nb01, + /*.nb02 =*/nb02, + /*.nb03 =*/nb03, + /*.ne0 =*/ne0, + /*.ne1 =*/ne1, + /*.ne2 =*/ne2, + /*.ne3 =*/ne3, + /*.nb0 =*/nb0, + /*.nb1 =*/nb1, + /*.nb2 =*/nb2, + /*.nb3 =*/nb3, + }; + + auto pipeline = ggml_metal_library_get_pipeline_diag(lib, op); + + ggml_metal_encoder_set_pipeline(enc, pipeline); + ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0); + ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1); + ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 2); + + ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, 32, 1, 1); + + return 1; +} + int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) { ggml_tensor * op = ctx->node(idx); diff --git a/ggml/src/ggml-metal/ggml-metal-ops.h b/ggml/src/ggml-metal/ggml-metal-ops.h index 2e4c7d3fa1..3c64e4f600 100644 --- a/ggml/src/ggml-metal/ggml-metal-ops.h +++ b/ggml/src/ggml-metal/ggml-metal-ops.h @@ -56,6 +56,7 @@ int ggml_metal_op_sum_rows (ggml_metal_op_t ctx, int idx); int ggml_metal_op_cumsum (ggml_metal_op_t ctx, int idx); int ggml_metal_op_get_rows (ggml_metal_op_t ctx, int idx); int ggml_metal_op_set_rows (ggml_metal_op_t ctx, int idx); +int ggml_metal_op_diag (ggml_metal_op_t ctx, int idx); int ggml_metal_op_soft_max (ggml_metal_op_t ctx, int idx); int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx); int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx); diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index c09a54e661..e54cdab39d 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -8815,6 +8815,26 @@ kernel void kernel_set_rows_f( } } +kernel void kernel_diag_f32( + constant ggml_metal_kargs_diag & args, + device const char * src0, + device char * dst, + uint3 tgpig[[threadgroup_position_in_grid]], + ushort tiitg[[thread_index_in_threadgroup]]) { + constexpr short NW = N_SIMDWIDTH; + + const int32_t i3 = tgpig.z; + const int32_t i2 = tgpig.y; + const int32_t i1 = tgpig.x; + + device const float * src0_ptr = (device const float *)(src0 + i2*args.nb02 + i3*args.nb03); + device float * dst_ptr = (device float *)(dst + i1*args.nb01 + i2*args.nb2 + i3*args.nb3); + + for (int i0 = tiitg; i0 < args.ne0; i0 += NW) { + dst_ptr[i0] = i0 == i1 ? src0_ptr[i0] : 0.0f; + } +} + constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]]; constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]]; From a4ea7a188f3f777da665d73fe297fb7bb716e526 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Adrien=20Gallou=C3=ABt?= Date: Thu, 5 Feb 2026 09:53:35 +0100 Subject: [PATCH 09/26] vendor : update BoringSSL to 0.20260204.0 (#19333) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Adrien Gallouët --- vendor/cpp-httplib/CMakeLists.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vendor/cpp-httplib/CMakeLists.txt b/vendor/cpp-httplib/CMakeLists.txt index 18974d64ca..a8a59e02f4 100644 --- a/vendor/cpp-httplib/CMakeLists.txt +++ b/vendor/cpp-httplib/CMakeLists.txt @@ -39,7 +39,7 @@ if (LLAMA_BUILD_BORINGSSL) set(FIPS OFF CACHE BOOL "Enable FIPS (BoringSSL)") set(BORINGSSL_GIT "https://boringssl.googlesource.com/boringssl" CACHE STRING "BoringSSL git repository") - set(BORINGSSL_VERSION "0.20251002.0" CACHE STRING "BoringSSL version") + set(BORINGSSL_VERSION "0.20260204.0" CACHE STRING "BoringSSL version") message(STATUS "Fetching BoringSSL version ${BORINGSSL_VERSION}") From b828e18c75137e29fbfd3f3daa38281172d6a636 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sigbj=C3=B8rn=20Skj=C3=A6ret?= Date: Thu, 5 Feb 2026 11:10:39 +0100 Subject: [PATCH 10/26] docker : fix vulkan build (#19352) --- .devops/vulkan.Dockerfile | 1 + 1 file changed, 1 insertion(+) diff --git a/.devops/vulkan.Dockerfile b/.devops/vulkan.Dockerfile index 9797c5e0f3..5d6c87ed6b 100644 --- a/.devops/vulkan.Dockerfile +++ b/.devops/vulkan.Dockerfile @@ -54,6 +54,7 @@ RUN apt-get update \ build-essential \ git \ python3 \ + python3-dev \ python3-pip \ python3-wheel \ && pip install --break-system-packages --upgrade setuptools \ From 3795cc1e89e16fbc145f8a5457ea30abd86e0d1d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 5 Feb 2026 14:34:07 +0200 Subject: [PATCH 11/26] benches : update models + numbers (#19359) * bench : update script * benches : update numbers --- benches/dgx-spark/dgx-spark.md | 371 +++++++++++++++------------ benches/mac-m2-ultra/mac-m2-ultra.md | 298 +++++++++++++++++++++ scripts/bench-models.sh | 60 +++-- 3 files changed, 541 insertions(+), 188 deletions(-) create mode 100644 benches/mac-m2-ultra/mac-m2-ultra.md mode change 100644 => 100755 scripts/bench-models.sh diff --git a/benches/dgx-spark/dgx-spark.md b/benches/dgx-spark/dgx-spark.md index ec6c20d8a0..fd5c4e2c78 100644 --- a/benches/dgx-spark/dgx-spark.md +++ b/benches/dgx-spark/dgx-spark.md @@ -8,7 +8,7 @@ g++ --version g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 nvidia-smi -Sun Nov 2 10:43:25 2025 +Thu Feb 5 13:49:40 2026 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 | +-----------------------------------------+------------------------+----------------------+ @@ -17,7 +17,7 @@ Sun Nov 2 10:43:25 2025 | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A | -| N/A 35C P8 4W / N/A | Not Supported | 0% Default | +| N/A 47C P0 13W / N/A | Not Supported | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ ``` @@ -29,46 +29,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 | -| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 | -| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 | -| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 | -| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 | -| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 | -| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 | -| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 | -| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 | -| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 | -| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 | -| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 | -| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 | -| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 | -| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 | -| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 | -| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 | -| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 | +| 512 | 32 | 1 | 544 | 0.270 | 1895.57 | 0.399 | 80.13 | 0.669 | 812.60 | +| 512 | 32 | 2 | 1088 | 0.230 | 4451.23 | 0.583 | 109.71 | 0.813 | 1337.56 | +| 512 | 32 | 4 | 2176 | 0.437 | 4688.87 | 0.820 | 156.03 | 1.257 | 1730.91 | +| 512 | 32 | 8 | 4352 | 0.863 | 4744.23 | 0.942 | 271.79 | 1.805 | 2410.73 | +| 512 | 32 | 16 | 8704 | 1.725 | 4748.19 | 1.173 | 436.38 | 2.899 | 3002.85 | +| 512 | 32 | 32 | 17408 | 3.437 | 4767.38 | 1.503 | 681.49 | 4.939 | 3524.40 | +| 4096 | 32 | 1 | 4128 | 0.907 | 4513.91 | 0.407 | 78.54 | 1.315 | 3139.56 | +| 4096 | 32 | 2 | 8256 | 1.796 | 4560.42 | 0.625 | 102.37 | 2.422 | 3409.45 | +| 4096 | 32 | 4 | 16512 | 3.596 | 4555.66 | 0.888 | 144.11 | 4.485 | 3681.93 | +| 4096 | 32 | 8 | 33024 | 7.184 | 4561.44 | 1.098 | 233.11 | 8.282 | 3987.51 | +| 4096 | 32 | 16 | 66048 | 14.369 | 4560.82 | 1.503 | 340.74 | 15.872 | 4161.30 | +| 4096 | 32 | 32 | 132096 | 28.760 | 4557.52 | 2.162 | 473.59 | 30.922 | 4271.95 | +| 8192 | 32 | 1 | 8224 | 1.859 | 4405.59 | 0.430 | 74.36 | 2.290 | 3591.61 | +| 8192 | 32 | 2 | 16448 | 3.698 | 4430.02 | 0.656 | 97.59 | 4.354 | 3777.47 | +| 8192 | 32 | 4 | 32896 | 7.403 | 4426.10 | 0.957 | 133.82 | 8.360 | 3934.97 | +| 8192 | 32 | 8 | 65792 | 14.802 | 4427.63 | 1.222 | 209.44 | 16.024 | 4105.87 | +| 8192 | 32 | 16 | 131584 | 29.596 | 4428.67 | 1.741 | 294.13 | 31.337 | 4199.00 | +| 8192 | 32 | 32 | 263168 | 59.169 | 4430.42 | 2.619 | 390.92 | 61.789 | 4259.17 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 4505.82 ± 12.90 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 83.43 ± 0.59 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 4158.34 ± 18.84 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 79.22 ± 0.60 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 3993.81 ± 17.55 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 75.22 ± 1.05 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 3449.98 ± 12.13 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.36 ± 0.37 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 2689.42 ± 18.89 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 61.65 ± 0.30 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/gpt-oss-120b-GGUF @@ -77,46 +77,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 | -| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 | -| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 | -| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 | -| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 | -| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 | -| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 | -| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 | -| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 | -| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 | -| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 | -| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 | -| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 | -| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 | -| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 | -| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 | -| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 | -| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 | +| 512 | 32 | 1 | 544 | 0.445 | 1151.80 | 0.560 | 57.14 | 1.005 | 541.53 | +| 512 | 32 | 2 | 1088 | 0.472 | 2169.85 | 0.874 | 73.27 | 1.345 | 808.65 | +| 512 | 32 | 4 | 2176 | 0.826 | 2480.33 | 1.299 | 98.51 | 2.125 | 1023.94 | +| 512 | 32 | 8 | 4352 | 1.644 | 2491.67 | 1.608 | 159.18 | 3.252 | 1338.20 | +| 512 | 32 | 16 | 8704 | 3.292 | 2488.35 | 2.117 | 241.85 | 5.409 | 1609.13 | +| 512 | 32 | 32 | 17408 | 6.604 | 2481.07 | 2.898 | 353.31 | 9.502 | 1832.04 | +| 4096 | 32 | 1 | 4128 | 1.698 | 2412.65 | 0.580 | 55.21 | 2.277 | 1812.66 | +| 4096 | 32 | 2 | 8256 | 3.399 | 2409.88 | 0.934 | 68.53 | 4.333 | 1905.27 | +| 4096 | 32 | 4 | 16512 | 6.823 | 2401.21 | 1.411 | 90.72 | 8.234 | 2005.30 | +| 4096 | 32 | 8 | 33024 | 13.574 | 2413.97 | 1.841 | 139.07 | 15.415 | 2142.31 | +| 4096 | 32 | 16 | 66048 | 27.176 | 2411.52 | 2.609 | 196.26 | 29.785 | 2217.49 | +| 4096 | 32 | 32 | 132096 | 54.359 | 2411.23 | 3.905 | 262.20 | 58.264 | 2267.19 | +| 8192 | 32 | 1 | 8224 | 3.491 | 2346.81 | 0.613 | 52.23 | 4.103 | 2004.21 | +| 8192 | 32 | 2 | 16448 | 6.939 | 2361.03 | 0.981 | 65.21 | 7.921 | 2076.56 | +| 8192 | 32 | 4 | 32896 | 13.888 | 2359.40 | 1.511 | 84.71 | 15.399 | 2136.21 | +| 8192 | 32 | 8 | 65792 | 27.756 | 2361.18 | 2.034 | 125.86 | 29.790 | 2208.56 | +| 8192 | 32 | 16 | 131584 | 55.554 | 2359.34 | 3.021 | 169.49 | 58.575 | 2246.41 | +| 8192 | 32 | 32 | 263168 | 111.036 | 2360.89 | 4.537 | 225.72 | 115.573 | 2277.08 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2443.91 ± 7.47 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 58.72 ± 0.20 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2309.84 ± 3.63 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 55.67 ± 0.35 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2216.68 ± 10.16 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 52.87 ± 0.43 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1956.31 ± 6.39 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 49.45 ± 0.20 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1567.08 ± 11.79 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 42.76 ± 0.14 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF @@ -125,46 +125,46 @@ Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 | -| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 | -| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 | -| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 | -| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 | -| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 | -| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 | -| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 | -| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 | -| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 | -| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 | -| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 | -| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 | -| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 | -| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 | -| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 | -| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 | -| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 | +| 512 | 32 | 1 | 544 | 0.393 | 1303.73 | 0.548 | 58.36 | 0.941 | 578.10 | +| 512 | 32 | 2 | 1088 | 0.387 | 2648.68 | 0.910 | 70.35 | 1.296 | 839.27 | +| 512 | 32 | 4 | 2176 | 0.659 | 3107.63 | 1.302 | 98.33 | 1.961 | 1109.77 | +| 512 | 32 | 8 | 4352 | 1.322 | 3099.35 | 1.669 | 153.42 | 2.990 | 1455.43 | +| 512 | 32 | 16 | 8704 | 2.639 | 3104.63 | 2.212 | 231.44 | 4.851 | 1794.32 | +| 512 | 32 | 32 | 17408 | 5.284 | 3100.80 | 2.955 | 346.53 | 8.239 | 2112.93 | +| 4096 | 32 | 1 | 4128 | 1.417 | 2890.36 | 0.598 | 53.51 | 2.015 | 2048.45 | +| 4096 | 32 | 2 | 8256 | 2.829 | 2895.62 | 1.019 | 62.82 | 3.848 | 2145.60 | +| 4096 | 32 | 4 | 16512 | 5.656 | 2896.96 | 1.528 | 83.79 | 7.183 | 2298.71 | +| 4096 | 32 | 8 | 33024 | 11.338 | 2890.02 | 2.127 | 120.36 | 13.465 | 2452.53 | +| 4096 | 32 | 16 | 66048 | 22.709 | 2885.96 | 3.104 | 164.97 | 25.812 | 2558.79 | +| 4096 | 32 | 32 | 132096 | 45.301 | 2893.35 | 4.723 | 216.80 | 50.024 | 2640.63 | +| 8192 | 32 | 1 | 8224 | 3.022 | 2711.09 | 0.678 | 47.20 | 3.700 | 2222.89 | +| 8192 | 32 | 2 | 16448 | 6.039 | 2713.01 | 1.149 | 55.70 | 7.188 | 2288.21 | +| 8192 | 32 | 4 | 32896 | 12.050 | 2719.35 | 1.785 | 71.69 | 13.835 | 2377.67 | +| 8192 | 32 | 8 | 65792 | 24.113 | 2717.90 | 2.629 | 97.39 | 26.741 | 2460.31 | +| 8192 | 32 | 16 | 131584 | 48.178 | 2720.58 | 4.099 | 124.91 | 52.277 | 2517.06 | +| 8192 | 32 | 32 | 263168 | 96.401 | 2719.31 | 6.696 | 152.93 | 103.097 | 2552.63 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2986.97 ± 18.87 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 61.06 ± 0.23 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2633.45 ± 6.26 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 54.77 ± 0.28 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2354.14 ± 3.84 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 48.02 ± 0.40 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1908.86 ± 4.25 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 40.23 ± 0.10 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1348.17 ± 2.00 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 30.21 ± 0.04 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF @@ -173,46 +173,46 @@ Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 | -| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 | -| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 | -| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 | -| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 | -| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 | -| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 | -| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 | -| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 | -| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 | -| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 | -| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 | -| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 | -| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 | -| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 | -| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 | -| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 | -| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 | +| 512 | 32 | 1 | 544 | 0.212 | 2420.12 | 1.100 | 29.10 | 1.311 | 414.85 | +| 512 | 32 | 2 | 1088 | 0.428 | 2393.89 | 1.185 | 54.00 | 1.613 | 674.56 | +| 512 | 32 | 4 | 2176 | 0.894 | 2290.41 | 1.229 | 104.17 | 2.123 | 1025.02 | +| 512 | 32 | 8 | 4352 | 1.758 | 2330.36 | 1.319 | 194.15 | 3.076 | 1414.70 | +| 512 | 32 | 16 | 8704 | 3.508 | 2335.21 | 1.543 | 331.90 | 5.051 | 1723.33 | +| 512 | 32 | 32 | 17408 | 7.035 | 2328.93 | 1.738 | 589.21 | 8.773 | 1984.29 | +| 4096 | 32 | 1 | 4128 | 1.831 | 2237.25 | 1.125 | 28.44 | 2.956 | 1396.42 | +| 4096 | 32 | 2 | 8256 | 3.642 | 2249.48 | 1.253 | 51.07 | 4.895 | 1686.64 | +| 4096 | 32 | 4 | 16512 | 7.274 | 2252.26 | 1.380 | 92.72 | 8.655 | 1907.81 | +| 4096 | 32 | 8 | 33024 | 14.576 | 2248.09 | 1.617 | 158.29 | 16.193 | 2039.37 | +| 4096 | 32 | 16 | 66048 | 29.138 | 2249.17 | 2.081 | 246.01 | 31.219 | 2115.63 | +| 4096 | 32 | 32 | 132096 | 58.275 | 2249.19 | 2.814 | 363.87 | 61.089 | 2162.34 | +| 8192 | 32 | 1 | 8224 | 3.757 | 2180.26 | 1.184 | 27.03 | 4.941 | 1664.37 | +| 8192 | 32 | 2 | 16448 | 7.522 | 2178.05 | 1.341 | 47.73 | 8.863 | 1855.77 | +| 8192 | 32 | 4 | 32896 | 15.043 | 2178.25 | 1.548 | 82.69 | 16.591 | 1982.74 | +| 8192 | 32 | 8 | 65792 | 30.111 | 2176.49 | 1.937 | 132.13 | 32.048 | 2052.90 | +| 8192 | 32 | 16 | 131584 | 60.405 | 2169.90 | 2.706 | 189.21 | 63.111 | 2084.97 | +| 8192 | 32 | 32 | 263168 | 120.439 | 2176.58 | 3.993 | 256.46 | 124.432 | 2114.96 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2250.28 ± 6.41 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 29.43 ± 0.02 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2100.19 ± 8.96 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 28.61 ± 0.02 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2007.56 ± 4.16 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 27.38 ± 0.09 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1779.11 ± 6.42 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 25.72 ± 0.03 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1471.23 ± 1.71 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 22.51 ± 0.02 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/gemma-3-4b-it-qat-GGUF @@ -221,44 +221,91 @@ Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 | -| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 | -| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 | -| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 | -| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 | -| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 | -| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 | -| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 | -| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 | -| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 | -| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 | -| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 | -| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 | -| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 | -| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 | -| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 | -| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 | -| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 | +| 512 | 32 | 1 | 544 | 0.092 | 5566.97 | 0.412 | 77.63 | 0.504 | 1078.95 | +| 512 | 32 | 2 | 1088 | 0.161 | 6345.67 | 0.522 | 122.70 | 0.683 | 1593.06 | +| 512 | 32 | 4 | 2176 | 0.325 | 6309.87 | 0.562 | 227.68 | 0.887 | 2453.87 | +| 512 | 32 | 8 | 4352 | 0.643 | 6374.42 | 0.685 | 373.67 | 1.328 | 3277.94 | +| 512 | 32 | 16 | 8704 | 1.277 | 6413.64 | 0.915 | 559.47 | 2.192 | 3970.01 | +| 512 | 32 | 32 | 17408 | 2.518 | 6506.57 | 1.249 | 819.61 | 3.767 | 4620.64 | +| 4096 | 32 | 1 | 4128 | 0.674 | 6079.68 | 0.453 | 70.60 | 1.127 | 3662.88 | +| 4096 | 32 | 2 | 8256 | 1.335 | 6137.82 | 0.627 | 102.03 | 1.962 | 4208.11 | +| 4096 | 32 | 4 | 16512 | 2.657 | 6167.35 | 0.749 | 170.92 | 3.405 | 4848.71 | +| 4096 | 32 | 8 | 33024 | 5.307 | 6173.91 | 0.974 | 262.89 | 6.281 | 5257.53 | +| 4096 | 32 | 16 | 66048 | 10.610 | 6176.96 | 1.379 | 371.42 | 11.988 | 5509.40 | +| 4096 | 32 | 32 | 132096 | 21.213 | 6178.89 | 2.122 | 482.50 | 23.335 | 5660.82 | +| 8192 | 32 | 1 | 8224 | 1.359 | 6027.34 | 0.467 | 68.52 | 1.826 | 4503.48 | +| 8192 | 32 | 2 | 16448 | 2.699 | 6069.68 | 0.653 | 98.03 | 3.352 | 4906.68 | +| 8192 | 32 | 4 | 32896 | 5.366 | 6106.74 | 0.818 | 156.55 | 6.184 | 5319.96 | +| 8192 | 32 | 8 | 65792 | 10.755 | 6093.50 | 1.174 | 218.04 | 11.929 | 5515.22 | +| 8192 | 32 | 16 | 131584 | 21.484 | 6100.82 | 1.829 | 279.90 | 23.314 | 5644.11 | +| 8192 | 32 | 32 | 263168 | 42.950 | 6103.40 | 3.058 | 334.91 | 46.008 | 5720.05 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 5948.74 ± 10.61 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 81.05 ± 0.20 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 5652.69 ± 34.29 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 76.37 ± 0.58 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 5509.57 ± 40.69 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 71.61 ± 0.80 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 5340.86 ± 36.92 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.89 ± 0.34 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 5023.30 ± 13.52 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 62.28 ± 0.30 | -build: eeee367de (6989) +build: 11fb327bf (7941) +## ggml-org/GLM-4.7-Flash-GGUF + +Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.433 | 1181.83 | 0.693 | 46.16 | 1.126 | 482.94 | +| 512 | 32 | 2 | 1088 | 0.439 | 2334.46 | 1.034 | 61.89 | 1.473 | 738.75 | +| 512 | 32 | 4 | 2176 | 0.772 | 2654.46 | 1.459 | 87.76 | 2.230 | 975.77 | +| 512 | 32 | 8 | 4352 | 1.541 | 2658.78 | 2.043 | 125.31 | 3.583 | 1214.47 | +| 512 | 32 | 16 | 8704 | 3.083 | 2656.91 | 2.675 | 191.42 | 5.758 | 1511.62 | +| 512 | 32 | 32 | 17408 | 6.159 | 2660.12 | 3.615 | 283.24 | 9.774 | 1780.98 | +| 4096 | 32 | 1 | 4128 | 1.915 | 2139.30 | 0.725 | 44.14 | 2.640 | 1563.83 | +| 4096 | 32 | 2 | 8256 | 3.834 | 2136.40 | 1.119 | 57.21 | 4.953 | 1666.81 | +| 4096 | 32 | 4 | 16512 | 7.636 | 2145.72 | 1.631 | 78.49 | 9.266 | 1781.93 | +| 4096 | 32 | 8 | 33024 | 15.295 | 2142.40 | 2.344 | 109.21 | 17.639 | 1872.20 | +| 4096 | 32 | 16 | 66048 | 30.573 | 2143.62 | 3.773 | 135.70 | 34.346 | 1923.04 | +| 4096 | 32 | 32 | 132096 | 61.282 | 2138.82 | 5.795 | 176.71 | 67.077 | 1969.31 | +| 8192 | 32 | 1 | 8224 | 4.510 | 1816.24 | 0.760 | 42.11 | 5.270 | 1560.44 | +| 8192 | 32 | 2 | 16448 | 9.036 | 1813.19 | 1.206 | 53.06 | 10.242 | 1605.91 | +| 8192 | 32 | 4 | 32896 | 18.070 | 1813.43 | 1.783 | 71.80 | 19.852 | 1657.03 | +| 8192 | 32 | 8 | 65792 | 36.125 | 1814.15 | 2.635 | 97.14 | 38.760 | 1697.41 | +| 8192 | 32 | 16 | 131584 | 72.367 | 1811.20 | 4.954 | 103.34 | 77.322 | 1701.77 | +| 8192 | 32 | 32 | 263168 | 144.501 | 1814.13 | 8.103 | 126.37 | 152.604 | 1724.51 | + + +- `llama-bench` + +| model | size | params | backend | ngl | n_ubatch | fa | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | --: | --------------: | -------------------: | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 | 2364.18 ± 11.43 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 | 48.68 ± 0.12 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d4096 | 1684.13 ± 1.24 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d4096 | 44.62 ± 0.22 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d8192 | 1314.68 ± 1.41 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d8192 | 42.59 ± 0.11 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d16384 | 914.05 ± 3.32 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d16384 | 38.72 ± 0.13 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d32768 | 567.20 ± 0.90 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d32768 | 32.65 ± 0.09 | + +build: 11fb327bf (7941) diff --git a/benches/mac-m2-ultra/mac-m2-ultra.md b/benches/mac-m2-ultra/mac-m2-ultra.md new file mode 100644 index 0000000000..cf8a953388 --- /dev/null +++ b/benches/mac-m2-ultra/mac-m2-ultra.md @@ -0,0 +1,298 @@ +## System info + +```bash +uname -a +Darwin gg-studio 25.2.0 Darwin Kernel Version 25.2.0: Tue Nov 18 21:07:05 PST 2025; root:xnu-12377.61.12~1/RELEASE_ARM64_T6020 arm64 + +g++ --version +Apple clang version 17.0.0 (clang-1700.3.19.1) +Target: arm64-apple-darwin25.2.0 +``` + +## ggml-org/gpt-oss-20b-GGUF + +Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.215 | 2381.35 | 0.245 | 130.45 | 0.460 | 1181.81 | +| 512 | 32 | 2 | 1088 | 0.379 | 2701.43 | 0.382 | 167.56 | 0.761 | 1429.67 | +| 512 | 32 | 4 | 2176 | 0.721 | 2839.27 | 0.604 | 211.76 | 1.326 | 1641.32 | +| 512 | 32 | 8 | 4352 | 1.433 | 2858.30 | 1.033 | 247.75 | 2.466 | 1764.57 | +| 512 | 32 | 16 | 8704 | 2.853 | 2871.12 | 1.570 | 326.11 | 4.423 | 1967.77 | +| 512 | 32 | 32 | 17408 | 5.699 | 2874.95 | 1.910 | 536.15 | 7.609 | 2287.88 | +| 4096 | 32 | 1 | 4128 | 1.552 | 2638.56 | 0.334 | 95.72 | 1.887 | 2188.00 | +| 4096 | 32 | 2 | 8256 | 3.084 | 2655.88 | 0.404 | 158.54 | 3.488 | 2366.86 | +| 4096 | 32 | 4 | 16512 | 6.151 | 2663.78 | 0.652 | 196.39 | 6.802 | 2427.37 | +| 4096 | 32 | 8 | 33024 | 12.288 | 2666.77 | 1.135 | 225.47 | 13.423 | 2460.27 | +| 4096 | 32 | 16 | 66048 | 24.563 | 2668.12 | 1.762 | 290.55 | 26.325 | 2508.97 | +| 4096 | 32 | 32 | 132096 | 49.114 | 2668.73 | 2.398 | 426.94 | 51.512 | 2564.35 | +| 8192 | 32 | 1 | 8224 | 3.345 | 2448.78 | 0.275 | 116.46 | 3.620 | 2271.76 | +| 8192 | 32 | 2 | 16448 | 6.665 | 2458.11 | 0.425 | 150.71 | 7.090 | 2319.91 | +| 8192 | 32 | 4 | 32896 | 13.315 | 2460.92 | 0.691 | 185.21 | 14.006 | 2348.63 | +| 8192 | 32 | 8 | 65792 | 26.611 | 2462.73 | 1.212 | 211.16 | 27.823 | 2364.62 | +| 8192 | 32 | 16 | 131584 | 53.232 | 2462.27 | 1.919 | 266.83 | 55.151 | 2385.88 | +| 8192 | 32 | 32 | 263168 | 110.455 | 2373.30 | 2.752 | 372.03 | 113.208 | 2324.64 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2713.40 ± 3.56 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 129.97 ± 3.90 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2324.59 ± 3.01 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 123.38 ± 0.17 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1989.82 ± 30.11 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 117.39 ± 0.33 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1556.54 ± 6.22 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 109.75 ± 0.42 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 1122.63 ± 1.45 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 98.25 ± 0.08 | + +build: b828e18c7 (7948) + +## ggml-org/gpt-oss-120b-GGUF + +Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.426 | 1200.92 | 0.361 | 88.56 | 0.788 | 690.64 | +| 512 | 32 | 2 | 1088 | 0.683 | 1500.14 | 0.545 | 117.35 | 1.228 | 886.02 | +| 512 | 32 | 4 | 2176 | 1.204 | 1701.56 | 0.847 | 151.19 | 2.050 | 1061.34 | +| 512 | 32 | 8 | 4352 | 2.402 | 1705.20 | 1.455 | 176.00 | 3.857 | 1128.45 | +| 512 | 32 | 16 | 8704 | 4.802 | 1705.90 | 2.349 | 217.93 | 7.152 | 1217.08 | +| 512 | 32 | 32 | 17408 | 9.593 | 1707.85 | 3.665 | 279.42 | 13.258 | 1313.01 | +| 4096 | 32 | 1 | 4128 | 2.581 | 1587.08 | 0.390 | 82.12 | 2.970 | 1389.67 | +| 4096 | 32 | 2 | 8256 | 5.124 | 1598.79 | 0.589 | 108.62 | 5.713 | 1445.10 | +| 4096 | 32 | 4 | 16512 | 10.231 | 1601.47 | 0.928 | 137.98 | 11.158 | 1479.80 | +| 4096 | 32 | 8 | 33024 | 20.468 | 1600.94 | 1.606 | 159.38 | 22.074 | 1496.04 | +| 4096 | 32 | 16 | 66048 | 40.924 | 1601.42 | 2.639 | 193.99 | 43.563 | 1516.15 | +| 4096 | 32 | 32 | 132096 | 81.819 | 1601.98 | 4.466 | 229.29 | 86.284 | 1530.94 | +| 8192 | 32 | 1 | 8224 | 5.517 | 1484.74 | 0.409 | 78.16 | 5.927 | 1387.58 | +| 8192 | 32 | 2 | 16448 | 11.008 | 1488.43 | 0.622 | 102.92 | 11.629 | 1414.34 | +| 8192 | 32 | 4 | 32896 | 22.002 | 1489.29 | 0.987 | 129.66 | 22.990 | 1430.90 | +| 8192 | 32 | 8 | 65792 | 46.051 | 1423.11 | 1.858 | 137.79 | 47.909 | 1373.27 | +| 8192 | 32 | 16 | 131584 | 97.680 | 1341.85 | 2.872 | 178.28 | 100.552 | 1308.62 | +| 8192 | 32 | 32 | 263168 | 176.407 | 1486.02 | 5.048 | 202.85 | 181.455 | 1450.32 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1648.69 ± 1.80 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 85.60 ± 0.52 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1429.86 ± 1.01 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 82.03 ± 0.12 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1257.90 ± 1.81 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 78.23 ± 0.33 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1013.49 ± 0.70 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 73.20 ± 0.28 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 721.11 ± 0.58 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 65.52 ± 0.10 | + +build: b828e18c7 (7948) + +## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF + +Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.243 | 2109.23 | 0.419 | 76.34 | 0.662 | 821.84 | +| 512 | 32 | 2 | 1088 | 0.406 | 2521.40 | 0.575 | 111.36 | 0.981 | 1109.27 | +| 512 | 32 | 4 | 2176 | 0.744 | 2751.65 | 0.841 | 152.22 | 1.585 | 1372.71 | +| 512 | 32 | 8 | 4352 | 1.479 | 2770.20 | 1.330 | 192.48 | 2.809 | 1549.53 | +| 512 | 32 | 16 | 8704 | 2.951 | 2776.20 | 2.572 | 199.05 | 5.523 | 1575.93 | +| 512 | 32 | 32 | 17408 | 5.899 | 2777.64 | 2.603 | 393.34 | 8.502 | 2047.54 | +| 4096 | 32 | 1 | 4128 | 1.901 | 2154.15 | 0.474 | 67.58 | 2.375 | 1738.14 | +| 4096 | 32 | 2 | 8256 | 3.788 | 2162.89 | 0.652 | 98.17 | 4.439 | 1859.69 | +| 4096 | 32 | 4 | 16512 | 7.564 | 2166.18 | 0.990 | 129.24 | 8.554 | 1930.34 | +| 4096 | 32 | 8 | 33024 | 15.121 | 2166.98 | 1.632 | 156.82 | 16.754 | 1971.12 | +| 4096 | 32 | 16 | 66048 | 30.241 | 2167.09 | 3.166 | 161.72 | 33.407 | 1977.04 | +| 4096 | 32 | 32 | 132096 | 60.474 | 2167.42 | 3.780 | 270.93 | 64.254 | 2055.86 | +| 8192 | 32 | 1 | 8224 | 4.733 | 1730.92 | 0.483 | 66.29 | 5.215 | 1576.85 | +| 8192 | 32 | 2 | 16448 | 9.459 | 1732.09 | 0.722 | 88.58 | 10.182 | 1615.46 | +| 8192 | 32 | 4 | 32896 | 18.912 | 1732.65 | 1.120 | 114.26 | 20.032 | 1642.14 | +| 8192 | 32 | 8 | 65792 | 37.797 | 1733.91 | 1.873 | 136.67 | 39.670 | 1658.49 | +| 8192 | 32 | 16 | 131584 | 84.133 | 1557.92 | 3.718 | 137.72 | 87.850 | 1497.82 | +| 8192 | 32 | 32 | 263168 | 157.550 | 1663.88 | 4.854 | 210.98 | 162.403 | 1620.46 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2453.11 ± 1.70 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 78.97 ± 0.46 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1569.46 ± 1.97 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 71.18 ± 0.37 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1145.51 ± 1.16 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 65.11 ± 0.36 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 741.04 ± 0.74 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 56.87 ± 0.14 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 431.31 ± 0.31 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 45.26 ± 0.11 | + +build: b828e18c7 (7948) + +## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF + +Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.339 | 1509.22 | 0.409 | 78.17 | 0.749 | 726.67 | +| 512 | 32 | 2 | 1088 | 0.646 | 1584.93 | 0.483 | 132.45 | 1.129 | 963.45 | +| 512 | 32 | 4 | 2176 | 1.258 | 1627.50 | 0.585 | 218.67 | 1.844 | 1180.21 | +| 512 | 32 | 8 | 4352 | 2.506 | 1634.41 | 1.005 | 254.83 | 3.511 | 1239.64 | +| 512 | 32 | 16 | 8704 | 5.007 | 1635.99 | 1.595 | 321.07 | 6.602 | 1318.38 | +| 512 | 32 | 32 | 17408 | 10.007 | 1637.19 | 1.676 | 611.12 | 11.683 | 1490.03 | +| 4096 | 32 | 1 | 4128 | 2.730 | 1500.46 | 0.431 | 74.31 | 3.160 | 1306.12 | +| 4096 | 32 | 2 | 8256 | 5.446 | 1504.33 | 0.524 | 122.04 | 5.970 | 1382.91 | +| 4096 | 32 | 4 | 16512 | 10.875 | 1506.59 | 0.662 | 193.45 | 11.537 | 1431.28 | +| 4096 | 32 | 8 | 33024 | 21.749 | 1506.61 | 1.158 | 221.11 | 22.907 | 1441.64 | +| 4096 | 32 | 16 | 66048 | 43.477 | 1507.36 | 1.901 | 269.32 | 45.378 | 1455.49 | +| 4096 | 32 | 32 | 132096 | 86.954 | 1507.37 | 2.325 | 440.42 | 89.279 | 1479.59 | +| 8192 | 32 | 1 | 8224 | 5.940 | 1379.21 | 0.449 | 71.20 | 6.389 | 1287.20 | +| 8192 | 32 | 2 | 16448 | 11.865 | 1380.84 | 0.559 | 114.59 | 12.424 | 1323.92 | +| 8192 | 32 | 4 | 32896 | 23.723 | 1381.25 | 0.728 | 175.80 | 24.452 | 1345.35 | +| 8192 | 32 | 8 | 65792 | 47.434 | 1381.63 | 1.279 | 200.09 | 48.713 | 1350.60 | +| 8192 | 32 | 16 | 131584 | 94.864 | 1381.69 | 2.198 | 232.97 | 97.061 | 1355.68 | +| 8192 | 32 | 32 | 263168 | 189.743 | 1381.57 | 3.052 | 335.50 | 192.795 | 1365.01 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1565.91 ± 0.86 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 79.68 ± 0.39 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1317.41 ± 1.02 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 74.70 ± 0.04 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1134.65 ± 0.76 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 71.31 ± 0.12 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 886.46 ± 0.78 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 65.93 ± 0.06 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 612.21 ± 0.30 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 56.83 ± 0.02 | + +build: b828e18c7 (7948) + +## ggml-org/gemma-3-4b-it-qat-GGUF + +Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.186 | 2748.06 | 0.235 | 136.28 | 0.421 | 1291.78 | +| 512 | 32 | 2 | 1088 | 0.342 | 2990.95 | 0.312 | 204.99 | 0.655 | 1662.15 | +| 512 | 32 | 4 | 2176 | 0.662 | 3092.69 | 0.404 | 316.97 | 1.066 | 2041.21 | +| 512 | 32 | 8 | 4352 | 1.317 | 3110.41 | 0.579 | 441.80 | 1.896 | 2294.97 | +| 512 | 32 | 16 | 8704 | 2.625 | 3120.23 | 1.207 | 424.08 | 3.833 | 2270.93 | +| 512 | 32 | 32 | 17408 | 5.242 | 3125.34 | 1.299 | 788.23 | 6.541 | 2661.19 | +| 4096 | 32 | 1 | 4128 | 1.408 | 2909.90 | 0.296 | 108.07 | 1.704 | 2422.95 | +| 4096 | 32 | 2 | 8256 | 2.793 | 2933.40 | 0.325 | 197.00 | 3.118 | 2648.25 | +| 4096 | 32 | 4 | 16512 | 5.567 | 2943.22 | 0.440 | 291.07 | 6.006 | 2749.05 | +| 4096 | 32 | 8 | 33024 | 11.114 | 2948.23 | 0.640 | 400.26 | 11.754 | 2809.59 | +| 4096 | 32 | 16 | 66048 | 22.217 | 2949.76 | 1.327 | 385.83 | 23.544 | 2805.26 | +| 4096 | 32 | 32 | 132096 | 44.420 | 2950.77 | 1.553 | 659.30 | 45.973 | 2873.36 | +| 8192 | 32 | 1 | 8224 | 2.860 | 2864.58 | 0.250 | 127.90 | 3.110 | 2644.42 | +| 8192 | 32 | 2 | 16448 | 5.702 | 2873.63 | 0.335 | 191.07 | 6.036 | 2724.77 | +| 8192 | 32 | 4 | 32896 | 11.383 | 2878.69 | 0.456 | 280.72 | 11.839 | 2778.63 | +| 8192 | 32 | 8 | 65792 | 22.750 | 2880.75 | 0.671 | 381.48 | 23.421 | 2809.14 | +| 8192 | 32 | 16 | 131584 | 45.484 | 2881.74 | 1.406 | 364.04 | 46.890 | 2806.22 | +| 8192 | 32 | 32 | 263168 | 90.956 | 2882.10 | 1.793 | 570.98 | 92.749 | 2837.41 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2923.59 ± 3.10 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 134.28 ± 1.29 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2748.21 ± 3.05 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 133.11 ± 0.08 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 2641.45 ± 2.31 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 125.85 ± 0.35 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 2446.20 ± 2.94 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 125.00 ± 0.12 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 2129.18 ± 7.43 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 113.14 ± 0.10 | + +build: b828e18c7 (7948) + +## ggml-org/GLM-4.7-Flash-GGUF + +Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.326 | 1568.69 | 0.522 | 61.28 | 0.849 | 641.09 | +| 512 | 32 | 2 | 1088 | 0.528 | 1939.42 | 0.744 | 86.07 | 1.272 | 855.63 | +| 512 | 32 | 4 | 2176 | 0.968 | 2114.85 | 1.105 | 115.85 | 2.073 | 1049.56 | +| 512 | 32 | 8 | 4352 | 1.928 | 2124.62 | 1.684 | 151.99 | 3.612 | 1204.82 | +| 512 | 32 | 16 | 8704 | 3.844 | 2131.34 | 3.141 | 162.99 | 6.985 | 1246.11 | +| 512 | 32 | 32 | 17408 | 7.683 | 2132.38 | 3.924 | 260.95 | 11.608 | 1499.71 | +| 4096 | 32 | 1 | 4128 | 3.280 | 1248.75 | 0.723 | 44.29 | 4.003 | 1031.33 | +| 4096 | 32 | 2 | 8256 | 6.545 | 1251.63 | 0.930 | 68.85 | 7.475 | 1104.53 | +| 4096 | 32 | 4 | 16512 | 13.080 | 1252.64 | 1.454 | 88.03 | 14.534 | 1136.12 | +| 4096 | 32 | 8 | 33024 | 26.154 | 1252.90 | 2.388 | 107.20 | 28.542 | 1157.04 | +| 4096 | 32 | 16 | 66048 | 52.297 | 1253.14 | 4.724 | 108.37 | 57.022 | 1158.30 | +| 4096 | 32 | 32 | 132096 | 104.578 | 1253.34 | 7.266 | 140.93 | 111.844 | 1181.08 | +| 8192 | 32 | 1 | 8224 | 9.623 | 851.31 | 0.767 | 41.72 | 10.390 | 791.54 | +| 8192 | 32 | 2 | 16448 | 20.916 | 783.32 | 1.148 | 55.74 | 22.064 | 745.45 | +| 8192 | 32 | 4 | 32896 | 43.509 | 753.14 | 1.833 | 69.82 | 45.342 | 725.51 | +| 8192 | 32 | 8 | 65792 | 79.621 | 823.10 | 3.180 | 80.50 | 82.801 | 794.58 | +| 8192 | 32 | 16 | 131584 | 153.770 | 852.39 | 6.502 | 78.74 | 160.272 | 821.00 | +| 8192 | 32 | 32 | 263168 | 307.539 | 852.39 | 10.839 | 94.48 | 318.378 | 826.59 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1629.33 ± 0.27 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 59.58 ± 0.13 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 732.67 ± 0.42 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 47.44 ± 0.15 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 474.33 ± 0.33 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 40.20 ± 0.20 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 277.46 ± 0.09 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 31.50 ± 0.93 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 151.44 ± 0.05 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 21.81 ± 0.01 | + +build: b828e18c7 (7948) diff --git a/scripts/bench-models.sh b/scripts/bench-models.sh old mode 100644 new mode 100755 index 744b0de359..c241013040 --- a/scripts/bench-models.sh +++ b/scripts/bench-models.sh @@ -7,47 +7,54 @@ ARGS_BB="-c 270336 -npp 512,4096,8192 -npl 1,2,4,8,16,32 -ntg 32" ARGS_B="-d 0,4096,8192,16384,32768 -p 2048 -n 32" QUICK=0 +DIO=0 while (( "$#" )); do - case "$1" in - --quick) QUICK=1; shift ;; - *) shift ;; - esac + case "$1" in + --quick) QUICK=1; shift ;; + --dio) DIO=1; shift ;; + *) shift ;; + esac done if (( QUICK )); then - ARGS_BB="-c 20480 -npp 512,4096 -npl 1,2,4 -ntg 32" - ARGS_B="-d 0 -p 2048 -n 32" + ARGS_BB="-c 20480 -npp 512,4096 -npl 1,2,4 -ntg 32" + ARGS_B="-d 0 -p 2048 -n 32" +fi + +if (( DIO )); then + ARGS_BB="${ARGS_BB} --no-mmap --direct-io" + ARGS_B="${ARGS_B} -mmp 0 -dio 1" fi run_model() { - local HFR=$1 - local HFF=$2 + local HFR=$1 + local HFF=$2 - printf "## ${HFR}\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" - printf "Model: https://huggingface.co/${HFR}\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf "## ${HFR}\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" + printf "Model: https://huggingface.co/${HFR}\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - printf -- "- \`llama-batched-bench\`\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf -- "- \`llama-batched-bench\`\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - ./bin/llama-batched-bench \ - -hfr "${HFR}" -hff "${HFF}" \ - -m "${HFF}" -fa 1 -ub 2048 --no-mmap \ - ${ARGS_BB} | tee -a "$RESULTS" + ./bin/llama-batched-bench \ + -hfr "${HFR}" -hff "${HFF}" \ + -m "${HFF}" -fa 1 -ub 2048 \ + ${ARGS_BB} | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - printf -- "- \`llama-bench\`\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf -- "- \`llama-bench\`\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - ./bin/llama-bench \ - -m "${HFF}" -fa 1 -ub 2048 -mmp 0 \ - ${ARGS_B} | tee -a "$RESULTS" + ./bin/llama-bench \ + -m "${HFF}" -fa 1 -ub 2048 \ + ${ARGS_B} | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - printf "\n" + printf "\n" } run_model "ggml-org/gpt-oss-20b-GGUF" "gpt-oss-20b-mxfp4.gguf" @@ -55,6 +62,7 @@ run_model "ggml-org/gpt-oss-120b-GGUF" "gpt-oss-120b-mxfp4- run_model "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF" "qwen3-coder-30b-a3b-instruct-q8_0.gguf" run_model "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF" "qwen2.5-coder-7b-q8_0.gguf" run_model "ggml-org/gemma-3-4b-it-qat-GGUF" "gemma-3-4b-it-qat-Q4_0.gguf" +run_model "ggml-org/GLM-4.7-Flash-GGUF" "GLM-4.7-Flash-Q8_0.gguf" if [[ -f models-extra.txt ]]; then while read -r HFR HFF; do From 449ec2ab0751fc713fe338da2ced153125b5c674 Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Thu, 5 Feb 2026 09:26:38 -0600 Subject: [PATCH 12/26] vulkan: Preprocess FA mask to detect all-neg-inf and all-zero. (#19281) Write out a 2-bit code per block and avoid loading the mask when it matches these two common cases. Apply this optimization when the mask is relatively large (i.e. prompt processing). --- ggml/src/ggml-vulkan/ggml-vulkan.cpp | 109 +++++++++++--- .../vulkan-shaders/flash_attn.comp | 39 ++--- .../vulkan-shaders/flash_attn_base.glsl | 6 + .../vulkan-shaders/flash_attn_cm1.comp | 112 +++++++------- .../vulkan-shaders/flash_attn_cm2.comp | 63 ++++---- .../vulkan-shaders/flash_attn_mask_opt.comp | 142 ++++++++++++++++++ .../vulkan-shaders/vulkan-shaders-gen.cpp | 2 + tests/test-backend-ops.cpp | 10 +- 8 files changed, 360 insertions(+), 123 deletions(-) create mode 100644 ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_mask_opt.comp diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index ff9cb7355c..4357da24d4 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -402,18 +402,19 @@ enum FaCodePath { }; struct vk_fa_pipeline_state { - vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc) - : HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc) {} + vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc, bool use_mask_opt) + : HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc), use_mask_opt(use_mask_opt) {} uint32_t HSK, HSV; bool small_rows, small_cache; FaCodePath path; bool aligned; bool f32acc; + bool use_mask_opt; bool operator<(const vk_fa_pipeline_state &b) const { - return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc) < - std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc); + return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, use_mask_opt) < + std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc, b.use_mask_opt); } }; @@ -820,6 +821,8 @@ struct vk_device_struct { std::map pipeline_flash_attn_f32_f16[GGML_TYPE_COUNT]; + std::map, vk_pipeline> pipeline_fa_mask_opt; + vk_pipeline pipeline_flash_attn_split_k_reduce; vk_pipeline pipeline_count_experts; @@ -1549,6 +1552,18 @@ struct vk_op_flash_attn_split_k_reduce_push_constants { uint32_t sinks; }; +struct vk_op_flash_attn_mask_opt_push_constants { + uint32_t nem0; + uint32_t nem1; + uint32_t nem2; + uint32_t nbm1; + uint32_t nbm2; + uint32_t nbm3; + uint32_t nbd1; + uint32_t nbd2; + uint32_t nbd3; +}; + // Allow pre-recording command buffers struct vk_staging_memcpy { vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} @@ -1757,6 +1772,7 @@ class vk_perf_logger { " k(" << k->ne[0] << "," << k->ne[1] << "," << k->ne[2] << "," << k->ne[3] << "), " << " v(" << v->ne[0] << "," << v->ne[1] << "," << v->ne[2] << "," << v->ne[3] << "), " << " m(" << (m?m->ne[0]:0) << "," << (m?m->ne[1]:0) << "," << (m?m->ne[2]:0) << "," << (m?m->ne[3]:0) << ")"; + *n_flops = 2ull * q->ne[1] * q->ne[2] * (k->ne[0] + v->ne[0]) * k->ne[1] * q->ne[3]; return name.str(); } if (node->op == GGML_OP_TOP_K) { @@ -3177,7 +3193,7 @@ static void ggml_vk_load_shaders(vk_device& device) { return {fa_rows_cols(path, hsk, hsv, clamp, type, small_rows, small_cache)[0], 1, 1}; }; - auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache) -> std::vector { + auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache, bool use_mask_opt) -> std::vector { // For large number of rows, 128 invocations seems to work best. // For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we // can't use 256 for D==80. @@ -3209,7 +3225,7 @@ static void ggml_vk_load_shaders(vk_device& device) { // AMD prefers loading K directly from global memory const uint32_t k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA && hsk < 256 ? 1 : 0; - return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem}; + return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem, use_mask_opt}; }; #define CREATE_FA(TYPE, NAMELC, FAPATH, SUFFIX) \ @@ -3221,18 +3237,19 @@ static void ggml_vk_load_shaders(vk_device& device) { FaCodePath path = fa.first.path; \ bool aligned = fa.first.aligned; \ bool f32acc = fa.first.f32acc; \ + bool use_mask_opt = fa.first.use_mask_opt; \ if (path == FAPATH) { \ if (aligned) { \ if (f32acc) { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,use_mask_opt), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } else { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,use_mask_opt), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } \ } else { \ if (f32acc) { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,use_mask_opt), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } else { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,use_mask_opt), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } \ } \ } \ @@ -4028,6 +4045,11 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 3, sizeof(vk_op_flash_attn_split_k_reduce_push_constants), {1, device->subgroup_size, 1}, {device->subgroup_size}, 1, true); + for (auto &it : device->pipeline_fa_mask_opt) { + auto BrBc = it.first; + ggml_vk_create_pipeline(device, it.second, "fa_mask_opt", fa_mask_opt_len, fa_mask_opt_data, "main", 2, sizeof(vk_op_flash_attn_mask_opt_push_constants), {1, 1, 1}, {128, 128 / device->subgroup_size, BrBc.first, BrBc.second}, 1, true, true, device->subgroup_size); + } + if (device->subgroup_clustered && device->subgroup_require_full_support) { ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_subgroup_len, quantize_q8_1_x4_subgroup_data, "main", 2, sizeof(vk_quantize_q8_1_push_constants), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true); } else { @@ -8400,8 +8422,6 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co const uint32_t acctype = f32acc ? 4 : 2; const uint32_t f16vec4 = 8; - const uint32_t tmpsh = (Bc / MatBc) * sizeof(float); - const uint32_t qstride = hsk_pad / 4 + 2; const uint32_t Qf = Br * qstride * f16vec4; @@ -8418,7 +8438,7 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co const uint32_t slope = Br * acctype; - const uint32_t total_size = tmpsh + Qf + Psh + sfsh + ksh + slope; + const uint32_t total_size = Qf + Psh + sfsh + ksh + slope; const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize; VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(HSK=" << hsk << ", HSV=" << hsv << ", f32acc=" << f32acc << ", kv_type=" << kv_type << ", total_size=" << total_size << ", supported=" << supported); @@ -8445,6 +8465,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + const uint32_t nem0 = mask ? mask->ne[0] : 0; const uint32_t nem1 = mask ? mask->ne[1] : 0; const uint32_t nem2 = mask ? mask->ne[2] : 0; const uint32_t nem3 = mask ? mask->ne[3] : 0; @@ -8574,7 +8595,10 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32; - vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc); + // Only use mask opt when the mask is fairly large. This hasn't been tuned extensively. + bool use_mask_opt = mask && nem1 >= 32 && nem0 * nem1 > 32768; + + vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, use_mask_opt); vk_pipeline pipeline = nullptr; @@ -8625,10 +8649,32 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx ggml_vk_preallocate_buffers(ctx, subctx); } - { - // Request descriptor sets - if (split_k > 1) { - ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_flash_attn_split_k_reduce, 1); + auto rows_cols = fa_rows_cols(path, HSK, HSV, !aligned, k->type, small_rows, small_cache); + const uint32_t Br = rows_cols[0]; + const uint32_t Bc = rows_cols[1]; + + const uint32_t mask_opt_num_dwords = CEIL_DIV(nem0, 16 * Bc); + const uint64_t mask_opt_size = sizeof(uint32_t) * mask_opt_num_dwords * CEIL_DIV(nem1, Br) * nem2 * nem3; + + vk_pipeline pipeline_fa_mask_opt = nullptr; + if (use_mask_opt) { + std::lock_guard guard(ctx->device->mutex); + auto &pipelines = ctx->device->pipeline_fa_mask_opt; + auto it = pipelines.find({Br, Bc}); + if (it != pipelines.end()) { + pipeline_fa_mask_opt = it->second; + } else { + pipelines[{Br, Bc}] = pipeline_fa_mask_opt = std::make_shared(); + } + assert(pipeline_fa_mask_opt); + ggml_pipeline_request_descriptor_sets(ctx, pipeline_fa_mask_opt, 1); + + if (ctx->prealloc_size_y < mask_opt_size) { + ctx->prealloc_size_y = mask_opt_size; + ggml_vk_preallocate_buffers(ctx, subctx); + } + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); } } @@ -8655,9 +8701,30 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst); vk_subbuffer mask_buf = mask ? ggml_vk_tensor_subbuffer(ctx, mask) : q_buf; vk_subbuffer sinks_buf = sinks ? ggml_vk_tensor_subbuffer(ctx, sinks) : q_buf; + vk_subbuffer mask_opt_buf = use_mask_opt ? ggml_vk_subbuffer(ctx, ctx->prealloc_y, 0) : q_buf; uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | ((mask != nullptr) << 16) | n_head_log2; + if (use_mask_opt) + { + const vk_op_flash_attn_mask_opt_push_constants opt_pc = { + nem0, + nem1, + nem2, + (uint32_t)(mask->nb[1] / sizeof(ggml_fp16_t)), + (uint32_t)(mask->nb[2] / sizeof(ggml_fp16_t)), + (uint32_t)(mask->nb[3] / sizeof(ggml_fp16_t)), + mask_opt_num_dwords, + mask_opt_num_dwords * CEIL_DIV(nem1, Br), + mask_opt_num_dwords * CEIL_DIV(nem1, Br) * nem2, + }; + + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline_fa_mask_opt, + { mask_buf, mask_opt_buf }, opt_pc, + { mask_opt_num_dwords, CEIL_DIV(nem1, Br), nem2 * nem3 }); + ggml_vk_sync_buffers(ctx, subctx); + } + const vk_flash_attn_push_constants pc = { N, KV, (uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3, (uint32_t)neq2, (uint32_t)neq3, @@ -8672,13 +8739,15 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx gqa_ratio, split_kv, split_k }; if (split_k > 1) { + ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_flash_attn_split_k_reduce, 1); + if (ctx->prealloc_split_k_need_sync) { ggml_vk_sync_buffers(ctx, subctx); } workgroups_x *= pipeline->wg_denoms[0]; vk_subbuffer split_k_buf = ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, - {q_buf, k_buf, v_buf, mask_buf, sinks_buf, split_k_buf}, + {q_buf, k_buf, v_buf, mask_buf, sinks_buf, split_k_buf, mask_opt_buf}, // We only use split_k when group query attention is enabled, which means // there's no more than one tile of rows (i.e. workgroups_x would have been // one). We reuse workgroups_x to mean the number of splits, so we need to @@ -8697,7 +8766,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx workgroups_x *= pipeline->wg_denoms[0]; } ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, - {q_buf, k_buf, v_buf, mask_buf, sinks_buf, dst_buf}, + {q_buf, k_buf, v_buf, mask_buf, sinks_buf, dst_buf, mask_opt_buf}, pc, { workgroups_x, workgroups_y, workgroups_z }); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp index 3ce8d07be8..49a3c530cb 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp @@ -94,6 +94,10 @@ void main() { } } + const uint32_t mo_stride = CEIL_DIV(KV, 16 * Bc); + // mo_offset will point to the tile starting at row i*Br and col 0 + uint32_t mo_offset = mo_stride * i; + #if BLOCK_SIZE > 1 uint32_t k_offset = (ik2*p.nb12 + ik3*p.nb13) / BLOCK_BYTE_SIZE; uint32_t v_offset = (iv2*p.nb22 + iv3*p.nb23) / BLOCK_BYTE_SIZE; @@ -104,15 +108,28 @@ void main() { uint32_t m_offset = gqa_iq1*KV; if (p.nem2 != 1 || p.nem3 != 1) { m_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * p.nem1 * KV; + mo_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * CEIL_DIV(p.nem1, Br) * mo_stride; } + uint32_t mask_opt = 0; + uint32_t mask_opt_idx = ~0; + [[dont_unroll]] for (uint32_t j = start_j; j < end_j; ++j) { - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (USE_MASK_OPT && mask_opt_idx != j / 16) { + mask_opt_idx = j / 16; + mask_opt = data_mask_opt[mo_offset + mask_opt_idx]; + } + uint32_t mask_opt_bits = (mask_opt >> ((j % 16) * 2)) & 0x3; + if (mask_opt_bits == MASK_OPT_ALL_NEG_INF) { + // skip this block + continue; + } + // Only load if the block is not all zeros + if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0 && mask_opt_bits != MASK_OPT_ALL_ZERO) { bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; - float max_mask = NEG_FLT_MAX_OVER_2; [[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) { uint32_t c = (idx + tid) % Bc; uint32_t r = (idx + tid) / Bc; @@ -120,25 +137,12 @@ void main() { if ((!KV_bounds_check || j * Bc + c < KV) && (!nem1_bounds_check || i * Br + r < p.nem1)) { float m = float(data_m[m_offset + (i * Br + r) * m_stride + (j * Bc + c)]); masksh[c][r] = m; - max_mask = max(max_mask, m); } else { masksh[c][r] = float(0); } } } - // skip the block if the mask is entirely -inf - bool all_less = subgroupAll(max_mask <= NEG_FLT_MAX_OVER_2); barrier(); - if (gl_SubgroupInvocationID == 0) { - tmpsh[gl_SubgroupID] = all_less ? NEG_FLT_MAX_OVER_2 : 0.0f; - } - barrier(); - [[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) { - max_mask = max(max_mask, tmpsh[s]); - } - if (max_mask <= NEG_FLT_MAX_OVER_2) { - continue; - } } float Sf[Br][cols_per_thread]; @@ -185,7 +189,7 @@ void main() { } } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0 && mask_opt_bits != MASK_OPT_ALL_ZERO) { [[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) { float mvf = masksh[c * cols_per_iter + col_tid][r]; @@ -256,9 +260,6 @@ void main() { barrier(); } - // prevent race on tmpsh - barrier(); - // reduce across threads [[unroll]] for (uint32_t r = 0; r < Br; ++r) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl index 23a4d2c005..252451101a 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl @@ -10,6 +10,7 @@ layout (constant_id = 5) const uint32_t Clamp = 0; layout (constant_id = 6) const uint32_t D_split = 16; layout (constant_id = 7) const uint32_t SubGroupSize = 32; layout (constant_id = 8) const uint32_t K_LOAD_SHMEM = 0; +layout (constant_id = 9) const bool USE_MASK_OPT = false; // Round up head sizes to a multiple of 16, for coopmat1/coopmat2 paths const uint32_t HSK_pad = (HSK + 15) & ~15; @@ -66,6 +67,11 @@ layout (binding = 4) readonly buffer S {float data_s[];}; layout (binding = 5) writeonly buffer O {D_TYPE data_o[];}; +layout (binding = 6) readonly buffer MO {uint32_t data_mask_opt[];}; + +#define MASK_OPT_ALL_NEG_INF 1 +#define MASK_OPT_ALL_ZERO 2 + #define BINDING_IDX_K 0 #define BINDING_IDX_V 1 #if defined(DATA_A_F32) diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp index 83d52d19d6..89af3697e1 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp @@ -42,8 +42,6 @@ D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TY return elem; } -shared float tmpsh[row_split]; - const uint32_t qstride = HSK_pad / 4 + 2; // in units of f16vec4 shared f16vec4 Qf[Br * qstride]; @@ -134,6 +132,10 @@ void main() { } } + const uint32_t mo_stride = CEIL_DIV(KV, 16 * Bc); + // mo_offset will point to the tile starting at row i*Br and col 0 + uint32_t mo_offset = mo_stride * i; + #if BLOCK_SIZE > 1 uint32_t k_offset = (ik2*p.nb12 + ik3*p.nb13) / BLOCK_BYTE_SIZE; uint32_t v_offset = (iv2*p.nb22 + iv3*p.nb23) / BLOCK_BYTE_SIZE; @@ -144,66 +146,74 @@ void main() { uint32_t m_offset = gqa_iq1*KV; if (p.nem2 != 1 || p.nem3 != 1) { m_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * p.nem1 * KV; + mo_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * CEIL_DIV(p.nem1, Br) * mo_stride; } + uint32_t mask_opt = 0; + uint32_t mask_opt_idx = ~0; + [[dont_unroll]] for (uint32_t j = start_j; j < end_j; ++j) { f16vec4 mask_cache[Bc * Br / 4 / WorkGroupSize]; - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { - bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; + [[unroll]] for (uint32_t idx = 0; idx < mask_cache.length(); ++idx) { + mask_cache[idx] = f16vec4(0); + } - float max_mask = NEG_FLT_MAX_OVER_2; - [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { - uint32_t c = (idx + tid) / (Br / 4); - uint32_t r = (idx + tid) % (Br / 4); - if (idx + tid < Bc * Br / 4 || idx + gl_WorkGroupSize.x <= Bc * Br / 4) { - if ((!KV_bounds_check || j * Bc + c < KV)) { - f16vec4 m; - if (!nem1_bounds_check || i * Br + r * 4 + 3 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 3) * m_stride + (j * Bc + c)]); - max_mask = max(max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])), float(m[3])); - } else if (i * Br + r * 4 + 2 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], - 0.0); - max_mask = max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])); - } else if (i * Br + r * 4 + 1 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], - 0.0, - 0.0); - max_mask = max(max(max_mask, float(m[0])), float(m[1])); - } else if (i * Br + r * 4 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - 0.0, - 0.0, - 0.0); - max_mask = max(max_mask, float(m[0])); - } else { - m = f16vec4(0.0); + if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + + if (USE_MASK_OPT && mask_opt_idx != j / 16) { + mask_opt_idx = j / 16; + mask_opt = data_mask_opt[mo_offset + mask_opt_idx]; + } + uint32_t mask_opt_bits = (mask_opt >> ((j % 16) * 2)) & 0x3; + if (mask_opt_bits == MASK_OPT_ALL_NEG_INF) { + // skip this block + continue; + } + // Only load if the block is not all zeros + if (mask_opt_bits != MASK_OPT_ALL_ZERO) { + bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; + + float max_mask = NEG_FLT_MAX_OVER_2; + [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { + uint32_t c = (idx + tid) / (Br / 4); + uint32_t r = (idx + tid) % (Br / 4); + if (idx + tid < Bc * Br / 4 || idx + gl_WorkGroupSize.x <= Bc * Br / 4) { + if ((!KV_bounds_check || j * Bc + c < KV)) { + f16vec4 m; + if (!nem1_bounds_check || i * Br + r * 4 + 3 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 3) * m_stride + (j * Bc + c)]); + max_mask = max(max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])), float(m[3])); + } else if (i * Br + r * 4 + 2 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], + 0.0); + max_mask = max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])); + } else if (i * Br + r * 4 + 1 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], + 0.0, + 0.0); + max_mask = max(max(max_mask, float(m[0])), float(m[1])); + } else if (i * Br + r * 4 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + 0.0, + 0.0, + 0.0); + max_mask = max(max_mask, float(m[0])); + } else { + m = f16vec4(0.0); + } + mask_cache[idx / WorkGroupSize] = m; } - mask_cache[idx / WorkGroupSize] = m; } } } - // skip the block if the mask is entirely -inf - bool all_less = subgroupAll(max_mask <= NEG_FLT_MAX_OVER_2); - barrier(); - if (gl_SubgroupInvocationID == 0) { - tmpsh[gl_SubgroupID] = all_less ? NEG_FLT_MAX_OVER_2 : 0.0f; - } - barrier(); - [[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) { - max_mask = max(max_mask, tmpsh[s]); - } - if (max_mask <= NEG_FLT_MAX_OVER_2) { - continue; - } } if (K_LOAD_SHMEM != 0) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp index 54f1b0b622..47b110621b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp @@ -138,48 +138,53 @@ void main() { coopMatPerElementNV(slopeMat, slopeMat, perElemOpComputeSlope, iq2); } + const uint32_t mo_stride = CEIL_DIV(KV, 16 * Bc); + // mo_offset will point to the tile starting at row i*Br and col 0 + uint32_t mo_offset = mo_stride * i; + uint32_t m_offset = gqa_iq1*KV * 2 /*sizeof(float16_t)*/; if (p.nem2 != 1 || p.nem3 != 1) { m_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * p.nem1 * KV * 2 /*sizeof(float16_t)*/; + mo_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * CEIL_DIV(p.nem1, Br) * mo_stride; } + uint32_t mask_opt = 0; + uint32_t mask_opt_idx = ~0; + [[dont_unroll]] for (uint32_t j = start_j; j < end_j; ++j) { - coopmat mv; + coopmat mv = coopmat(0); if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { - bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; - if (nem1_bounds_check) { - tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutM = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV); - tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV); - tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); - tensorLayoutM = setTensorLayoutClampValueNV(tensorLayoutM, 0xfc00); // -inf in float16_t + if (USE_MASK_OPT && mask_opt_idx != j / 16) { + mask_opt_idx = j / 16; + mask_opt = data_mask_opt[mo_offset + mask_opt_idx]; + } + uint32_t mask_opt_bits = (mask_opt >> ((j % 16) * 2)) & 0x3; + if (mask_opt_bits == MASK_OPT_ALL_NEG_INF) { + // skip this block + continue; + } + // Only load if the block is not all zeros + if (mask_opt_bits != MASK_OPT_ALL_ZERO) { + bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; - coopmat mvmax; + if (nem1_bounds_check) { + tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutM = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV); + tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV); + tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); + tensorLayoutM = setTensorLayoutClampValueNV(tensorLayoutM, 0xfc00); // -inf in float16_t - coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); + coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); + } else { + tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp); + // Don't clamp against nem1 when GQA is enabled + uint32_t m_height = p.gqa_ratio > 1 ? ~0 : p.nem1; + tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, m_height, KV); + tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); - // skip the block if the mask is entirely -inf - coopMatReduceNV(mvmax, mv, gl_CooperativeMatrixReduceRowAndColumnNV, maxReduceFp16); - if (mvmax[0] <= NEG_FLT_MAX_OVER_2) { - continue; - } - } else { - tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp); - // Don't clamp against nem1 when GQA is enabled - uint32_t m_height = p.gqa_ratio > 1 ? ~0 : p.nem1; - tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, m_height, KV); - tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); - - coopmat mvmax; - - coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); - - // skip the block if the mask is entirely -inf - coopMatReduceNV(mvmax, mv, gl_CooperativeMatrixReduceRowAndColumnNV, maxReduceFp16); - if (mvmax[0] <= NEG_FLT_MAX_OVER_2) { - continue; + coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); } } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_mask_opt.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_mask_opt.comp new file mode 100644 index 0000000000..8c92c1adcd --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_mask_opt.comp @@ -0,0 +1,142 @@ +#version 450 + +#extension GL_EXT_control_flow_attributes : enable +#extension GL_EXT_shader_16bit_storage : enable +#extension GL_KHR_shader_subgroup_arithmetic : enable + +layout (constant_id = 0) const uint BLOCK_SIZE = 128; +layout (constant_id = 1) const uint NUM_SUBGROUPS = 4; +layout (constant_id = 2) const uint Br = 32; +layout (constant_id = 3) const uint Bc = 32; + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer A {float16_t data_a[];}; +layout (binding = 0) readonly buffer Av4 {f16vec4 data_av4[];}; +layout (binding = 1) writeonly buffer D {uint data_d[];}; + +layout (push_constant) uniform parameter { + uint nem0; + uint nem1; + uint nem2; + uint nbm1; + uint nbm2; + uint nbm3; + uint nbd1; + uint nbd2; + uint nbd3; +}; + +#define MASK_OPT_ALL_NEG_INF 1 +#define MASK_OPT_ALL_ZERO 2 + +shared float minsh[NUM_SUBGROUPS]; +shared float maxsh[NUM_SUBGROUPS]; + +// For each Br x Bc block of the mask (input) buffer, read all values and check +// if it's all -inf or all zero. Write out a two-bit code indicating which it is +// (or zero for neither). Each workgroup processes 16 tiles and writes out a +// 32-bit result mask. +// +// TODO: This is a lot of work per workgroup, might make sense to split this into +// more workgroups in the future. +void main() { + // Each workgroup handles a row + const uint tid = gl_LocalInvocationIndex; + const uint i0 = gl_WorkGroupID.x; + const uint i1 = gl_WorkGroupID.y; + const uint i2 = gl_WorkGroupID.z % nem2; + const uint i3 = gl_WorkGroupID.z / nem2; + + float FLT_MAX_OVER_2 = uintBitsToFloat(0x7EFFFFFF); + + uint result = 0; + + // Fast path for fully in-bounds blocks where we can do f16vec4 loads + if ((nem0 % Bc) == 0 && (nem1 % Br) == 0 && + ((Br * Bc) % (BLOCK_SIZE * 4)) == 0) { + [[unroll]] for (uint block_x = 0; block_x < 16; ++block_x) { + float min_v = FLT_MAX_OVER_2; + float max_v = -FLT_MAX_OVER_2; + [[unroll]] for (uint i = 0; i < Br * Bc / 4; i += BLOCK_SIZE) { + uint j0 = (i + tid) % (Bc / 4); + uint j1 = (i + tid) / (Bc / 4); + + j0 *= 4; + j0 += (i0 * 16 + block_x) * Bc; + j1 += i1 * Br; + + vec4 f = vec4(data_av4[(j0 + j1 * nbm1 + i2 * nbm2 + i3 * nbm3) / 4]); + [[unroll]] for (int c = 0; c < 4; ++c) { + min_v = min(min_v, f[c]); + max_v = max(max_v, f[c]); + } + } + min_v = subgroupMin(min_v); + max_v = subgroupMax(max_v); + if (gl_SubgroupInvocationID == 0) { + minsh[gl_SubgroupID] = min_v; + maxsh[gl_SubgroupID] = max_v; + } + barrier(); + if (tid == 0) { + [[unroll]] for (uint i = 0; i < NUM_SUBGROUPS; ++i) { + min_v = min(min_v, minsh[i]); + max_v = max(max_v, maxsh[i]); + } + if (max_v <= -FLT_MAX_OVER_2) { + result |= 1 << (2*block_x); + } + if (min_v == 0.0f && max_v == 0.0f) { + result |= 2 << (2*block_x); + } + } + barrier(); + } + } else { + [[unroll]] for (uint block_x = 0; block_x < 16; ++block_x) { + float min_v = FLT_MAX_OVER_2; + float max_v = -FLT_MAX_OVER_2; + [[unroll]] for (uint i = 0; i < Br * Bc; i += BLOCK_SIZE) { + if ((Br * Bc % BLOCK_SIZE) != 0 && i + tid >= Br * Bc) { + continue; + } + uint j0 = (i + tid) % Bc; + uint j1 = (i + tid) / Bc; + + j0 += (i0 * 16 + block_x) * Bc; + j1 += i1 * Br; + + if (j0 < nem0 && j1 < nem1) { + float f = float(data_a[j0 + j1 * nbm1 + i2 * nbm2 + i3 * nbm3]); + min_v = min(min_v, f); + max_v = max(max_v, f); + } + } + min_v = subgroupMin(min_v); + max_v = subgroupMax(max_v); + if (gl_SubgroupInvocationID == 0) { + minsh[gl_SubgroupID] = min_v; + maxsh[gl_SubgroupID] = max_v; + } + barrier(); + if (tid == 0) { + [[unroll]] for (uint i = 0; i < NUM_SUBGROUPS; ++i) { + min_v = min(min_v, minsh[i]); + max_v = max(max_v, maxsh[i]); + } + if (max_v <= -FLT_MAX_OVER_2) { + result |= 1 << (2*block_x); + } + if (min_v == 0.0f && max_v == 0.0f) { + result |= 2 << (2*block_x); + } + } + barrier(); + } + } + + if (tid == 0) { + data_d[i0 + i1 * nbd1 + i2 * nbd2 + i3 * nbd3] = result; + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index ca486a288a..42ebc21e2a 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -790,6 +790,8 @@ void process_shaders() { string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}); string_to_spv("fa_split_k_reduce", "flash_attn_split_k_reduce.comp", {}); + string_to_spv("fa_mask_opt", "flash_attn_mask_opt.comp", {}); + string_to_spv("quantize_q8_1", "quantize_q8_1.comp", {}); string_to_spv("quantize_q8_1_subgroup", "quantize_q8_1.comp", {{"USE_SUBGROUPS", "1"}}); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index cecdf47038..fbe23037cc 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -169,20 +169,22 @@ static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float m const int blck0 = 128; const int blck1 = 64; - // number of INF blocks - const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1); + // number of INF/zero blocks + const int n_inf_zero_blocks = 0.2*(ne0*ne1*ne2*ne3)/(blck0*blck1); - for (int b = 0; b < n_inf_blocks; b++) { + for (int b = 0; b < n_inf_zero_blocks; b++) { const int p3 = (rd() % ne3); const int p2 = (rd() % ne2); const int p1 = (rd() % ne1); const int p0 = (rd() % ne0); + bool inf = rd() & 1; + for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) { const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0; for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) { - data_f32[idx + i0] = -INFINITY; + data_f32[idx + i0] = inf ? -INFINITY : 0.0f; } } } From 22cae832188a1f08d18bd0a707a4ba5cd03c7349 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 5 Feb 2026 19:07:22 +0200 Subject: [PATCH 13/26] metal : adaptive CPU/GPU interleave based on number of nodes (#19369) --- ggml/src/ggml-metal/ggml-metal-context.m | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml/src/ggml-metal/ggml-metal-context.m b/ggml/src/ggml-metal/ggml-metal-context.m index a412d70aed..c7e8ebd3f3 100644 --- a/ggml/src/ggml-metal/ggml-metal-context.m +++ b/ggml/src/ggml-metal/ggml-metal-context.m @@ -415,7 +415,7 @@ bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, con enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph * gf) { // number of nodes encoded by the main thread (empirically determined) - const int n_main = 64; + const int n_main = MAX(64, 0.1*gf->n_nodes); // number of threads in addition to the main thread const int n_cb = ctx->n_cb; From 3e2164766603eca8531f7a06af284811e7457788 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 6 Feb 2026 07:55:06 +0200 Subject: [PATCH 14/26] cuda : cuda graphs now compare all node params (#19383) --- ggml/src/ggml-cuda/ggml-cuda.cu | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index eeb8625dbe..9e77c231c8 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -2979,8 +2979,7 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_ } } - if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) && - memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) { + if (memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) { return false; } From e696cfc0168ba9616a8bd7d09d6284a1b0fec82b Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Fri, 6 Feb 2026 07:26:54 +0100 Subject: [PATCH 15/26] llama : rename llama-sampling to llama-sampler (#19363) This commit addresses the TODO in llama-sampling.h to rename that header and the implementation to llama-sampler. --- src/CMakeLists.txt | 2 +- src/llama-grammar.cpp | 2 +- src/{llama-sampling.cpp => llama-sampler.cpp} | 2 +- src/{llama-sampling.h => llama-sampler.h} | 2 -- 4 files changed, 3 insertions(+), 5 deletions(-) rename src/{llama-sampling.cpp => llama-sampler.cpp} (99%) rename src/{llama-sampling.h => llama-sampler.h} (92%) diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index f337afd6b3..bedfa1bc3d 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -31,7 +31,7 @@ add_library(llama llama-model-saver.cpp llama-model.cpp llama-quant.cpp - llama-sampling.cpp + llama-sampler.cpp llama-vocab.cpp unicode-data.cpp unicode.cpp diff --git a/src/llama-grammar.cpp b/src/llama-grammar.cpp index 64ea2fd00a..2d55070cec 100644 --- a/src/llama-grammar.cpp +++ b/src/llama-grammar.cpp @@ -2,7 +2,7 @@ #include "llama-impl.h" #include "llama-vocab.h" -#include "llama-sampling.h" +#include "llama-sampler.h" #include #include diff --git a/src/llama-sampling.cpp b/src/llama-sampler.cpp similarity index 99% rename from src/llama-sampling.cpp rename to src/llama-sampler.cpp index 515d6c163b..9bbc5dbde2 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampler.cpp @@ -1,4 +1,4 @@ -#include "llama-sampling.h" +#include "llama-sampler.h" #include "llama-impl.h" #include "llama-vocab.h" diff --git a/src/llama-sampling.h b/src/llama-sampler.h similarity index 92% rename from src/llama-sampling.h rename to src/llama-sampler.h index 6a963c0bb7..b9bfc20d25 100644 --- a/src/llama-sampling.h +++ b/src/llama-sampler.h @@ -1,7 +1,5 @@ #pragma once -// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ? - #include "llama.h" #include From 7fcf1ef45d37f7af07f23407e1979be679532959 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 6 Feb 2026 09:25:11 +0200 Subject: [PATCH 16/26] metal : skip loading all-zero mask (#19337) * metal : skip loading all-zero mask * cont : minor --- ggml/src/ggml-metal/ggml-metal.metal | 63 +++++++++++++++++----------- 1 file changed, 39 insertions(+), 24 deletions(-) diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index e54cdab39d..612a42a1ea 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -5285,6 +5285,7 @@ constant int32_t FC_flash_attn_ext_blk_ncpsg [[function_constant(FC_FLASH_ATTN_E // scan the blocks of the mask that are not masked // 0 - masked (i.e. full of -INF, skip) // 1 - not masked (i.e. at least one element of the mask is not -INF) +// 2 - all zero kernel void kernel_flash_attn_ext_blk( constant ggml_metal_kargs_flash_attn_ext_blk & args, device const char * mask, @@ -5306,27 +5307,29 @@ kernel void kernel_flash_attn_ext_blk( device const half * mask_src = (device const half *) (mask + (i1*Q)*args.nb31 + i2*args.nb32 + i3*args.nb33) + i0*C + tiisg; - // fast route - if (res == 0) { - if (simd_max(*mask_src) > -MAXHALF/2) { - res = 1; - } - } - // detailed check of the elements of the block if ((C > NW || Q > 1) && res == 0) { - half m = -MAXHALF; + half mmin = MAXHALF; + half mmax = -MAXHALF; FOR_UNROLL (short j = 0; j < Q; ++j) { FOR_UNROLL (short ii = 0; ii < C/NW; ++ii) { - m = max(m, mask_src[ii*NW]); + mmin = min(mmin, mask_src[ii*NW]); + mmax = max(mmax, mask_src[ii*NW]); } mask_src += args.nb31/2; } - if (simd_max(m) > -MAXHALF/2) { - res = 1; + mmin = simd_min(mmin); + mmax = simd_max(mmax); + + if (mmax > -MAXHALF) { + if (mmin == 0.0 && mmax == 0.0) { + res = 2; + } else { + res = 1; + } } } @@ -5568,9 +5571,13 @@ void kernel_flash_attn_ext_impl( ic = 0; } + char blk_cur = 1; + // read the mask into shared mem if (FC_flash_attn_ext_has_mask) { - if (blk[ic0] == 0) { + blk_cur = blk[ic0]; + + if (blk_cur == 0) { FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { pm2[jj] += NW; } @@ -5578,16 +5585,22 @@ void kernel_flash_attn_ext_impl( continue; } - FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { - const short j = jj*NSG + sgitg; + if (blk_cur == 1) { + FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { + const short j = jj*NSG + sgitg; - if (FC_flash_attn_ext_bc_mask) { - sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF); - } else { - sm2[j*SH + tiisg] = pm2[jj][tiisg]; + if (FC_flash_attn_ext_bc_mask) { + sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF); + } else { + sm2[j*SH + tiisg] = pm2[jj][tiisg]; + } + + pm2[jj] += NW; + } + } else if (blk_cur == 2) { + FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { + pm2[jj] += NW; } - - pm2[jj] += NW; } #if 0 @@ -5752,10 +5765,12 @@ void kernel_flash_attn_ext_impl( } // mqk = mqk + slope*mask - if (FC_flash_attn_ext_has_bias) { - s2 += s2_t(sm2[j*SH + tiisg])*slope; - } else { - s2 += s2_t(sm2[j*SH + tiisg]); + if (blk_cur != 2) { + if (FC_flash_attn_ext_has_bias) { + s2 += s2_t(sm2[j*SH + tiisg])*slope; + } else { + s2 += s2_t(sm2[j*SH + tiisg]); + } } M[jj] = simd_max(max(M[jj], max(s2[0], s2[1]))); From f9bd518a6bac615e1060dcc44f3f302f9e7ae0e8 Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Fri, 6 Feb 2026 01:49:58 -0600 Subject: [PATCH 17/26] vulkan: make FA mask/softcap enables spec constants (#19309) * vulkan: make FA mask/softcap enables spec constants * don't specialize for sinks * bump timeout a little bit --- .github/workflows/build.yml | 2 +- ggml/src/ggml-vulkan/ggml-vulkan.cpp | 56 ++++++++++--------- .../vulkan-shaders/flash_attn.comp | 6 +- .../vulkan-shaders/flash_attn_base.glsl | 7 ++- .../vulkan-shaders/flash_attn_cm1.comp | 6 +- .../vulkan-shaders/flash_attn_cm2.comp | 6 +- 6 files changed, 45 insertions(+), 38 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 8ce679bd9a..51a3dc76e9 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -468,7 +468,7 @@ jobs: export GGML_VK_VISIBLE_DEVICES=0 export GGML_VK_DISABLE_F16=1 # This is using llvmpipe and runs slower than other backends - ctest -L main --verbose --timeout 4200 + ctest -L main --verbose --timeout 4800 ubuntu-24-cmake-webgpu: runs-on: ubuntu-24.04 diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 4357da24d4..72097ffd0f 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -402,19 +402,19 @@ enum FaCodePath { }; struct vk_fa_pipeline_state { - vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc, bool use_mask_opt) - : HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc), use_mask_opt(use_mask_opt) {} + vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc, uint32_t flags) + : HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc), flags(flags) {} uint32_t HSK, HSV; bool small_rows, small_cache; FaCodePath path; bool aligned; bool f32acc; - bool use_mask_opt; + uint32_t flags; bool operator<(const vk_fa_pipeline_state &b) const { - return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, use_mask_opt) < - std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc, b.use_mask_opt); + return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, flags) < + std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc, b.flags); } }; @@ -3193,7 +3193,7 @@ static void ggml_vk_load_shaders(vk_device& device) { return {fa_rows_cols(path, hsk, hsv, clamp, type, small_rows, small_cache)[0], 1, 1}; }; - auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache, bool use_mask_opt) -> std::vector { + auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache, uint32_t flags) -> std::vector { // For large number of rows, 128 invocations seems to work best. // For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we // can't use 256 for D==80. @@ -3225,7 +3225,7 @@ static void ggml_vk_load_shaders(vk_device& device) { // AMD prefers loading K directly from global memory const uint32_t k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA && hsk < 256 ? 1 : 0; - return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem, use_mask_opt}; + return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem, flags}; }; #define CREATE_FA(TYPE, NAMELC, FAPATH, SUFFIX) \ @@ -3237,19 +3237,19 @@ static void ggml_vk_load_shaders(vk_device& device) { FaCodePath path = fa.first.path; \ bool aligned = fa.first.aligned; \ bool f32acc = fa.first.f32acc; \ - bool use_mask_opt = fa.first.use_mask_opt; \ + uint32_t flags = fa.first.flags; \ if (path == FAPATH) { \ if (aligned) { \ if (f32acc) { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,use_mask_opt), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,flags), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } else { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,use_mask_opt), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,flags), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } \ } else { \ if (f32acc) { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,use_mask_opt), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,flags), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } else { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,use_mask_opt), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,flags), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } \ } \ } \ @@ -8595,10 +8595,26 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32; + float scale = 1.0f; + float max_bias = 0.0f; + float logit_softcap = 0.0f; + + memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float)); + memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float)); + + if (logit_softcap != 0) { + scale /= logit_softcap; + } + // Only use mask opt when the mask is fairly large. This hasn't been tuned extensively. bool use_mask_opt = mask && nem1 >= 32 && nem0 * nem1 > 32768; - vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, use_mask_opt); + uint32_t flags = (use_mask_opt ? 1 : 0) | + (mask != nullptr ? 2 : 0) | + (logit_softcap != 0 ? 4 : 0); + + vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, flags); vk_pipeline pipeline = nullptr; @@ -8678,18 +8694,6 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx } } - float scale = 1.0f; - float max_bias = 0.0f; - float logit_softcap = 0.0f; - - memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float)); - memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float)); - memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float)); - - if (logit_softcap != 0) { - scale /= logit_softcap; - } - const uint32_t n_head_kv = neq2; const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); @@ -8703,7 +8707,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx vk_subbuffer sinks_buf = sinks ? ggml_vk_tensor_subbuffer(ctx, sinks) : q_buf; vk_subbuffer mask_opt_buf = use_mask_opt ? ggml_vk_subbuffer(ctx, ctx->prealloc_y, 0) : q_buf; - uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | ((mask != nullptr) << 16) | n_head_log2; + uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | n_head_log2; if (use_mask_opt) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp index 49a3c530cb..914f131c96 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp @@ -127,7 +127,7 @@ void main() { continue; } // Only load if the block is not all zeros - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0 && mask_opt_bits != MASK_OPT_ALL_ZERO) { + if (MASK_ENABLE && mask_opt_bits != MASK_OPT_ALL_ZERO) { bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; [[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) { @@ -181,7 +181,7 @@ void main() { } } - if (p.logit_softcap != 0.0f) { + if (LOGIT_SOFTCAP) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) { [[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) { Sf[r][c] = p.logit_softcap * tanh(Sf[r][c]); @@ -189,7 +189,7 @@ void main() { } } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0 && mask_opt_bits != MASK_OPT_ALL_ZERO) { + if (MASK_ENABLE && mask_opt_bits != MASK_OPT_ALL_ZERO) { [[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) { float mvf = masksh[c * cols_per_iter + col_tid][r]; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl index 252451101a..74005cffb3 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl @@ -10,7 +10,11 @@ layout (constant_id = 5) const uint32_t Clamp = 0; layout (constant_id = 6) const uint32_t D_split = 16; layout (constant_id = 7) const uint32_t SubGroupSize = 32; layout (constant_id = 8) const uint32_t K_LOAD_SHMEM = 0; -layout (constant_id = 9) const bool USE_MASK_OPT = false; +layout (constant_id = 9) const uint32_t Flags = 0; + +const bool USE_MASK_OPT = (Flags & 1) != 0; +const bool MASK_ENABLE = (Flags & 2) != 0; +const bool LOGIT_SOFTCAP = (Flags & 4) != 0; // Round up head sizes to a multiple of 16, for coopmat1/coopmat2 paths const uint32_t HSK_pad = (HSK + 15) & ~15; @@ -60,7 +64,6 @@ layout (push_constant) uniform parameter { } p; #define SINK_ENABLE_BIT (1<<24) -#define MASK_ENABLE_BIT (1<<16) #define N_LOG2_MASK 0xFFFF layout (binding = 4) readonly buffer S {float data_s[];}; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp index 89af3697e1..b317773823 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp @@ -160,7 +160,7 @@ void main() { mask_cache[idx] = f16vec4(0); } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (MASK_ENABLE) { if (USE_MASK_OPT && mask_opt_idx != j / 16) { mask_opt_idx = j / 16; @@ -303,7 +303,7 @@ void main() { coopMatStore(SfMat, sfsh, coord, sfshstride, gl_CooperativeMatrixLayoutRowMajor); barrier(); - if (p.logit_softcap != 0.0f) { + if (LOGIT_SOFTCAP) { [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { uint32_t c = (idx + tid) / (Br / 4); uint32_t r = (idx + tid) % (Br / 4); @@ -314,7 +314,7 @@ void main() { barrier(); } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (MASK_ENABLE) { [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { uint32_t c = (idx + tid) / (Br / 4); uint32_t r = (idx + tid) % (Br / 4); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp index 47b110621b..b07c21f6e5 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp @@ -155,7 +155,7 @@ void main() { for (uint32_t j = start_j; j < end_j; ++j) { coopmat mv = coopmat(0); - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (MASK_ENABLE) { if (USE_MASK_OPT && mask_opt_idx != j / 16) { mask_opt_idx = j / 16; @@ -197,14 +197,14 @@ void main() { coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, HSK_pad), tensorViewTranspose DECODEFUNC); S = coopMatMulAdd(Qf16, K_T, S); - if (p.logit_softcap != 0.0f) { + if (LOGIT_SOFTCAP) { [[unroll]] for (int k = 0; k < S.length(); ++k) { S[k] = ACC_TYPE(p.logit_softcap)*tanh(S[k]); } } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (MASK_ENABLE) { S += slopeMat*coopmat(mv); } From 1946e46f4c29da7b9294d702756969839e922bb8 Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Fri, 6 Feb 2026 02:15:13 -0600 Subject: [PATCH 18/26] vulkan: For coopmat2 FA, use fp16 accumulators for the final result (#19376) The cpu and cuda backends use fp16 for the VKQ accumulator type, this change does the same for vulkan. This helps particularly with large head sizes which are very register-limited. I tried this for the coopmat1 path and it slowed down a bit. I didn't try for scalar. I applied the softmax bias that the cuda backend uses to avoid overflow, although I was not able to reproduce the original bug without it. --- .../vulkan-shaders/flash_attn_base.glsl | 4 ++++ .../vulkan-shaders/flash_attn_cm2.comp | 20 +++++++++---------- 2 files changed, 14 insertions(+), 10 deletions(-) diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl index 74005cffb3..4142c1e6ea 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl @@ -240,3 +240,7 @@ void init_indices() // and breaking the alignment detection. m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV; } + +// Bias applied to softmax to stay in fp16 range. +// Based on ggml-cuda issue https://github.com/ggml-org/llama.cpp/issues/18606 +const float FATTN_KQ_MAX_OFFSET = 3.0f*0.6931f; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp index b07c21f6e5..39f0c4d23b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp @@ -117,7 +117,7 @@ void main() { Qf16 = coopmat(Q); Qf16 *= float16_t(p.scale); - coopmat O = coopmat(0); + coopmat O = coopmat(0); coopmat L, M; @@ -223,6 +223,8 @@ void main() { coopMatReduceNV(rowmax, S, gl_CooperativeMatrixReduceRowNV, maxReduce); + rowmax += coopmat(FATTN_KQ_MAX_OFFSET); + coopmat Mold = M; // M = max(rowmax, Mold) @@ -265,11 +267,8 @@ void main() { // resize eM by using smear/reduce coopMatReduceNV(eMdiag, eM, gl_CooperativeMatrixReduceRowNV, smearReduce); - // multiply with fp16 accumulation, then add to O. - coopmat PV = coopmat(0); - PV = coopMatMulAdd(P_A, V, PV); - - O = eMdiag * O + coopmat(PV); + O *= coopmat(eMdiag); + O = coopMatMulAdd(P_A, V, O); } // If there is split_k, then the split_k resolve shader does the final @@ -311,7 +310,7 @@ void main() { if (sink > Mr[i]) { ms = exp(Mr[i] - sink); - O[i] *= ms; + O[i] *= float16_t(ms); } else { vs = exp(sink - Mr[i]); } @@ -325,15 +324,16 @@ void main() { Ldiag[k] = (Ldiag[k] == 0.0) ? ACC_TYPE(0.0) : (ACC_TYPE(1.0) / Ldiag[k]); } - O = Ldiag*O; + coopmat O_D = coopmat(O); + + O_D = coopmat(Ldiag)*O_D; #if defined(ACC_TYPE_MAX) - [[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } + [[unroll]] for (uint i = 0; i < O_D.length(); ++i) { O_D[i] = clamp(O_D[i], D_TYPE(-ACC_TYPE_MAX), D_TYPE(ACC_TYPE_MAX)); } #endif uint32_t o_offset = gqa_iq1*p.ne1*HSV + iq3*p.ne2*p.ne1*HSV; - coopmat O_D = coopmat(O); if (p.gqa_ratio > 1) { coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N); } else { From 3688c4f504f8e336663157bcc6e0af78d617420c Mon Sep 17 00:00:00 2001 From: ymcki <84055651+ymcki@users.noreply.github.com> Date: Fri, 6 Feb 2026 18:39:58 +0800 Subject: [PATCH 19/26] Kimi-Linear support (backend agnostic + MLA KV cache) (#18755) * kimi linear model implementation * kimi linear convert_hf_to_gguf * kimi linear constants.py tensor_mapping.py * Kimi Linear ggml.h * kimi linear ggml-cpu * Kimi Linear ggml-cuda * Kimi Linear ggml.c * kimi linear src/llama * remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning * remove type mismatch warning * read MoE params * removed some hard coded code * removed all hard code * use DeepseekV2 tokenizer * removed unnecessary internal methods called by the old set_vocab of KimiLinear * rewrite get_vocab for KimiLinear. Removed all kda_scan code * removed all traces of kda_scan * reduce OP count by 1 due to removal of kda_scan * Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache * set n_embd_head_k/v to ensure kv cache works * don't quantize conv1d of Kimi Linear * Kimi Linear backend agnostic * removed LOG_INFO * naive chunking form implemented * fixed some comments * add Kimi-K2 specific tokens to be recognized as EOG * build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682 * replaced Akk and Aqk with mul_mat and clamp * no clamp version * Moved Aqk computation out of the loop * fixed typo and split wkv_b into wk_b and wv_b * MLA KV cache support * fix trailing spaces * moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error * fix trailing whitespace * removed traling whitespaces in empty line + make sure indentation is multiple of 4 * try to make lint happy * remove blank lines to make lint happy * removed at least blank line containing white space * fixed flake8 complaints locally * return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement * removed Kimi-Linear specific change that causes failure at server-windows * removed private: from kimi_linear to make build checks happy * removed unnecessary ggml_cont before ggml_reshape * created static function causal_conv1d to abtract similar code for q/k/v * merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py. * reverted to original * fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms. * remove DT_B from constants.py. remove one comment line in llama-model.cpp * new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight * remove ssm_o_norm_b * remove ssm_o_norm_b * changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k * removed all ggml_cont b4 ggml_reshape_4d * Whitespace * replaced all hparams.get with find_hparams * added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp * use is_mla to switch between different mem_hybrid types * fixed logical errors in convert_hf_to_gguf.py pointed out by CISC * removed if else for required parameters kv_lora_rank and qk_rope_head_dim * add back ggml_cont for Vcur * minor changes * removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp * f16 gguf cannot run without context length * made a mistake of adding back n_ctx parsing --------- Co-authored-by: Piotr Wilkin (ilintar) --- convert_hf_to_gguf.py | 225 +++++++++- gguf-py/gguf/constants.py | 65 +++ gguf-py/gguf/gguf_writer.py | 3 + gguf-py/gguf/tensor_mapping.py | 32 ++ src/CMakeLists.txt | 1 + src/llama-arch.cpp | 70 +++ src/llama-arch.h | 12 + src/llama-context.cpp | 2 +- src/llama-graph.cpp | 55 +++ src/llama-graph.h | 29 ++ src/llama-hparams.cpp | 14 + src/llama-hparams.h | 3 + src/llama-model.cpp | 172 ++++++++ src/llama-model.h | 13 + src/llama-quant.cpp | 4 +- src/llama-vocab.cpp | 45 +- src/models/kimi-linear.cpp | 772 +++++++++++++++++++++++++++++++++ src/models/models.h | 27 ++ 18 files changed, 1521 insertions(+), 23 deletions(-) create mode 100644 src/models/kimi-linear.cpp diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index eb43520f98..c167de8a46 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -586,6 +586,10 @@ class ModelBase: gguf.MODEL_TENSOR.A_ENC_EMBD_POS, gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF, gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF, + # Kimi KDA conv weights should be F32 + gguf.MODEL_TENSOR.SSM_CONV1D_Q, + gguf.MODEL_TENSOR.SSM_CONV1D_K, + gguf.MODEL_TENSOR.SSM_CONV1D_V, ) ) or new_name[-7:] not in (".weight", ".lora_a", ".lora_b") @@ -903,10 +907,10 @@ class TextModel(ModelBase): if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: self.gguf_writer.add_layer_norm_eps(f_norm_eps) logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") - if (n_experts := self.hparams.get("num_local_experts")) is not None: + if (n_experts := self.find_hparam(["num_local_experts", "num_experts"], optional=True)) is not None: self.gguf_writer.add_expert_count(n_experts) logger.info(f"gguf: expert count = {n_experts}") - if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: + if (n_experts_used := self.find_hparam(["num_experts_per_tok", "num_experts_per_token"], optional=True)) is not None: self.gguf_writer.add_expert_used_count(n_experts_used) logger.info(f"gguf: experts used count = {n_experts_used}") if (n_expert_groups := self.hparams.get("n_group")) is not None: @@ -916,7 +920,7 @@ class TextModel(ModelBase): self.gguf_writer.add_expert_group_used_count(n_group_used) logger.info(f"gguf: expert groups used count = {n_group_used}") - if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None: + if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation_func"], optional=True)) is not None: if score_func == "sigmoid": self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID) elif score_func == "softmax": @@ -5013,6 +5017,221 @@ class CodeShellModel(TextModel): self.gguf_writer.add_rope_scaling_factor(1.0) +@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM") +class KimiLinearModel(TextModel): + """Kimi-Linear model with hybrid MLA+KDA architecture""" + model_arch = gguf.MODEL_ARCH.KIMI_LINEAR + + _experts: list[dict[str, Tensor]] | None = None + + def set_vocab(self): + try: + self._set_vocab_gpt2() + return + except Exception: + pass + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True) + tokpre = self.get_vocab_base_pre(tokenizer) + + if tokpre == "kimi-k2": + # Build merges list using the approach similar to HunYuanMoE + merges = [] + vocab = {} + mergeable_ranks = tokenizer.model._mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[QwenModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) + if len(merged) == 2: + merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) + # Build token list + vocab_size = self.hparams["vocab_size"] + special_tokens = tokenizer.special_tokens + reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()} + tokens: list[str] = [] + toktypes: list[int] = [] + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + else: + token = reverse_vocab[i] + tokens.append(token) + if i in special_tokens.values(): + toktypes.append(gguf.TokenType.CONTROL) + else: + toktypes.append(gguf.TokenType.NORMAL) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_token_merges(merges) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False) + special_vocab.add_to_gguf(self.gguf_writer) + # override eos id in config.json with tiktoken eos id + self.gguf_writer.add_eos_token_id(tokenizer.eos_id) + else: + raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!") + + def set_gguf_parameters(self): + # note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group) + self.hparams["num_key_value_heads"] = 1 + + super().set_gguf_parameters() + self.gguf_writer.add_vocab_size(self.hparams["vocab_size"]) + + # KDA & MLA params + # Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv + linear_attn_config = self.hparams["linear_attn_config"] + # n_head == 0 for KDA layers, n_head > 0 for MLA layers + # full_attention_layers list will be used to distingush layer type + _num_kv_heads = list() + _full_attn_layers = linear_attn_config["full_attn_layers"] + for il in range(self.hparams["num_hidden_layers"]): + if il + 1 in _full_attn_layers: + _num_kv_heads.append(self.hparams["num_key_value_heads"]) + else: + _num_kv_heads.append(0) + assert len(_num_kv_heads) == self.hparams["num_hidden_layers"] + self.gguf_writer.add_head_count_kv(_num_kv_heads) + + if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None: + self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv) + if (kda_head_dim := linear_attn_config.get("head_dim")) is not None: + self.gguf_writer.add_kda_head_dim(kda_head_dim) + + # MLA params - use add_* methods that handle arch substitution + # Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv) + if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None: + self.gguf_writer.add_q_lora_rank(q_lora_rank) + # To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA + kv_lora_rank = self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False) + self.gguf_writer.add_kv_lora_rank(kv_lora_rank) + + # MLA head dimensions + # Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim + qk_nope_head_dim = self.hparams.get("qk_nope_head_dim") + # Rotation - use qk_rope_head_dim for Kimi + qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False) + self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim) + self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim) + v_head_dim = self.hparams.get("v_head_dim") + + # Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None: + self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) + elif qk_nope_head_dim is not None: + n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) + + # n_embd_head_v_mla = v_head_dim + if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None: + self.gguf_writer.add_value_length_mla(n_embd_head_v_mla) + elif v_head_dim is not None: + self.gguf_writer.add_value_length_mla(v_head_dim) + + # moe_intermediate_size (1024 for Kimi) + self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"]) + # num_shared_experts (1 for Kimi) + self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"]) + # first_k_dense_replace (1 for Kimi - first layer uses dense MLP) + self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"]) + # Routed scaling factor (expert_weights_scale = 2.446 for Kimi) + self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"]) + + def prepare_tensors(self): + super().prepare_tensors() + if self._experts is not None: + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}") + + # Handle KDA conv1d weights + # HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest + # llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest + # GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1] + # Memory layouts match: both have conv_step (d_conv) changing fastest + if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")): + # HF shape: [d_inner, d_conv] e.g. [4096, 4] + # Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1] + if data_torch.ndim == 2: + d_inner, d_conv = data_torch.shape + # Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest) + data_torch = data_torch.reshape(1, d_inner, 1, d_conv) + logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]") + elif data_torch.ndim == 3: + # Already 3D [d_inner, 1, d_conv] from unsqueeze + d_inner, _, d_conv = data_torch.shape + data_torch = data_torch.reshape(1, d_inner, 1, d_conv) + logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]") + + # Kimi specific bias + if name.endswith("e_score_correction_bias"): + name = name.replace("e_score_correction_bias", "e_score_correction.bias") + + # Handle A_log: iHF stores as [1, 1, num_heads, 1] + # llama.cpp expects ggml ne = [1, num_heads, 1, 1] + # GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1] + if name.endswith(".A_log"): + data_torch = -torch.exp(data_torch) + if name.endswith(".dt_bias"): + name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias" + logger.info("Changed dt_bias to dt_proj.bias") + + # process the experts separately + if name.find("block_sparse_moe.experts") != -1: + n_experts = self.find_hparam(["num_local_experts", "num_experts"], optional=False) + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + # merge the experts into a single 3d tensor + # w1: gate, w2: down, w3: up + for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP), + ("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP), + ("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]: + datas: list[Tensor] = [] + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" + datas.append(self._experts[bid][ename]) + del self._experts[bid][ename] + data_torch = torch.stack(datas, dim=0) + new_name = self.format_tensor_name(tname, bid) + yield from super().modify_tensors(data_torch, new_name, bid) + return + + # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed + if name.endswith("kv_b_proj.weight"): + name_kb = name.replace("kv_b_proj", "k_b_proj") + name_vb = name.replace("kv_b_proj", "v_b_proj") + n_head_kv = self.hparams["num_key_value_heads"] + v_head_dim = self.find_hparam(["n_embd_head_v_mla", "v_head_dim"], optional=False) + qk_nope_head_dim = self.hparams["qk_nope_head_dim"] + logger.info("Split kv_b n_head_kv %d\n" % n_head_kv) + assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim) + kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1]) + k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1) + k_b = k_b.transpose(1, 2) + yield from super().modify_tensors(k_b, name_kb, bid) + yield from super().modify_tensors(v_b, name_vb, bid) + return + + yield from super().modify_tensors(data_torch, name, bid) + + @ModelBase.register("InternLM2ForCausalLM") class InternLM2Model(TextModel): model_arch = gguf.MODEL_ARCH.INTERNLM2 diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 6f56d36c59..3ddbc73d1c 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -207,6 +207,9 @@ class Keys: GROUP_COUNT = "{arch}.ssm.group_count" DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms" + class KDA: + HEAD_DIM = "{arch}.kda.head_dim" + class WKV: HEAD_SIZE = "{arch}.wkv.head_size" @@ -461,6 +464,7 @@ class MODEL_ARCH(IntEnum): MIMO2 = auto() LLAMA_EMBED = auto() MAINCODER = auto() + KIMI_LINEAR = auto() class VISION_PROJECTOR_TYPE(IntEnum): @@ -551,6 +555,14 @@ class MODEL_TENSOR(IntEnum): SSM_NORM = auto() SSM_OUT = auto() SSM_BETA_ALPHA = auto() # qwen3next + SSM_CONV1D_Q = auto() # Kimi Linear + SSM_CONV1D_K = auto() # Kimi Linear + SSM_CONV1D_V = auto() # Kimi Linear + SSM_F_A = auto() # Kimi Linear + SSM_F_B = auto() # Kimi Linear + SSM_BETA = auto() # Kimi Linear + SSM_G_A = auto() # Kimi Linear + SSM_G_B = auto() # Kimi Linear TIME_MIX_W0 = auto() TIME_MIX_W1 = auto() TIME_MIX_W2 = auto() @@ -882,6 +894,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.MIMO2: "mimo2", MODEL_ARCH.LLAMA_EMBED: "llama-embed", MODEL_ARCH.MAINCODER: "maincoder", + MODEL_ARCH.KIMI_LINEAR: "kimi-linear", } VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = { @@ -969,6 +982,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm", MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", MODEL_TENSOR.SSM_BETA_ALPHA: "blk.{bid}.ssm_ba", + MODEL_TENSOR.SSM_CONV1D_Q: "blk.{bid}.ssm_conv1d_q", # Kimi Linear + MODEL_TENSOR.SSM_CONV1D_K: "blk.{bid}.ssm_conv1d_k", # Kimi Linear + MODEL_TENSOR.SSM_CONV1D_V: "blk.{bid}.ssm_conv1d_v", # Kimi Linear + MODEL_TENSOR.SSM_F_A: "blk.{bid}.ssm_f_a", # Kimi Linear + MODEL_TENSOR.SSM_F_B: "blk.{bid}.ssm_f_b", # Kimi Linear + MODEL_TENSOR.SSM_BETA: "blk.{bid}.ssm_beta", # Kimi Linear + MODEL_TENSOR.SSM_G_A: "blk.{bid}.ssm_g_a", # Kimi Linear + MODEL_TENSOR.SSM_G_B: "blk.{bid}.ssm_g_b", # Kimi Linear MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0", MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1", MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2", @@ -3379,6 +3400,47 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.KIMI_LINEAR: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_Q_A, + MODEL_TENSOR.ATTN_Q_B, + MODEL_TENSOR.ATTN_KV_A_MQA, + MODEL_TENSOR.ATTN_KV_B, + MODEL_TENSOR.ATTN_K_B, + MODEL_TENSOR.ATTN_V_B, + MODEL_TENSOR.ATTN_Q_A_NORM, + MODEL_TENSOR.ATTN_KV_A_NORM, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.SSM_CONV1D_Q, + MODEL_TENSOR.SSM_CONV1D_K, + MODEL_TENSOR.SSM_CONV1D_V, + MODEL_TENSOR.SSM_F_A, + MODEL_TENSOR.SSM_F_B, + MODEL_TENSOR.SSM_BETA, + MODEL_TENSOR.SSM_A, + MODEL_TENSOR.SSM_G_A, + MODEL_TENSOR.SSM_G_B, + MODEL_TENSOR.SSM_DT, + MODEL_TENSOR.SSM_NORM, + MODEL_TENSOR.FFN_EXP_PROBS_B, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + ], # TODO } @@ -3706,6 +3768,9 @@ KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK KEY_SSM_GROUP_COUNT = Keys.SSM.GROUP_COUNT KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS +# KDA +KEY_KDA_HEAD_DIM = Keys.KDA.HEAD_DIM + # tokenization KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 0b9c650161..f720aa2d54 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -980,6 +980,9 @@ class GGUFWriter: def add_ssm_dt_b_c_rms(self, value: bool) -> None: self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value) + def add_kda_head_dim(self, value: int) -> None: + self.add_uint32(Keys.KDA.HEAD_DIM.format(arch=self.arch), value) + def add_tokenizer_model(self, model: str) -> None: self.add_string(Keys.Tokenizer.MODEL, model) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 84aa868809..e16c06c2a3 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -438,6 +438,7 @@ class TensorNameMap: "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2 "backbone.layers.{bid}.mixer.gate.e_score_correction", # nemotron-h-moe "model.layers.{bid}.mlp.e_score_correction", # exaone-moe + "model.layers.{bid}.block_sparse_moe.gate.e_score_correction", # kimi ), # Feed-forward up @@ -502,6 +503,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan "layers.{bid}.shared_experts.w3", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe + "model.layers.{bid}.block_sparse_moe.shared_experts.up_proj", # kimi ), MODEL_TENSOR.FFN_UP_CHEXP: ( @@ -549,6 +551,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4 "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan "layers.{bid}.shared_experts.w1", # mistral-large + "model.layers.{bid}.block_sparse_moe.shared_experts.gate_proj", # kimi ), MODEL_TENSOR.FFN_GATE_CHEXP: ( @@ -613,6 +616,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan "layers.{bid}.shared_experts.w2", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe + "model.layers.{bid}.block_sparse_moe.shared_experts.down_proj", # kimi ), MODEL_TENSOR.FFN_DOWN_CHEXP: ( @@ -759,6 +763,7 @@ class TensorNameMap: "model.layers.layers.{bid}.mixer.dt_proj", # plamo2 "model.layers.{bid}.linear_attn.dt_proj", # qwen3next "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe + "model.layers.{bid}.self_attn.dt_proj", # kimi ), MODEL_TENSOR.SSM_DT_NORM: ( @@ -772,6 +777,7 @@ class TensorNameMap: "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid "model.layers.layers.{bid}.mixer.A_log", # plamo2 "model.layers.{bid}.linear_attn.A_log", # qwen3next + "model.layers.{bid}.self_attn.A_log", # kimi ), MODEL_TENSOR.SSM_B_NORM: ( @@ -797,6 +803,7 @@ class TensorNameMap: "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid "model.layers.{bid}.linear_attn.norm", # qwen3next "backbone.layers.{bid}.mixer.norm", # mamba2 + "model.layers.{bid}.self_attn.o_norm", # kimi ), MODEL_TENSOR.SSM_OUT: ( @@ -811,6 +818,31 @@ class TensorNameMap: "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next ), + # Kimi Linear KDA (using SSM_ prefix for consistency) + MODEL_TENSOR.SSM_CONV1D_Q: ( + "model.layers.{bid}.self_attn.q_conv1d", + ), + MODEL_TENSOR.SSM_CONV1D_K: ( + "model.layers.{bid}.self_attn.k_conv1d", + ), + MODEL_TENSOR.SSM_CONV1D_V: ( + "model.layers.{bid}.self_attn.v_conv1d", + ), + MODEL_TENSOR.SSM_F_A: ( + "model.layers.{bid}.self_attn.f_a_proj", + ), + MODEL_TENSOR.SSM_F_B: ( + "model.layers.{bid}.self_attn.f_b_proj", + ), + MODEL_TENSOR.SSM_BETA: ( + "model.layers.{bid}.self_attn.b_proj", + ), + MODEL_TENSOR.SSM_G_A: ( + "model.layers.{bid}.self_attn.g_a_proj", + ), + MODEL_TENSOR.SSM_G_B: ( + "model.layers.{bid}.self_attn.g_b_proj", + ), MODEL_TENSOR.TIME_MIX_W0: ( "model.layers.{bid}.attention.w0", # rwkv7 ), diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index bedfa1bc3d..5238a5e934 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -84,6 +84,7 @@ add_library(llama models/internlm2.cpp models/jais.cpp models/jamba.cpp + models/kimi-linear.cpp models/lfm2.cpp models/llada-moe.cpp models/llada.cpp diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index a54bc1956a..a8bf1c9b80 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -120,6 +120,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_MIMO2, "mimo2" }, { LLM_ARCH_LLAMA_EMBED, "llama-embed" }, { LLM_ARCH_MAINCODER, "maincoder" }, + { LLM_ARCH_KIMI_LINEAR, "kimi-linear" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -246,6 +247,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_SSM_GROUP_COUNT, "%s.ssm.group_count" }, { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" }, + { LLM_KV_KDA_HEAD_DIM, "%s.kda.head_dim" }, + { LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" }, { LLM_KV_POSNET_EMBEDDING_LENGTH, "%s.posnet.embedding_length" }, @@ -371,6 +374,15 @@ static const std::map LLM_TENSOR_NAMES = { { LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" }, { LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" }, { LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" }, + { LLM_TENSOR_SSM_CONV1D_Q, "blk.%d.ssm_conv1d_q" }, + { LLM_TENSOR_SSM_CONV1D_K, "blk.%d.ssm_conv1d_k" }, + { LLM_TENSOR_SSM_CONV1D_V, "blk.%d.ssm_conv1d_v" }, + { LLM_TENSOR_SSM_F_A, "blk.%d.ssm_f_a" }, + { LLM_TENSOR_SSM_F_B, "blk.%d.ssm_f_b" }, + { LLM_TENSOR_SSM_BETA, "blk.%d.ssm_beta" }, + { LLM_TENSOR_SSM_G_A, "blk.%d.ssm_g_a" }, + { LLM_TENSOR_SSM_G_B, "blk.%d.ssm_g_b" }, + { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" }, { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, @@ -2289,6 +2301,54 @@ static std::set llm_get_tensor_names(llm_arch arch) { LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, }; + case LLM_ARCH_KIMI_LINEAR: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + // Dense FFN (layer 0 only) + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + // MoE FFN (layers 1+) + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + // Shared experts + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + // KDA (using SSM_ enum prefix, keeping GGUF names for backward compat) + LLM_TENSOR_SSM_CONV1D_Q, + LLM_TENSOR_SSM_CONV1D_K, + LLM_TENSOR_SSM_CONV1D_V, + LLM_TENSOR_SSM_F_A, + LLM_TENSOR_SSM_F_B, + LLM_TENSOR_SSM_BETA, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_G_A, + LLM_TENSOR_SSM_G_B, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_NORM, + // MLA + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_K_B, + LLM_TENSOR_ATTN_V_B, + LLM_TENSOR_ATTN_KV_A_NORM, + }; default: GGML_ABORT("unknown architecture for tensor mapping"); } @@ -2392,6 +2452,15 @@ static const std::map LLM_TENSOR_INFOS = { {LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + // Kimi KDA - Conv tensors are 4D [d_conv, 1, d_inner, 1], reshaped to 2D at runtime + {LLM_TENSOR_SSM_CONV1D_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_F_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_F_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_BETA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_G_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_G_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, {LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, @@ -2573,6 +2642,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) { case LLM_ARCH_NEMOTRON_H: case LLM_ARCH_NEMOTRON_H_MOE: case LLM_ARCH_QWEN3NEXT: + case LLM_ARCH_KIMI_LINEAR: return true; default: return false; diff --git a/src/llama-arch.h b/src/llama-arch.h index 270d28b16a..f092f72834 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -124,6 +124,7 @@ enum llm_arch { LLM_ARCH_MIMO2, LLM_ARCH_LLAMA_EMBED, LLM_ARCH_MAINCODER, + LLM_ARCH_KIMI_LINEAR, LLM_ARCH_UNKNOWN, }; @@ -250,6 +251,8 @@ enum llm_kv { LLM_KV_SSM_GROUP_COUNT, LLM_KV_SSM_DT_B_C_RMS, + LLM_KV_KDA_HEAD_DIM, + LLM_KV_WKV_HEAD_SIZE, LLM_KV_TOKENIZER_MODEL, @@ -398,6 +401,15 @@ enum llm_tensor { LLM_TENSOR_SSM_NORM, LLM_TENSOR_SSM_OUT, LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next + // Kimi Linear KDA (using SSM_ prefix for consistency) + LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight + LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight + LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight + LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A + LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B + LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient + LLM_TENSOR_SSM_G_A, // kimi: output gate projection A + LLM_TENSOR_SSM_G_B, // kimi: output gate projection B LLM_TENSOR_TIME_MIX_W0, LLM_TENSOR_TIME_MIX_W1, LLM_TENSOR_TIME_MIX_W2, diff --git a/src/llama-context.cpp b/src/llama-context.cpp index 95b207e9e1..a6df893a31 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -2013,7 +2013,7 @@ void llama_context::output_reorder() { // uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const { - if (model.arch == LLM_ARCH_QWEN3NEXT) { + if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) { return std::max(n_tokens * 40, 32u * model.n_tensors()); } uint32_t res = std::max(1024u, 8u*model.n_tensors()); diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index 54f4ed2481..165cbc0a7d 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -533,6 +533,50 @@ bool llm_graph_input_mem_hybrid::can_reuse(const llm_graph_params & params) { return res; } +// TODO: Hybrid input classes are a bit redundant. +// Instead of creating a hybrid input, the graph can simply create 2 separate inputs. +// Refactoring is required in the future. +void llm_graph_input_mem_hybrid_k::set_input(const llama_ubatch * ubatch) { + mctx->get_attn()->set_input_k_idxs(inp_attn->self_k_idxs, ubatch); + + mctx->get_attn()->set_input_kq_mask(inp_attn->self_kq_mask, ubatch, cparams.causal_attn); + + const int64_t n_rs = mctx->get_recr()->get_n_rs(); + + if (inp_rs->s_copy) { + GGML_ASSERT(ggml_backend_buffer_is_host(inp_rs->s_copy->buffer)); + int32_t * data = (int32_t *) inp_rs->s_copy->data; + + // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n + for (uint32_t i = 0; i < n_rs; ++i) { + data[i] = mctx->get_recr()->s_copy(i); + } + } +} + +bool llm_graph_input_mem_hybrid_k::can_reuse(const llm_graph_params & params) { + const auto * mctx = static_cast(params.mctx); + + this->mctx = mctx; + + bool res = true; + + res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens; + + res &= inp_attn->self_kq_mask->ne[0] == mctx->get_attn()->get_n_kv(); + res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens; + + res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs(); + + res &= inp_rs->s_copy_main->ne[0] == params.ubatch.n_seqs; + res &= inp_rs->s_copy_extra->ne[0] == mctx->get_recr()->get_n_rs() - params.ubatch.n_seqs; + + res &= inp_rs->head == mctx->get_recr()->get_head(); + res &= inp_rs->rs_z == mctx->get_recr()->get_rs_z(); + + return res; +} + void llm_graph_input_mem_hybrid_iswa::set_input(const llama_ubatch * ubatch) { const auto * attn_ctx = mctx->get_attn(); @@ -2268,6 +2312,17 @@ llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const { return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp)); } +llm_graph_input_mem_hybrid_k * llm_graph_context::build_inp_mem_hybrid_k() const { + const auto * mctx_cur = static_cast(mctx); + + auto inp_rs = build_rs_inp_impl (ctx0, ubatch, mctx_cur->get_recr()); + auto inp_attn = build_attn_inp_k_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn()); + + auto inp = std::make_unique(cparams, std::move(inp_attn), std::move(inp_rs), mctx_cur); + + return (llm_graph_input_mem_hybrid_k *) res->add_input(std::move(inp)); +} + llm_graph_input_mem_hybrid_iswa * llm_graph_context::build_inp_mem_hybrid_iswa() const { const auto * mctx_cur = static_cast(mctx); diff --git a/src/llama-graph.h b/src/llama-graph.h index 4090d8116c..1d69ff1a6f 100644 --- a/src/llama-graph.h +++ b/src/llama-graph.h @@ -433,6 +433,34 @@ public: const llama_memory_hybrid_context * mctx; }; +class llm_graph_input_mem_hybrid_k : public llm_graph_input_i { +public: + llm_graph_input_mem_hybrid_k( + const llama_cparams & cparams, + std::unique_ptr inp_attn, + std::unique_ptr inp_rs, + const llama_memory_hybrid_context * mctx) : + inp_attn(std::move(inp_attn)), + inp_rs(std::move(inp_rs)), + cparams(cparams), + mctx(mctx) { } + virtual ~llm_graph_input_mem_hybrid_k() = default; + + void set_input(const llama_ubatch * ubatch) override; + + bool can_reuse(const llm_graph_params & params) override; + + std::unique_ptr inp_attn; + std::unique_ptr inp_rs; + + llm_graph_input_attn_k * get_attn() const { return inp_attn.get(); } + llm_graph_input_rs * get_recr() const { return inp_rs.get(); } + + const llama_cparams cparams; + + const llama_memory_hybrid_context * mctx; +}; + class llm_graph_input_mem_hybrid_iswa : public llm_graph_input_i { public: llm_graph_input_mem_hybrid_iswa( @@ -960,6 +988,7 @@ struct llm_graph_context { // llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const; + llm_graph_input_mem_hybrid_k * build_inp_mem_hybrid_k() const; llm_graph_input_mem_hybrid_iswa * build_inp_mem_hybrid_iswa() const; diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp index 392f9160ce..756dda1a7a 100644 --- a/src/llama-hparams.cpp +++ b/src/llama-hparams.cpp @@ -139,6 +139,13 @@ uint32_t llama_hparams::n_embd_r() const { return n_embd * (n_shortconv_l_cache - 1); } + if (n_embd_head_kda != 0) { + // for Kimi KDA layers + // Conv state for Q, K, V: 3 * (d_conv - 1) * n_head * head_dim + const uint32_t d_inner = n_head() * n_embd_head_kda; // 32 * 128 = 4096 + return 3 * (ssm_d_conv > 0 ? ssm_d_conv - 1 : 3) * d_inner; + } + // TODO: maybe support other convolution strides than 1 // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed // Corresponds to Mamba's conv_states size @@ -151,6 +158,13 @@ uint32_t llama_hparams::n_embd_s() const { return n_embd * wkv_head_size; } + if (n_embd_head_kda != 0) { + // for Kimi KDA layers + // Full recurrent state: head_dim * head_dim * n_head + // h tensor shape for delta attention: [head_dim, head_dim, n_head] + return n_embd_head_kda * n_embd_head_kda * n_head(); // 128 * 128 * 32 = 524288 + } + // corresponds to Mamba's ssm_states size return ssm_d_state * ssm_d_inner; } diff --git a/src/llama-hparams.h b/src/llama-hparams.h index dfbc7d95e9..a435043cfe 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -137,6 +137,9 @@ struct llama_hparams { uint32_t ssm_dt_rank = 0; uint32_t ssm_n_group = 0; + // for Kimi Linear KDA + uint32_t n_embd_head_kda = 0; + // for hybrid state space models std::array recurrent_layer_arr; diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 72490a89b5..765e4de2e4 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -125,6 +125,7 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_21B_A3B: return "21B.A3B"; case LLM_TYPE_30B_A3B: return "30B.A3B"; case LLM_TYPE_31B_A3_5B: return "31B.A3.5B"; + case LLM_TYPE_48B_A3B: return "48B.A3B"; case LLM_TYPE_80B_A3B: return "80B.A3B"; case LLM_TYPE_100B_A6B: return "100B.A6B"; case LLM_TYPE_102B_A12B: return "102B.A12B"; @@ -2450,6 +2451,37 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_KIMI_LINEAR: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla_impl); + ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla_impl); + ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); + ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot); + ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); + ml.get_key(LLM_KV_KDA_HEAD_DIM, hparams.n_embd_head_kda); + + // MLA qk_rope_head_dim (for reference) + // qk_rope_head_dim = 64, qk_nope_head_dim = 128, qk_head_dim = 192 + + // Mark KDA layers as recurrent using n_head_kv pattern (like Jamba) + // Set n_head_kv = 0 for KDA layers (recurrent), n_head_kv = n_head for MLA layers (attention) + for (uint32_t i = 0; i < hparams.n_layer; ++i) { + hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; // KDA layers are recurrent + } + + // MoE parameters - Kimi uses moe_intermediate_size = 1024 + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func); + + switch (hparams.n_layer) { + case 27: type = LLM_TYPE_48B_A3B; break; // Kimi-Linear-48B-A3B + default: type = LLM_TYPE_UNKNOWN; + } + } break; default: throw std::runtime_error("unsupported model architecture"); } @@ -6752,6 +6784,141 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0); } } break; + case LLM_ARCH_KIMI_LINEAR: + { + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + // Check for KDA specific tensors to determine layer type or if it's a mixed model + // Assuming KDA layer if KDA tensors are present + + // KDA uses head_dim = 128 (from linear_attn_config.head_dim) + const int64_t n_embd_head_k_kda = hparams.n_embd_head_kda; + const int64_t n_embd_head_v_kda = hparams.n_embd_head_kda; + const int64_t ssm_d_conv = hparams.ssm_d_conv; + + // Try loading KDA specific tensors (using SSM_ prefix) + // Conv1d weights: try 4D first, then 3D (quantization may remove trailing 1) + // 4D: [d_conv, 1, d_inner, 1], 3D: [d_conv, 1, d_inner] + layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_q_conv) { + layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED); + } + + if (layer.ssm_q_conv) { + // KDA Layer - Conv1d weights may be 3D or 4D + layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_k_conv) { + layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, 0); + } + layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_v_conv) { + layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head}, 0); + } + + // q, k, v projections + // Python: q_proj, k_proj, v_proj + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_v_kda * n_head}, 0); + + // KDA specific projections + // f_a_proj, f_b_proj + layer.ssm_f_a = create_tensor(tn(LLM_TENSOR_SSM_F_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); // head_dim + layer.ssm_f_b = create_tensor(tn(LLM_TENSOR_SSM_F_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); // projection_size + + // b_proj (beta mixing coefficient) + layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), {n_embd, n_head}, 0); + + // A_log - Shape in GGUF: [1, num_heads, 1, 1] (4D) or [1, num_heads] (2D after quantization) Note: -exp(A_log) is applied in convert_hf_to_gguf.py + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head, 1, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_a) { + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0); + } + + // dt_bias - shape [n_embd_head_k_kda * n_head] = [4096] + layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_embd_head_k_kda * n_head}, 0); + + // g_a_proj, g_b_proj (output gate) + layer.ssm_g_a = create_tensor(tn(LLM_TENSOR_SSM_G_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); + layer.ssm_g_b = create_tensor(tn(LLM_TENSOR_SSM_G_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); + + // o_norm (reusing SSM_NORM) + layer.ssm_o_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {n_embd_head_k_kda}, 0); // FusedRMSNormGated + + // o_proj + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v_kda * n_head, n_embd}, 0); + + } else { + // MLA Layer - use MLA-specific head dimensions + const int64_t q_lora_rank = hparams.n_lora_q; + const int64_t kv_lora_rank = hparams.n_lora_kv; + const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla(); + const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla(); + + layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, TENSOR_NOT_REQUIRED); + layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); + + if (layer.attn_q_a_norm) { + layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); + layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0); + } else { + // Kimi MLA without Q compression: wq = [n_embd, n_head * n_embd_head_k_mla] + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0); + } + + // Kimi: qk_rope_head_dim = 64 (actual RoPE dimension for MLA) + // Note: hparams.n_rot may be 72 (from conversion) but actual is 64 + const int64_t qk_rope_head_dim = hparams.n_rot; // From config: qk_rope_head_dim + layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + qk_rope_head_dim}, 0); + // Support Legacy GGUFs that don't split wkv_b (MLA KV cache disabled) + layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_k_mla - qk_rope_head_dim + n_embd_head_v_mla)}, TENSOR_NOT_REQUIRED); + if (!layer.wkv_b) { // MLA KV cache enabled + layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_k_mla - qk_rope_head_dim, kv_lora_rank, n_head}, 0); + layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0); + } + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0); + } + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + // MoE intermediate size (different from dense FFN) + const int64_t n_ff_exp = hparams.n_ff_exp; + + // Kimi uses n_layer_dense_lead to determine which layers use dense FFN vs MoE + // first_k_dense_replace = 1 means layer 0 uses dense FFN, layers 1+ use MoE + if (i < (int) hparams.n_layer_dense_lead) { + // Dense FFN layer - use normal n_ff + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + } else { + // MoE layer - use n_ff_exp (1024) instead of n_ff (9216) + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); + + // Shared experts use moe_intermediate_size * num_shared_experts + // Kimi: shared_expert_intermediate_size = 1024 * 1 = 1024 + // Tensors are 2D: [n_embd, n_ff_shexp] or [n_ff_shexp, n_embd] + const int64_t n_ff_shexp_actual = n_ff_exp * (hparams.n_expert_shared > 0 ? hparams.n_expert_shared : 1); + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp_actual, n_embd}, TENSOR_NOT_REQUIRED); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED); + + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0); + } + } + } break; case LLM_ARCH_COGVLM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -8086,6 +8253,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { { llm = std::make_unique(*this, params); } break; + case LLM_ARCH_KIMI_LINEAR: + { + llm = std::make_unique(*this, params); + } break; default: GGML_ABORT("fatal error"); } @@ -8235,6 +8406,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_WAVTOKENIZER_DEC: case LLM_ARCH_NEMOTRON_H: case LLM_ARCH_NEMOTRON_H_MOE: + case LLM_ARCH_KIMI_LINEAR: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values diff --git a/src/llama-model.h b/src/llama-model.h index d1de16e3f2..5b408bcea2 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -118,6 +118,7 @@ enum llm_type { LLM_TYPE_21B_A3B, // Ernie MoE small LLM_TYPE_30B_A3B, LLM_TYPE_31B_A3_5B, + LLM_TYPE_48B_A3B, // Kimi Linear LLM_TYPE_80B_A3B, // Qwen3 Next LLM_TYPE_100B_A6B, LLM_TYPE_102B_A12B, // Solar-Open @@ -411,6 +412,18 @@ struct llama_layer { struct ggml_tensor * ffn_act_beta = nullptr; struct ggml_tensor * ffn_act_eps = nullptr; + // Kimi Linear KDA (using ssm_ prefix for consistency) + // Note: ssm_dt_b already exists above (mamba bias), reused for Kimi dt_bias + struct ggml_tensor * ssm_q_conv = nullptr; + struct ggml_tensor * ssm_k_conv = nullptr; + struct ggml_tensor * ssm_v_conv = nullptr; + struct ggml_tensor * ssm_f_a = nullptr; + struct ggml_tensor * ssm_f_b = nullptr; + struct ggml_tensor * ssm_beta = nullptr; + struct ggml_tensor * ssm_g_a = nullptr; + struct ggml_tensor * ssm_g_b = nullptr; + struct ggml_tensor * ssm_o_norm = nullptr; + struct llama_layer_posnet posnet; struct llama_layer_convnext convnext; diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp index 776222cb6f..a7891647c3 100644 --- a/src/llama-quant.cpp +++ b/src/llama-quant.cpp @@ -787,9 +787,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std:: quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); - // do not quantize Mamba's small yet 2D weights + // do not quantize Mamba /Kimi's small conv1d weights // NOTE: can't use LLM_TN here because the layer number is not known - quantize &= name.find("ssm_conv1d.weight") == std::string::npos; + quantize &= name.find("ssm_conv1d") == std::string::npos; quantize &= name.find("shortconv.conv.weight") == std::string::npos; // do not quantize RWKV's small yet 2D weights diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 38d03a8c39..6d6bdfa090 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1752,26 +1752,33 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); + // Kimi-K2 uses custom tokenization without traditional BPE merges + const bool is_kimi_k2 = (tokenizer_pre == "kimi-k2"); + if (merges_keyidx == -1) { - throw std::runtime_error("cannot find tokenizer merges in model file\n"); - } - - const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); - for (int i = 0; i < n_merges; i++) { - const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); - //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - - std::string first; - std::string second; - - const size_t pos = word.find(' ', 1); - - if (pos != std::string::npos) { - first = word.substr(0, pos); - second = word.substr(pos + 1); + if (!is_kimi_k2) { + throw std::runtime_error("cannot find tokenizer merges in model file\n"); } + // Kimi-K2 doesn't need merges, skip + LLAMA_LOG_INFO("%s: Kimi-K2 tokenizer detected, skipping BPE merges\n", __func__); + } else { + const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); + for (int i = 0; i < n_merges; i++) { + const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); + //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - bpe_ranks.emplace(std::make_pair(first, second), i); + std::string first; + std::string second; + + const size_t pos = word.find(' ', 1); + + if (pos != std::string::npos) { + first = word.substr(0, pos); + second = word.substr(pos + 1); + } + + bpe_ranks.emplace(std::make_pair(first, second), i); + } } // default special tokens @@ -2226,6 +2233,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "<|end_of_text|>" // granite || t.first == "" || t.first == "_" + || t.first == "[EOT]" // Kimi-K2 || t.first == "<|end▁of▁sentence|>" // DeepSeek || t.first == "" // smoldocling ) { @@ -2322,6 +2330,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "" || t.first == "" // Granite || t.first == "" + || t.first == "[PAD]" // Kimi-K2 ) { special_fim_pad_id = t.second; if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { @@ -2424,6 +2433,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "<|eom_id|>" || t.first == "" || t.first == "_" + || t.first == "[EOT]" // Kimi-K2 + || t.first == "[EOS]" // Kimi-K2 || t.first == "<|end_of_text|>" || t.first == "" // smoldocling ) { diff --git a/src/models/kimi-linear.cpp b/src/models/kimi-linear.cpp new file mode 100644 index 0000000000..0f037d1a39 --- /dev/null +++ b/src/models/kimi-linear.cpp @@ -0,0 +1,772 @@ +#include "models.h" +#include "ggml.h" + +#define CHUNK_SIZE 64 + +// Causal Conv1d function for Q,K,V +// When qkv is 0, it is Q, 1 is K, 2 is V +static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_tensor * conv_states_all, ggml_tensor * conv_state_all, int64_t qkv, ggml_tensor * x, ggml_tensor * proj_w, ggml_tensor * conv_w, int64_t d_conv, int64_t head_dim, int64_t n_head, int64_t n_seq_tokens, int64_t n_seqs, int64_t n_tokens, int64_t kv_head) { + const int64_t d_inner = head_dim * n_head; + const int64_t conv_state_size = (d_conv - 1) * d_inner; + const int64_t n_embd_r_total = 3 * conv_state_size; // Q + K + V + + // conv_state_all is [n_embd_r_total, n_seqs], split into Q, K, V + // Each conv state is [(d_conv-1) * d_inner] per sequence, need to reshape to [d_conv-1, d_inner, n_seqs] + // Memory layout: for each seq, Q state is first conv_state_size elements, then K, then V + // conv_state_all has stride: nb[0] = element_size, nb[1] = n_embd_r_total * element_size + // View Q conv state: offset 0, size conv_state_size per seq + // conv_state_all is [n_embd_r_total, n_seqs] with memory layout: + // state[i + seq * n_embd_r_total] where i = conv_step + channel * (d_conv-1) + {0, conv_state_size, 2*conv_state_size} for Q/K/V + // We want [d_conv-1, d_inner, n_seqs] view: + // nb1 = (d_conv-1) * element_size (stride between channels) + // nb2 = n_embd_r_total * element_size (stride between seqs) + ggml_tensor * conv_state_x = ggml_view_3d(ctx0, conv_state_all, d_conv - 1, d_inner, n_seqs, + (d_conv - 1) * ggml_element_size(conv_state_all), // nb1: stride between channels + n_embd_r_total * ggml_element_size(conv_state_all), // nb2: stride between seqs + qkv * conv_state_size * ggml_element_size(conv_state_all)); + +// Causal Conv1d function for Q,K,V +// When qkv is 0, it is Q, 1 is K, 2 is V + // Step 1: Q, K, V projections -> [d_inner, n_tokens] + ggml_tensor * x_proj = ggml_mul_mat(ctx0, proj_w, x); + + // Reshape input: {d_inner, n_tokens} -> {d_inner, n_seq_tokens, n_seqs} + ggml_tensor * x_3d = ggml_reshape_3d(ctx0, x_proj, d_inner, n_seq_tokens, n_seqs); + + // Concat Q conv state and current input: {d_conv-1 + n_seq_tokens, d_inner, n_seqs} + ggml_tensor * conv_x = ggml_concat(ctx0, conv_state_x, ggml_transpose(ctx0, x_3d), 0); + + // Save last (d_conv-1) columns back to Q conv state + ggml_tensor * last_conv_x = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, + conv_x->nb[1], conv_x->nb[2], n_seq_tokens * conv_x->nb[0]); + ggml_build_forward_expand(gf, + ggml_cpy(ctx0, last_conv_x, + ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs, + (kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all)))); + // Reshape conv weight: GGUF [d_conv, 1, d_inner, 1] -> ggml_ssm_conv expects [d_conv, d_inner] + // GGUF stores as [d_conv, 1, d_inner, 1] with memory layout w[conv_step + channel * d_conv] + // vLLM stores as [d_inner, d_conv] with memory layout w[channel * d_conv + conv_step] + // ggml_ssm_conv computes: c[conv_step + channel * d_conv] + // GGUF layout: [d_conv, 1, d_inner] or [d_conv, 1, d_inner, 1] -> reshape to [d_conv, d_inner] + // Reshape conv weight from [d_conv, 1, d_inner, 1] to [d_conv, d_inner] for ggml_ssm_conv + ggml_tensor * conv_weight = ggml_reshape_2d(ctx0, conv_w, d_conv, d_inner); + + // Apply conv1d + // ggml_ssm_conv output: {d_inner, n_seq_tokens, n_seqs} + ggml_tensor * Xcur = ggml_ssm_conv(ctx0, conv_x, conv_weight); + // Reshape to 2D for bias add: {d_inner, n_tokens} + Xcur = ggml_reshape_2d(ctx0, Xcur, d_inner, n_tokens); + Xcur = ggml_silu(ctx0, Xcur); + + return ggml_reshape_4d(ctx0, Xcur, head_dim, n_head, n_seq_tokens, n_seqs); +} + +llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) : + llm_graph_context_mamba(params), model(model) { + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + cb(inpL, "model.embed_tokens", -1); + + // Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM) + // So we don't need inp_pos + + auto * inp_kv = !hparams.is_mla() ? build_inp_mem_hybrid() : nullptr; + auto * inp_k = hparams.is_mla() ? build_inp_mem_hybrid_k() : nullptr; + auto * inp_rs = hparams.is_mla() ? inp_k->get_recr() : inp_kv->get_recr(); + auto * inp_attn_kv = !hparams.is_mla() ? inp_kv->get_attn() : nullptr; + auto * inp_attn_k = hparams.is_mla() ? inp_k->get_attn() : nullptr; + + // Output ids for selecting which tokens to output + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + ggml_tensor * chunked_causal_mask = + ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f), + GGML_TRI_TYPE_LOWER); + + ggml_tensor * chunked_identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f)); + ggml_tensor * chunked_diag_mask = ggml_add(ctx0, chunked_causal_mask, chunked_identity); + + ggml_build_forward_expand(gf, chunked_causal_mask); + ggml_build_forward_expand(gf, chunked_identity); + ggml_build_forward_expand(gf, chunked_diag_mask); + + // Kimi dimension constants + const int64_t n_head = hparams.n_head(); + const int64_t head_dim = hparams.n_embd_head_kda; + const int64_t d_conv = hparams.ssm_d_conv; + const int64_t d_inner = n_head * head_dim; // 32 * 128 = 4096 + const int64_t n_seqs = ubatch.n_seqs; + const int64_t n_seq_tokens = ubatch.n_seq_tokens; + + // Verify batch consistency for recurrent layers + GGML_ASSERT(n_seqs != 0); + GGML_ASSERT(ubatch.equal_seqs()); + GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); + + // MLA params + const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla(); + const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla(); + const int64_t kv_lora_rank = hparams.n_lora_kv; + // qk_rope_head_dim = 64 (from Kimi config) which is hparams.n_rot + // Confirmed from tensor shape: wkv_a_mqa [2304, 576] = [n_embd, kv_lora_rank + qk_rope_head_dim] + const int64_t n_embd_head_qk_rope = hparams.n_rot; // config.qk_rope_head_dim + const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope; // 192 - 64 = 128 + // Attention scale for MLA + const float kq_scale_mla = 1.0f / sqrtf((float)n_embd_head_k_mla); + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers[il]; + ggml_tensor * inpSA = inpL; + + // Attention Norm + cur = build_norm(inpL, layer.attn_norm, NULL, LLM_NORM_RMS, il); + cb(cur, "attn_norm", il); + + // Check layer type by checking which tensors exist + // KDA layers have ssm_a_log tensor, MLA layers have wkv_a_mqa tensor + bool is_kda = (layer.ssm_a != nullptr); + bool is_mla = (layer.wkv_a_mqa != nullptr); + + if (is_kda) { + // === KDA Layer (Kimi Delta Attention) with Recurrent State === + // Reference: vLLM kda.py + const auto * mctx_cur = inp_rs->mctx; + const auto kv_head = mctx_cur->get_head(); + + // Get conv states from r_l tensor (Q, K, V each have separate state) + ggml_tensor * conv_states_all = mctx_cur->get_r_l(il); + cb(conv_states_all, "conv_states_all", il); + ggml_tensor * conv_state_all = build_rs(inp_rs, conv_states_all, hparams.n_embd_r(), n_seqs); + ggml_tensor * Qcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 0, cur, layer.wq, layer.ssm_q_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head); + ggml_tensor * Kcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 1, cur, layer.wk, layer.ssm_k_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head); + ggml_tensor * Vcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 2, cur, layer.wv, layer.ssm_v_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head); + + // g1 = -exp(A_log) * softplus(f_b(f_a(x)) + dt_bias) + ggml_tensor * f_a = ggml_mul_mat(ctx0, layer.ssm_f_a, cur); + ggml_tensor * g1 = ggml_mul_mat(ctx0, layer.ssm_f_b, f_a); + cb(g1, "g1 f_b(f_a(cur))", il); + g1 = ggml_add(ctx0, g1, layer.ssm_dt_b); + g1 = ggml_softplus(ctx0, g1); + g1 = ggml_reshape_3d(ctx0, g1, head_dim, n_head, n_tokens); + + // A_log shape is [1, n_head] or [1, n_head, 1, 1], need to broadcast to [head_dim, n_head, n_tokens]. No need to -exp(a_log) because it was done in convert_hf_to_gguf.py + // Reshape to [1, n_head, 1] for broadcasting with g1 [head_dim, n_head, n_tokens] + ggml_tensor * A = ggml_reshape_3d(ctx0, layer.ssm_a, 1, n_head, 1); + g1 = ggml_mul(ctx0, g1, A); + cb(g1, "kda_g1", il); + + // Compute beta (mixing coefficient) + ggml_tensor * beta = ggml_mul_mat(ctx0, layer.ssm_beta, cur); + beta = ggml_reshape_4d(ctx0, beta, n_head, 1, n_seq_tokens, n_seqs); + cb(beta, "kda_beta", il); + + // Reshape for KDA recurrence + // {n_embd, n_tokens} -> {n_embd, n_seq_tokens, n_seqs} + cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs); + + g1 = ggml_reshape_4d(ctx0, g1, head_dim, n_head, n_seq_tokens, n_seqs); + + // Get SSM state and compute KDA recurrence using ggml_kda_scan + ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il); + ggml_tensor * state = build_rs(inp_rs, ssm_states_all, hparams.n_embd_s(), n_seqs); + state = ggml_reshape_4d(ctx0, state, head_dim, head_dim, n_head, n_seqs); + // Choose between build_kda_chunking and build_kda_recurrent based on n_tokens + std::pair attn_out = n_seq_tokens == 1 ? + build_kda_autoregressive(Qcur, Kcur, Vcur, g1, beta, state, il) : + build_kda_chunking(Qcur, Kcur, Vcur, g1, beta, state, chunked_causal_mask, chunked_identity, chunked_diag_mask, il); + + ggml_tensor * output = attn_out.first; + ggml_tensor * new_state = attn_out.second; + cb(output, "attn_output", il); + cb(new_state, "new_state", il); + + // Update the recurrent states + ggml_build_forward_expand(gf, + ggml_cpy(ctx0, new_state, + ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs, + kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all)))); + + // Output gating g2 = g_b(g_a(x)) + ggml_tensor * cur_2d = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs); + ggml_tensor * g_a = ggml_mul_mat(ctx0, layer.ssm_g_a, cur_2d); + ggml_tensor * g2 = ggml_mul_mat(ctx0, layer.ssm_g_b, g_a); + cb(g2, "g2 g_b(g_a(cur_2d))", il); + g2 = ggml_reshape_3d(ctx0, g2, head_dim, n_head, n_seq_tokens * n_seqs); + + // Apply o_norm with sigmoid gating + // Note: Kimi model uses sigmoid gating, not SiLU (despite FusedRMSNormGated default being swish) + // Formula: output = RMSNorm(x) * sigmoid(g) + ggml_tensor * attn_out_final = ggml_reshape_3d(ctx0, output, head_dim, n_head, n_seq_tokens * n_seqs); + ggml_tensor * normed = build_norm(attn_out_final, layer.ssm_o_norm, nullptr, LLM_NORM_RMS, il); + cb(normed, "kda_normed", il); + ggml_tensor * gate = ggml_sigmoid(ctx0, g2); + ggml_tensor * gated = ggml_mul(ctx0, normed, gate); + + // Output projection + gated = ggml_cont_2d(ctx0, gated, d_inner, n_tokens); + cur = ggml_mul_mat(ctx0, layer.wo, gated); + cb(cur, "kda_out", il); + + } else if (is_mla) { + // === MLA Layer (Multi-head Latent Attention) without KV Cache === + // Reference: vLLM mla.py + // Step 1: Q projection and reshape + // vLLM Kimi: q = q_proj(hidden_states), then view as [n_tokens, n_head, qk_head_dim] + // Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM) + ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.wq, cur); + + // Step 2: KV compression + // kv_cmpr_pe = kv_a_proj_with_mqa(hidden_states) -> [kv_lora_rank + qk_rope_head_dim, n_tokens] + ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, layer.wkv_a_mqa, cur); + + // Split: kv_cmpr = kv_lora[:kv_lora_rank], k_pe = kv_lora[kv_lora_rank:] + ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens, + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0); + ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens, + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank)); + // Note: Kimi MLA does NOT apply RoPE (rotary_emb=None in vLLM) + // k_pe is used directly without RoPE + // Normalize kv_c + kv_cmpr = build_norm(kv_cmpr, layer.attn_kv_a_norm, nullptr, LLM_NORM_RMS, il); + + if (layer.wk_b && layer.wv_b) { // MLA KV cache enabled + // extract q_nope + ggml_tensor * q_nope = + ggml_view_3d(ctx0, Qcur, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla), + ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, 0); + cb(q_nope, "q_nope", il); + + // and {n_embd_head_qk_rope, n_head, n_tokens} + ggml_tensor * q_pe = ggml_view_3d( + ctx0, Qcur, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla), + ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, ggml_row_size(Qcur->type, n_embd_head_qk_nope)); + cb(q_pe, "q_pe", il); + + // {n_embd_head_qk_nope, n_tokens, n_head} + q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3); + cb(q_nope, "q_nope_perm", il); + + // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head} + ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, layer.wk_b, q_nope); + cb(q_nope_absorbed, "q_nope_absorbed", il); + + // {kv_lora_rank, n_head, n_tokens} + q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3); + cb(q_nope_absorbed, "q_nope_absorbed_perm", il); + + // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens} + // note: rope must go first for in-place context shifting in build_rope_shift() + Qcur = ggml_concat(ctx0, q_nope_absorbed, q_pe, 0); + cb(Qcur, "Qcur", il); + + kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens); + cb(kv_cmpr, "kv_cmpr_reshape", il); + + // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens} + ggml_tensor * Kcur = ggml_concat(ctx0, kv_cmpr, k_pe, 0); + cb(Kcur, "Kcur", il); + + // {kv_lora_rank, 1, n_tokens} + ggml_tensor * Vcur = kv_cmpr; + cb(Vcur, "Vcur", il); + + cur = build_attn(inp_attn_k, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, layer.wv_b, kq_scale_mla, il); + cb(cur, "mla_out", il); + } else { // MLA KV cache disabled. Fall back to MHA KV cache. + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k_mla, n_head, n_tokens); + cb(Qcur, "mla_Q", il); + // KV decompression: kv = kv_b_proj(kv_c_normed) + ggml_tensor * kv = ggml_mul_mat(ctx0, layer.wkv_b, kv_cmpr); + const int64_t kv_per_head = n_embd_head_qk_nope + n_embd_head_v_mla; + + // Split kv into k_nope and v + ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, + ggml_row_size(kv->type, kv_per_head), + ggml_row_size(kv->type, kv_per_head * n_head), 0); + ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v_mla, n_head, n_tokens, + ggml_row_size(kv->type, kv_per_head), + ggml_row_size(kv->type, kv_per_head * n_head), + ggml_row_size(kv->type, n_embd_head_qk_nope)); + Vcur = ggml_cont(ctx0, Vcur); + cb(Vcur, "mla_V", il); + + // Concatenate k_nope + k_pe (broadcast k_pe to all heads) + // K = [k_nope, k_pe] where k_nope is [qk_nope_head_dim, n_head, n_tokens] + // and k_pe is [qk_rope_head_dim, 1, n_tokens] broadcast to all heads + // Need to broadcast k_pe from [qk_rope, 1, n_tokens] to [qk_rope, n_head, n_tokens] + ggml_tensor * k_pe_target = ggml_new_tensor_3d(ctx0, k_pe->type, n_embd_head_qk_rope, n_head, n_tokens); + ggml_tensor * k_pe_repeated = ggml_repeat(ctx0, k_pe, k_pe_target); + ggml_tensor * Kcur = ggml_concat(ctx0, k_pe_repeated, k_nope, 0); + cb(Kcur, "mla_K", il); + + // Direct softmax attention (with MHA KV cache) + // Use build_attn with inp_attn for proper mask handling + cur = build_attn(inp_attn_kv, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale_mla, il); + cb(cur, "mla_out", il); + } + } else { + // Unknown layer type - this should not happen + GGML_ABORT("Kimi layer is neither KDA nor MLA - missing required tensors"); + } + + // On last layer, select only the output tokens + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // Residual + ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // FFN Norm + cur = build_norm(ffn_inp, layer.ffn_norm, NULL, LLM_NORM_RMS, il); + cb(cur, "ffn_norm", il); + + if ((uint32_t) il < hparams.n_layer_dense_lead) { + // Dense FFN layer + cur = build_ffn(cur, + layer.ffn_up, NULL, NULL, + layer.ffn_gate, NULL, NULL, + layer.ffn_down, NULL, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + } else { + // MoE layer + // Kimi uses moe_renormalize=True and routed_scaling_factor (stored as expert_weights_scale) = 2.446 + ggml_tensor * moe_out = build_moe_ffn(cur, + layer.ffn_gate_inp, + layer.ffn_up_exps, + layer.ffn_gate_exps, + layer.ffn_down_exps, + layer.ffn_exp_probs_b, + hparams.n_expert, + hparams.n_expert_used, + LLM_FFN_SILU, true, + true, hparams.expert_weights_scale, + (llama_expert_gating_func_type) hparams.expert_gating_func, + il); + cb(moe_out, "ffn_moe_out", il); + + // Shared expert + { + ggml_tensor * ffn_shexp = build_ffn(cur, + layer.ffn_up_shexp, NULL, NULL, + layer.ffn_gate_shexp, NULL, NULL, + layer.ffn_down_shexp, NULL, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(ffn_shexp, "ffn_shexp", il); + + cur = ggml_add(ctx0, moe_out, ffn_shexp); + cb(cur, "ffn_out", il); + } + } + // Residual + cur = ggml_add(ctx0, cur, ffn_inp); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + inpL = cur; + } + cur = inpL; + + // Final Norm + cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // Output + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); +} + +/* + This is a ggml implementation of the naive_chunk_kda function of + https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/kda/naive.py +*/ +std::pair llm_build_kimi_linear::build_kda_chunking( + ggml_tensor * q, + ggml_tensor * k, + ggml_tensor * v, + ggml_tensor * gk, + ggml_tensor * beta, + ggml_tensor * state, + ggml_tensor * causal_mask, + ggml_tensor * identity, + ggml_tensor * diag_mask, + int il) { + GGML_ASSERT(ggml_is_contiguous(state)); + + const int64_t S_k = q->ne[0]; + const int64_t H_k = q->ne[1]; + const int64_t n_tokens = q->ne[2]; + const int64_t n_seqs = q->ne[3]; + + const int64_t S_v = v->ne[0]; + const int64_t H_v = v->ne[1]; + + GGML_ASSERT(v->ne[2] == n_tokens); + GGML_ASSERT(k->ne[2] == n_tokens); + GGML_ASSERT(gk->ne[0] == S_v && gk->ne[1] == H_v && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs); + GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs); + GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v && state->ne[2] == H_v && state->ne[3] == n_seqs); + + GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs); + GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs); + + GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case + + // TODO: can this ever be false? + const bool use_qk_l2norm = true; + + if (use_qk_l2norm) { + const float eps_norm = hparams.f_norm_rms_eps; + + q = ggml_l2_norm(ctx0, q, eps_norm); + k = ggml_l2_norm(ctx0, k, eps_norm); + } + + const float scale = 1.0f / sqrtf(S_v); + + beta = ggml_sigmoid(ctx0, beta); + + cb(q, "q_in", il); + cb(k, "k_in", il); + cb(v, "v_in", il); + cb(beta, "beta_in", il); + cb(gk, "gk_in", il); + + q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs); + k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs); + v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs); + gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs); + + beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3)); + state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs); + + cb(q, "q_perm", il); + cb(k, "k_perm", il); + cb(v, "v_perm", il); + cb(beta, "beta_perm", il); + cb(gk, "gk_perm", il); + cb(state, "state_in", il); + + GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs); + GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs); + GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs); + GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs); + + // Do padding + const int64_t chunk_size = CHUNK_SIZE; + + const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size; + const int64_t n_chunks = (n_tokens + pad) / chunk_size; + + q = ggml_pad(ctx0, q, 0, pad, 0, 0); + k = ggml_pad(ctx0, k, 0, pad, 0, 0); + v = ggml_pad(ctx0, v, 0, pad, 0, 0); + gk = ggml_pad(ctx0, gk, 0, pad, 0, 0); + beta = ggml_pad(ctx0, beta, 0, pad, 0, 0); + + cb(q, "q_pad", il); + cb(k, "k_pad", il); + cb(v, "v_pad", il); + cb(beta, "beta_pad", il); + cb(gk, "gk_pad", il); + + ggml_tensor * v_beta = ggml_mul(ctx0, v, beta); + ggml_tensor * k_beta = ggml_mul(ctx0, k, beta); + + cb(v_beta, "v_beta", il); + cb(k_beta, "k_beta", il); + + const int64_t HB = H_k * n_seqs; + + q = ggml_cont_4d(ctx0, q, S_k, chunk_size, n_chunks, HB); + k = ggml_cont_4d(ctx0, k, S_k, chunk_size, n_chunks, HB); + k_beta = ggml_cont_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, HB); + v = ggml_cont_4d(ctx0, v, S_v, chunk_size, n_chunks, HB); + v_beta = ggml_cont_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, HB); + + gk = ggml_cont_4d(ctx0, gk, S_k, chunk_size, n_chunks, HB); + beta = ggml_cont_4d(ctx0, beta, 1, chunk_size, n_chunks, HB); + + // switch for cumsum + gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 1, 0, 2, 3), chunk_size, S_k, n_chunks, HB); + cb(gk, "gk", il); + ggml_tensor * gk_cumsum = ggml_cumsum(ctx0, gk); + cb(gk_cumsum, "gk_cumsum", il); + +/* + Compute Akk and Aqk loop together + Akk loop: + for i in range(BT): + k_i = k[..., i, :] # k_i [B,H,NT,S] + g_i = g[..., i:i+1, :] # g_i [B,H,NT,1,S] + A[..., i] = torch.einsum('... c d, ... d -> ... c', k * (g - g_i).exp(), k_i) + Aqk loop: + for j in range(BT): + k_j = k[:, :, i, j] + g_j = g[:, :, i, j:j+1, :] + A[..., j] = torch.einsum('... c d, ... d -> ... c', q_i * (g_i - g_j).exp(), k_j) +*/ + const int64_t CHB = n_chunks * H_k * n_seqs; + ggml_tensor * gkcs_i = ggml_reshape_4d(ctx0, gk_cumsum, chunk_size, 1, S_k, CHB); // [chunk_size, 1, S_k, CHB] + ggml_tensor * gkcs_j = ggml_reshape_4d(ctx0, gkcs_i, 1, chunk_size, S_k, CHB); // [1, chunk_size, S_k, CHB] + + ggml_tensor * gkcs_j_bc = ggml_repeat_4d(ctx0, gkcs_j, chunk_size, chunk_size, S_k, CHB); // [1, chunk_size, S_k, CHB] -> [chunk_size, chunk_size, S_k, CHB] + // decay_mask [chunk_size,chunk_size,S_k,CHB] + ggml_tensor * decay_mask = ggml_sub(ctx0, gkcs_j_bc, gkcs_i); + cb(decay_mask, "decay_mask", il); + + decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); + cb(decay_mask, "decay_masked", il); + decay_mask = ggml_exp(ctx0, decay_mask); + decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); + + // decay_mask [S_k,BT_j,BT_i,CHB] *Note* second and third chunk_sizes are switched + decay_mask = ggml_cont_4d(ctx0, ggml_permute(ctx0, decay_mask, 2, 1, 0, 3), S_k, chunk_size, chunk_size, CHB); + + ggml_tensor * k_i = ggml_reshape_4d(ctx0, k, S_k, chunk_size, 1, CHB); + ggml_tensor * k_j = ggml_reshape_4d(ctx0, k, S_k, 1, chunk_size, CHB); + ggml_tensor * q_i = ggml_reshape_4d(ctx0, q, S_k, chunk_size, 1, CHB); + + ggml_tensor * decay_k_i = ggml_mul(ctx0, decay_mask, k_i); + ggml_tensor * decay_q_i = ggml_mul(ctx0, decay_mask, q_i); + + // decay_k_i [S.BT,BT,CHB] @ k_j [S,1,BT,CHB] = Akk [BT,1,BT,CHB] + ggml_tensor * Akk = ggml_mul_mat(ctx0, decay_k_i, k_j); + ggml_tensor * Aqk = ggml_mul_mat(ctx0, decay_q_i, k_j); + Akk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Akk, chunk_size, chunk_size, n_chunks, HB))); + Aqk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Aqk, chunk_size, chunk_size, n_chunks, HB))); + cb(Akk, "Akk", il); + cb(Aqk, "Aqk", il); + + Akk = ggml_mul(ctx0, Akk, beta); + Akk = ggml_neg(ctx0, ggml_mul(ctx0, Akk, causal_mask)); + cb(Akk, "attn_pre_solve", il); + + Aqk = ggml_mul(ctx0, Aqk, diag_mask); + Aqk = ggml_scale(ctx0, Aqk, scale); // scale q + cb(Aqk, "Aqk_masked", il); + + // for i in range(1, chunk_size): + // row = attn[..., i, :i].clone() + // sub = attn[..., :i, :i].clone() + // attn[..., i, :i] = row + (row.unsqueeze(-1) * sub).sum(-2) + // attn = attn + torch.eye(chunk_size, dtype=attn.dtype, device=attn.device) + // + // We reduce this to a linear triangular solve: AX = B, where B = attn, A = I - tril(A) + ggml_tensor * attn_lower = ggml_mul(ctx0, Akk, causal_mask); + ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower); + + ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, Akk, true, true, false); + Akk = ggml_mul(ctx0, lin_solve, causal_mask); + Akk = ggml_add(ctx0, Akk, identity); + + cb(Akk, "attn_solved", il); + + // switch back for downstream + gk_cumsum = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk_cumsum, 1, 0, 2, 3), S_k, chunk_size, n_chunks, HB); + ggml_tensor * gkexp = ggml_exp(ctx0, gk_cumsum); + cb(gk_cumsum, "gk_cumsum", il); + + // u = (A*beta[..., None, :]) @ v aka U_[t] + ggml_tensor * vb = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), Akk); + + ggml_tensor * kbeta_gkexp = ggml_mul(ctx0, k_beta, gkexp); + cb(kbeta_gkexp, "kbeta_gkexp", il); + + ggml_tensor * k_cumdecay = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gkexp)), Akk); + cb(k_cumdecay, "k_cumdecay", il); + + ggml_tensor * core_attn_out = nullptr; + ggml_tensor * new_state = ggml_dup(ctx0, state); + + cb(new_state, "new_state", il); + + for (int64_t chunk = 0; chunk < n_chunks; chunk++) { +// extract one chunk worth of data + auto chunkify = [=](ggml_tensor * t) { + return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3], + t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk)); + }; + auto chunkify_A = [=](ggml_tensor * t) { + return ggml_cont(ctx0, ggml_view_4d(ctx0, t, chunk_size, chunk_size, 1, t->ne[3], + t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk)); + }; + + +// k [S,BT,NT,H*B] => k_chunk [S,BT,1,H*B] + ggml_tensor * k_chunk = chunkify(k); + ggml_tensor * q_chunk = chunkify(q); + ggml_tensor * vb_chunk = chunkify(vb); + +// gk_cumsum [S,BT,NT,H*B] => gk_cs_chunk [S,BT,1,H*B] + ggml_tensor * gk_cs_chunk = chunkify(gk_cumsum); + ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay); + ggml_tensor * gkexp_chunk = ggml_exp(ctx0, gk_cs_chunk); + ggml_tensor * Aqk_chunk = chunkify_A(Aqk); + + ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs); + + // new_state [S,S,1,H*B] k_cumdecay_chunk [S,BT,1,H*B] + // v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state or W_[t] @ S_[t] + ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk); + + // v_new = v_i - v_prime or U_[t] - W_[t]*S_[t] + ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, vb_chunk, v_prime), v_prime); + ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new)); + + // q_chunk [S,BT,1,H*B] gkexp_chunk [S,BT,1,H*B] + // attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state + // or Gamma_[t]*Q_]t] @ S + ggml_tensor * q_gk_exp = ggml_mul(ctx0, q_chunk, gkexp_chunk); + ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_gk_exp); + attn_inter = ggml_scale(ctx0, attn_inter, scale); // scale q + + // v_new_t [S,BT,1,H*B] Aqk [BT,BT,1,H*B] + // core_attn_out[:, :, i] = attn_inter + attn @ v_new or A' @ (U_[t] - W_[t]*S_[t]) + ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, Aqk_chunk); + + // o[:, :, i] = (q_i * g_i.exp()) @ S + A @ v_i + ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn); + + core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1); + + ggml_tensor * gk_cum_last = + ggml_cont(ctx0, ggml_view_4d(ctx0, gk_cs_chunk, gk_cs_chunk->ne[0], 1, gk_cs_chunk->ne[2], gk_cs_chunk->ne[3], + gk_cs_chunk->nb[1], gk_cs_chunk->nb[2], gk_cs_chunk->nb[3], + gk_cs_chunk->nb[1] * (gk_cs_chunk->ne[1] - 1))); + + ggml_tensor * gkexp_last = ggml_exp(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, gk_cum_last))); + + ggml_tensor * gk_diff = ggml_neg(ctx0, ggml_sub(ctx0, gk_cs_chunk, gk_cum_last)); + + ggml_tensor * gk_diff_exp = ggml_exp(ctx0, gk_diff); + + ggml_tensor * key_gkdiff = ggml_mul(ctx0, k_chunk, gk_diff_exp); + + // rearrange((g_i[:,:,-1:] - g_i).exp()*k_i, 'b h c k -> b h k c') @ (U_[t] - W_[t] @ S) + ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gkdiff))); + + new_state = ggml_add(ctx0, + ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gkexp_last, gkexp_last->ne[0], gkexp_last->ne[1], H_v, n_seqs)), + ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs)); + } + + core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs); + + // truncate padded tokens + ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out, + S_v, n_tokens, H_v, n_seqs, + ggml_row_size(core_attn_out->type, S_v), + ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks), + ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0); + output_tokens = ggml_cont(ctx0, output_tokens); + // permute back to (S_v, H_v, n_tokens, n_seqs) + output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3); + output_tokens = ggml_cont(ctx0, output_tokens); + + cb(new_state, "output_state", il); + + return {output_tokens, new_state}; +} + +std::pair llm_build_kimi_linear::build_kda_autoregressive( + ggml_tensor * q, + ggml_tensor * k, + ggml_tensor * v, + ggml_tensor * gk, + ggml_tensor * beta, + ggml_tensor * state, + int il) { + GGML_ASSERT(ggml_is_contiguous(v)); + GGML_ASSERT(ggml_is_contiguous(gk)); + + const int64_t S_k = q->ne[0]; + const int64_t H_k = q->ne[1]; + const int64_t n_tokens = q->ne[2]; + const int64_t n_seqs = q->ne[3]; + + const int64_t S_v = v->ne[0]; + const int64_t H_v = v->ne[1]; + + GGML_ASSERT(n_tokens == 1); + GGML_ASSERT(v->ne[2] == n_tokens); + GGML_ASSERT(k->ne[2] == n_tokens); + GGML_ASSERT(gk->ne[0] == S_k && gk->ne[1] == H_k && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs); + GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs); + GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_k && state->ne[2] == H_v && state->ne[3] == n_seqs); + + GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs); + GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs); + + GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case + + const float eps_norm = hparams.f_norm_rms_eps; + + q = ggml_l2_norm(ctx0, q, eps_norm); + k = ggml_l2_norm(ctx0, k, eps_norm); + + const float scale = 1.0f / sqrtf(S_v); + + q = ggml_scale(ctx0, q, scale); + beta = ggml_sigmoid(ctx0, beta); + + cb(q, "q_in", il); + cb(k, "k_in", il); + cb(v, "v_in", il); + cb(beta, "beta_in", il); + cb(gk, "gk_in", il); + +// g [H,1,B,1] g_t [1,H,B,1] => [1,1,H,B] +// gk [S,H,1,B] => [S,1,H,B] gk_t [1,S,H,B] +// beta [H,1,1,B] beta_t [1,H,1,B] => [1,1,H,B] + gk = ggml_reshape_4d(ctx0, gk, S_k, 1, H_k, n_seqs); + ggml_tensor * gk_t = ggml_cont(ctx0, ggml_transpose(ctx0, gk)); + ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs); + + // Apply exponential to gk_t + gk_t = ggml_exp(ctx0, gk_t); + // Apply the gated delta rule for the single timestep + // last_recurrent_state = last_recurrent_state * gk_t + // S = S * g_i[..., None].exp() + state = ggml_mul(ctx0, state, gk_t); + + ggml_tensor * state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state)); + +// state [S,S,H,B] k [S,1,H,B] k_state [S_v,1,H,B] + k = ggml_reshape_4d(ctx0, k, S_k, 1, H_k, n_seqs); + ggml_tensor * k_state = ggml_mul_mat(ctx0, state_t, k); + + // v_i - (k_i[..., None] * S).sum(-2) + v = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs); + ggml_tensor * v_diff = ggml_sub(ctx0, v, k_state); + + // b_i[..., None] * k_i + ggml_tensor * k_beta = ggml_mul(ctx0, k, beta_t); + + // S = S + torch.einsum('b h k, b h v -> b h k v', b_i[..., None] * k_i, v_i - (k_i[..., None] * S).sum(-2)) + // v_diff_t [1,S_v,H,B] k_beta_t [1,S_k,H,B] state [S_v,S_k,H,B] + state = ggml_add(ctx0, state, ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_diff)), ggml_cont(ctx0, ggml_transpose(ctx0, k_beta)))); + + q = ggml_reshape_4d(ctx0, q, S_k, 1, H_k, n_seqs); + state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state)); + ggml_tensor * core_attn_out = ggml_mul_mat(ctx0, state_t, q); + // core_attn_out should be [S_v, 1, H_v, n_seqs] after this + cb(core_attn_out, "output_tokens", il); + cb(state, "new_state", il); + + return {core_attn_out, state}; +} + diff --git a/src/models/models.h b/src/models/models.h index 3a44f7f140..71c1fe8108 100644 --- a/src/models/models.h +++ b/src/models/models.h @@ -288,6 +288,33 @@ struct llm_build_jamba : public llm_graph_context_mamba { llm_build_jamba(const llama_model & model, const llm_graph_params & params); }; +struct llm_build_kimi_linear : public llm_graph_context_mamba { + llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params); + + std::pair build_kda_autoregressive( + ggml_tensor * q, + ggml_tensor * k, + ggml_tensor * v, + ggml_tensor * gk, + ggml_tensor * beta, + ggml_tensor * state, + int il); + + std::pair build_kda_chunking( + ggml_tensor * q, + ggml_tensor * k, + ggml_tensor * v, + ggml_tensor * gk, + ggml_tensor * beta, + ggml_tensor * state, + ggml_tensor * causal_mask, + ggml_tensor * identity, + ggml_tensor * diag_mask, + int il); + + const llama_model & model; +}; + struct llm_build_lfm2 : public llm_graph_context { const llama_model & model; From 06bf3796f48ddd88d984218acee306ccb8638a3e Mon Sep 17 00:00:00 2001 From: Lasse Lauwerys <65569591+Iemand005@users.noreply.github.com> Date: Fri, 6 Feb 2026 14:56:13 +0100 Subject: [PATCH 20/26] unicode : MSVC regex fix (#19340) * Fix model loading regex error * Change comments * Use const_iterator and remove specializations --------- Co-authored-by: Alde Rojas --- src/unicode.cpp | 49 +++++++++++++------------------------------------ 1 file changed, 13 insertions(+), 36 deletions(-) diff --git a/src/unicode.cpp b/src/unicode.cpp index b47dcbe619..adfc489d1f 100644 --- a/src/unicode.cpp +++ b/src/unicode.cpp @@ -497,49 +497,26 @@ static std::vector unicode_regex_split_custom_llama3(const std::string & return bpe_offsets; } -// use std::wregex to split the text -static std::vector unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector & offsets) { - std::wregex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs); +template +static std::vector unicode_regex_split_stl(const std::basic_string & text, const std::basic_string & regex, const std::vector & offsets) { + using BidirIt = typename std::basic_string::const_iterator; +#ifdef _MSC_VER + // Bypass bug in MSVC: https://github.com/ggml-org/llama.cpp/issues/17830 + constexpr auto regex_flags = std::regex_constants::ECMAScript; +#else + constexpr auto regex_flags = std::regex_constants::optimize | std::regex_constants::nosubs; +#endif + std::basic_regex expr(regex, regex_flags); std::vector bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size size_t start = 0; for (auto offset : offsets) { - std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr); - std::wcregex_iterator end; + std::regex_iterator it(text.begin() + start, text.begin() + start + offset, expr); + std::regex_iterator end; int64_t start_idx = 0; while (it != end) { - std::wcmatch match = *it; - if (match.position() > start_idx) { - bpe_offsets.emplace_back(match.position() - start_idx); - } - bpe_offsets.emplace_back(match.length()); - start_idx = match.position() + match.length(); - ++it; - } - - if (start_idx < (int64_t) offset) { - bpe_offsets.emplace_back(offset - start_idx); - } - start += offset; - } - - return bpe_offsets; -} - -// use std::regex to split the text -static std::vector unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector & offsets) { - std::regex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs); - std::vector bpe_offsets; // store the offset of each word - bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size - size_t start = 0; - for (auto offset : offsets) { - std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr); - std::cregex_iterator end; - - int64_t start_idx = 0; - while (it != end) { - std::cmatch match = *it; + std::match_results match = *it; if (match.position() > start_idx) { bpe_offsets.emplace_back(match.position() - start_idx); } From dfde5993eaed8c2e7b609ab21f7e24d137d40b79 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 6 Feb 2026 16:47:22 +0200 Subject: [PATCH 21/26] common : add common_speculative_is_compat() (#19270) * llama : add llama_memory_can_rm_suffix() * Revert "llama : add llama_memory_can_rm_suffix()" This reverts commit d30e59b62a15ef4266a6503e3f4eba770aec001b. * spec : check if the target context is compatible for spec decoding --- common/speculative.cpp | 36 +++++++++++++++++++++++++++++++++ common/speculative.h | 4 ++++ tools/server/server-context.cpp | 7 ++++++- 3 files changed, 46 insertions(+), 1 deletion(-) diff --git a/common/speculative.cpp b/common/speculative.cpp index c99b19dbfd..84d2556ceb 100644 --- a/common/speculative.cpp +++ b/common/speculative.cpp @@ -805,6 +805,42 @@ enum common_speculative_type common_speculative_type_from_name(const std::string return it->second; } +bool common_speculative_is_compat(llama_context * ctx_tgt) { + auto * mem = llama_get_memory(ctx_tgt); + if (mem == nullptr) { + return false; + } + + bool res = true; + + llama_memory_clear(mem, true); + + // eval 2 tokens to check if the context is compatible + std::vector tmp; + tmp.push_back(0); + tmp.push_back(0); + + int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size())); + if (ret != 0) { + LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret); + res = false; + goto done; + } + + // try to remove the last tokens + if (!llama_memory_seq_rm(mem, 0, 1, -1)) { + LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__); + res = false; + goto done; + } + +done: + llama_memory_clear(mem, true); + llama_synchronize(ctx_tgt); + + return res; +} + // initialization of the speculative decoding system // common_speculative * common_speculative_init( diff --git a/common/speculative.h b/common/speculative.h index 76fe6bb7bc..876cde3d18 100644 --- a/common/speculative.h +++ b/common/speculative.h @@ -14,6 +14,10 @@ enum common_speculative_type common_speculative_type_from_name(const std::string // convert type to string std::string common_speculative_type_to_str(enum common_speculative_type type); +// check if the llama_context is compatible for speculative decoding +// note: clears the memory of the context +bool common_speculative_is_compat(llama_context * ctx_tgt); + common_speculative * common_speculative_init( common_params_speculative & params, llama_context * ctx_tgt); diff --git a/tools/server/server-context.cpp b/tools/server/server-context.cpp index 7f9c3c566b..b71d496eeb 100644 --- a/tools/server/server-context.cpp +++ b/tools/server/server-context.cpp @@ -740,6 +740,11 @@ private: slots.clear(); + const bool can_spec = common_speculative_is_compat(ctx); + if (!can_spec) { + SRV_WRN("%s", "speculative decoding not supported by this context\n"); + } + // initialize slots for (int i = 0; i < params_base.n_parallel; i++) { server_slot slot; @@ -752,7 +757,7 @@ private: slot.prompt.tokens.has_mtmd = mctx != nullptr; // try speculative decoding - { + if (can_spec) { slot.spec = common_speculative_init(params_base.speculative, slot.ctx); if (slot.spec) { if (mctx) { From db6adb3c88a96845b7d6863f451a54484a9f5a7e Mon Sep 17 00:00:00 2001 From: Jeff Bolz Date: Fri, 6 Feb 2026 08:50:30 -0600 Subject: [PATCH 22/26] tests: reduce number of FA test permutations (#19381) Only test non-F16 for head size 64 and 72 (one a multiple of QK, one not). --- tests/test-backend-ops.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index fbe23037cc..6fe1780f3b 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -8231,6 +8231,7 @@ static std::vector> make_test_cases_eval() { for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) { if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue; for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) { + if (type_KV != GGML_TYPE_F16 && hsk != 64 && hsk != 72) continue; test_cases.emplace_back(new test_flash_attn_ext( hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV)); // run fewer test cases permuted From 537eadb1b9e664aa23bf19f7215c1876fc8e5fb9 Mon Sep 17 00:00:00 2001 From: Nechama Krashinski Date: Fri, 6 Feb 2026 17:13:44 +0200 Subject: [PATCH 23/26] sycl: add F16 support for GGML_OP_CEIL (#19306) * Fix SYCL CEIL operator * sycl: implement GGML_OP_CEIL --- docs/ops.md | 2 +- docs/ops/SYCL.csv | 8 ++++---- ggml/src/ggml-sycl/element_wise.cpp | 13 +++---------- ggml/src/ggml-sycl/ggml-sycl.cpp | 2 +- 4 files changed, 9 insertions(+), 16 deletions(-) diff --git a/docs/ops.md b/docs/ops.md index ef1ebff8b0..5754b0a96c 100644 --- a/docs/ops.md +++ b/docs/ops.md @@ -22,7 +22,7 @@ Legend: | ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | | ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ | -| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ | +| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ | | CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ | | CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ | | CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ | diff --git a/docs/ops/SYCL.csv b/docs/ops/SYCL.csv index 2aa51304b3..c1622cc6f0 100644 --- a/docs/ops/SYCL.csv +++ b/docs/ops/SYCL.csv @@ -77,8 +77,8 @@ "SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" @@ -161,8 +161,8 @@ "SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" diff --git a/ggml/src/ggml-sycl/element_wise.cpp b/ggml/src/ggml-sycl/element_wise.cpp index 651b875b63..00d54b83f8 100644 --- a/ggml/src/ggml-sycl/element_wise.cpp +++ b/ggml/src/ggml-sycl/element_wise.cpp @@ -836,16 +836,9 @@ static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tens } static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { - ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, - [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { - const int num_blocks = ceil_div(k_elements, 256); - stream->parallel_for( - sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), - sycl::range<1>(256)), - [=](sycl::nd_item<1> item_ct1) { - unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1); - }); - }); + ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) { + return op_ceil(x); + }); } static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index a03d26d7f2..0614d7e8f3 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -4591,9 +4591,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_UNARY_OP_EXP: case GGML_UNARY_OP_SOFTPLUS: case GGML_UNARY_OP_ELU: + case GGML_UNARY_OP_CEIL: return true; case GGML_UNARY_OP_FLOOR: - case GGML_UNARY_OP_CEIL: case GGML_UNARY_OP_ROUND: case GGML_UNARY_OP_TRUNC: #if defined (GGML_SYCL_F16) From 7fbd36c50c1a439a485486729faf20b47a0e6d8c Mon Sep 17 00:00:00 2001 From: Abhijit Ramesh Date: Fri, 6 Feb 2026 10:33:30 -0800 Subject: [PATCH 24/26] ggml-webgpu: JIT compile binary operators and handle binding overlaps (#19310) * ggml webgpu: port binary operators to use pre-wgsl * Add binary.wgsl: unified shader with conditionals for all 4 ops * Add gen_binary_shaders.cpp: build tool for using pre_wgsl preprocessor * Remove bin_op.tmpl.wgsl and binary.wgsl (Python template) * Update CMake to generate binary operator shaders at build time * ggml-webgpu: migrate binary ops to JIT compilation with overlap handling * port binary operators from AOT to pre-wgsl JIT compilation * add src1=dst overlap handling for binary ops * use compile-time workgroup size defines instead of runtime overrides * ggml-webgpu: complete overlap handling for binary ops * add support for inplace & overlap case in binding setup * restructure conditional logic to handle all overlap cases * ensure all buffer bindings are correctly assigned for edge cases * ggml-webgpu: remove unused binary overlap cases Remove src0==src1 binary overlap case that never occurs in practice. * keep INPLACE (src0==dst), OVERLAP (src1==dst), DEFAULT * remove unused src0==src1 and all-same variant * refactor wgsl to eliminate duplication --- .../ggml-webgpu/ggml-webgpu-shader-lib.hpp | 69 +++++++ ggml/src/ggml-webgpu/ggml-webgpu.cpp | 178 ++++++++--------- .../ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl | 188 ------------------ ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl | 107 ++++++++++ .../ggml-webgpu/wgsl-shaders/binary_head.tmpl | 45 ----- 5 files changed, 257 insertions(+), 330 deletions(-) delete mode 100644 ggml/src/ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl create mode 100644 ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl delete mode 100644 ggml/src/ggml-webgpu/wgsl-shaders/binary_head.tmpl diff --git a/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp b/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp index 84d88e81d4..6997f6bdd3 100644 --- a/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp +++ b/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp @@ -465,4 +465,73 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_unary_shader( return result; } +/** Binary **/ + +struct ggml_webgpu_binary_pipeline_key { + int type; + int op; + bool inplace; + bool overlap; + + bool operator==(const ggml_webgpu_binary_pipeline_key & other) const { + return type == other.type && op == other.op && inplace == other.inplace && overlap == other.overlap; + } +}; + +struct ggml_webgpu_binary_pipeline_key_hash { + size_t operator()(const ggml_webgpu_binary_pipeline_key & key) const { + size_t seed = 0; + ggml_webgpu_hash_combine(seed, key.type); + ggml_webgpu_hash_combine(seed, key.op); + ggml_webgpu_hash_combine(seed, key.inplace); + ggml_webgpu_hash_combine(seed, key.overlap); + return seed; + } +}; + +struct ggml_webgpu_binary_shader_lib_context { + ggml_webgpu_binary_pipeline_key key; + uint32_t max_wg_size; +}; + +inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_binary_shader( + pre_wgsl::Preprocessor & preprocessor, + const char * shader_src, + const ggml_webgpu_binary_shader_lib_context & context) { + std::vector defines; + std::string op_name = ggml_op_name((ggml_op) context.key.op); + std::string variant = op_name; + + defines.push_back(std::string("OP_") + op_name); + + switch (context.key.type) { + case GGML_TYPE_F32: + defines.push_back("TYPE_F32"); + variant += "_f32"; + break; + case GGML_TYPE_F16: + defines.push_back("TYPE_F16"); + variant += "_f16"; + break; + default: + GGML_ABORT("Unsupported type for binary shader"); + } + + if (context.key.inplace) { + defines.push_back("INPLACE"); + variant += "_inplace"; + } else if (context.key.overlap) { + defines.push_back("OVERLAP"); + variant += "_overlap"; + } + + defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size)); + ggml_webgpu_processed_shader result; + result.wgsl = preprocessor.preprocess(shader_src, defines); + result.variant = variant; + ggml_webgpu_generic_shader_decisions * decisions = new ggml_webgpu_generic_shader_decisions(); + decisions->wg_size = context.max_wg_size; + result.decisions = decisions; + return result; +} #endif // GGML_WEBGPU_SHADER_LIB_HPP diff --git a/ggml/src/ggml-webgpu/ggml-webgpu.cpp b/ggml/src/ggml-webgpu/ggml-webgpu.cpp index 4ef50e365e..f7ceca1121 100644 --- a/ggml/src/ggml-webgpu/ggml-webgpu.cpp +++ b/ggml/src/ggml-webgpu/ggml-webgpu.cpp @@ -348,13 +348,12 @@ struct webgpu_context_struct { std::unordered_map set_rows_pipelines; - std::map> get_rows_pipelines; // src_type, vectorized + std::map> get_rows_pipelines; // src_type, vectorized - std::map> cpy_pipelines; // src_type, dst_type - std::map> add_pipelines; // type, inplace - std::map> sub_pipelines; // type, inplace - std::map> mul_pipelines; // type, inplace - std::map> div_pipelines; // type, inplace + std::map> cpy_pipelines; // src_type, dst_type + + std::unordered_map + binary_pipelines; std::map rms_norm_pipelines; // inplace std::map>> rope_pipelines; // type, ff, inplace @@ -823,6 +822,28 @@ static bool ggml_webgpu_tensor_equal(ggml_tensor * a, ggml_tensor * b) { (ggml_webgpu_tensor_offset(a) == ggml_webgpu_tensor_offset(b)); } +// Used to determine if two tensors share the same buffer and their byte ranges overlap, +static bool ggml_webgpu_tensor_overlap(ggml_tensor * a, ggml_tensor * b) { + return (ggml_webgpu_tensor_buf(a).Get() == ggml_webgpu_tensor_buf(b).Get()) && + ggml_webgpu_tensor_offset(a) < (ggml_webgpu_tensor_offset(b) + ggml_nbytes(b)) && + ggml_webgpu_tensor_offset(b) < (ggml_webgpu_tensor_offset(a) + ggml_nbytes(a)); +} + +struct binary_overlap_flags { + bool inplace; // src0 == dst + bool overlap; // src1 == dst +}; + +static binary_overlap_flags ggml_webgpu_detect_binary_overlap(ggml_tensor * src0, + ggml_tensor * src1, + ggml_tensor * dst) { + binary_overlap_flags flags = {}; + flags.inplace = ggml_webgpu_tensor_equal(src0, dst); + flags.overlap = ggml_webgpu_tensor_overlap(src1, dst); + + return flags; +} + static webgpu_command ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) { uint32_t ne = (uint32_t) ggml_nelements(dst); @@ -1375,14 +1396,42 @@ static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * s return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x); } -static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx, - ggml_tensor * src0, - ggml_tensor * src1, - ggml_tensor * dst, - webgpu_pipeline & pipeline, - bool inplace) { +static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx, + ggml_tensor * src0, + ggml_tensor * src1, + ggml_tensor * dst) { + binary_overlap_flags flags = ggml_webgpu_detect_binary_overlap(src0, src1, dst); + + ggml_webgpu_binary_pipeline_key pipeline_key = { + .type = dst->type, + .op = dst->op, + .inplace = flags.inplace, + .overlap = flags.overlap, + }; + ggml_webgpu_binary_shader_lib_context shader_lib_ctx = { + .key = pipeline_key, .max_wg_size = ctx->global_ctx->capabilities.limits.maxComputeInvocationsPerWorkgroup + }; + + webgpu_pipeline pipeline; + auto it = ctx->binary_pipelines.find(pipeline_key); + if (it != ctx->binary_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_binary_shader(ctx->p, wgsl_binary, shader_lib_ctx); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + pipeline.context = processed.decisions; + ctx->binary_pipelines.emplace(pipeline_key, pipeline); + } + + ggml_webgpu_generic_shader_decisions decisions = + *static_cast(pipeline.context); + + uint32_t ne = (uint32_t) ggml_nelements(dst); + std::vector params = { - (uint32_t) ggml_nelements(dst), + ne, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), @@ -1399,24 +1448,30 @@ static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx, (uint32_t) src1->ne[3], }; - std::vector entries = { - { .binding = 0, - .buffer = ggml_webgpu_tensor_buf(src0), - .offset = ggml_webgpu_tensor_align_offset(ctx, src0), - .size = ggml_webgpu_tensor_binding_size(ctx, src0) }, - { .binding = 1, - .buffer = ggml_webgpu_tensor_buf(src1), - .offset = ggml_webgpu_tensor_align_offset(ctx, src1), - .size = ggml_webgpu_tensor_binding_size(ctx, src1) } - }; - if (!inplace) { + std::vector entries; + + entries.push_back({ + .binding = 0, + .buffer = ggml_webgpu_tensor_buf(src0), + .offset = ggml_webgpu_tensor_align_offset(ctx, src0), + .size = ggml_webgpu_tensor_binding_size(ctx, src0), + }); + + entries.push_back({ + .binding = 1, + .buffer = ggml_webgpu_tensor_buf(src1), + .offset = ggml_webgpu_tensor_align_offset(ctx, src1), + .size = ggml_webgpu_tensor_binding_size(ctx, src1), + }); + + if (!flags.inplace && !flags.overlap) { entries.push_back({ .binding = 2, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); } - uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE); + uint32_t wg_x = CEIL_DIV(ne, decisions.wg_size); return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x); } @@ -2038,25 +2093,10 @@ static std::optional ggml_webgpu_encode_node(webgpu_context ctx, return std::nullopt; #endif case GGML_OP_ADD: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipelines[node->type][inplace], inplace); - } case GGML_OP_SUB: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->sub_pipelines[node->type][inplace], inplace); - } case GGML_OP_MUL: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipelines[node->type][inplace], inplace); - } case GGML_OP_DIV: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->div_pipelines[node->type][inplace], inplace); - } + return ggml_webgpu_binary_op(ctx, src0, src1, node); case GGML_OP_RMS_NORM: return ggml_webgpu_rms_norm(ctx, src0, node); case GGML_OP_ROPE: @@ -2665,58 +2705,6 @@ static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) { ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_cpy_f16_f16, "cpy_f16_f16", constants); } -static void ggml_webgpu_init_add_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->add_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32, "add_f32", constants); - webgpu_ctx->add_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16, "add_f16", constants); - webgpu_ctx->add_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32_inplace, "add_f32_inplace", constants); - webgpu_ctx->add_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16_inplace, "add_f16_inplace", constants); -} - -static void ggml_webgpu_init_sub_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->sub_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32, "sub_f32", constants); - webgpu_ctx->sub_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16, "sub_f16", constants); - webgpu_ctx->sub_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32_inplace, "sub_f32_inplace", constants); - webgpu_ctx->sub_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16_inplace, "sub_f16_inplace", constants); -} - -static void ggml_webgpu_init_mul_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->mul_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32, "mul_f32", constants); - webgpu_ctx->mul_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16, "mul_f16", constants); - webgpu_ctx->mul_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32_inplace, "mul_f32_inplace", constants); - webgpu_ctx->mul_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16_inplace, "mul_f16_inplace", constants); -} - -static void ggml_webgpu_init_div_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->div_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32, "div_f32", constants); - webgpu_ctx->div_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16, "div_f16", constants); - webgpu_ctx->div_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32_inplace, "div_f32_inplace", constants); - webgpu_ctx->div_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16_inplace, "div_f16_inplace", constants); -} - static void ggml_webgpu_init_rms_norm_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE); @@ -3018,10 +3006,6 @@ static webgpu_context initialize_webgpu_context(ggml_backend_dev_t dev) { ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx); ggml_webgpu_init_get_rows_pipeline(webgpu_ctx); ggml_webgpu_init_cpy_pipeline(webgpu_ctx); - ggml_webgpu_init_add_pipeline(webgpu_ctx); - ggml_webgpu_init_sub_pipeline(webgpu_ctx); - ggml_webgpu_init_mul_pipeline(webgpu_ctx); - ggml_webgpu_init_div_pipeline(webgpu_ctx); ggml_webgpu_init_rms_norm_pipeline(webgpu_ctx); ggml_webgpu_init_rope_pipeline(webgpu_ctx); ggml_webgpu_init_glu_pipeline(webgpu_ctx); diff --git a/ggml/src/ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl b/ggml/src/ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl deleted file mode 100644 index 1ce4d83fa8..0000000000 --- a/ggml/src/ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl +++ /dev/null @@ -1,188 +0,0 @@ -#define(VARIANTS) - -[ - { - "SHADER_NAME": "add_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "+" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "add_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "+" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "add_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "+" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "add_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "+" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "mul_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "*" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "mul_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "*" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "mul_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "*" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "mul_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "*" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "sub_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "-" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "sub_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "-" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "sub_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "-" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "sub_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "-" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "div_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "/" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "div_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "/" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "div_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "/" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "div_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "/" - }, - "DECLS": ["INPLACE"] - } -] - -#end(VARIANTS) - -#define(DECLS) - -#decl(NOT_INPLACE) - -fn update(dst_i: u32, src0_i: u32, src1_i: u32) { - dst[dst_i] = src0[src0_i] {{OP}} src1[src1_i]; -} - -@group(0) @binding(2) -var dst: array<{{TYPE}}>; - -@group(0) @binding(3) -var params: Params; - -#enddecl(NOT_INPLACE) - -#decl(INPLACE) - -fn update(dst_i: u32, src0_i: u32, src1_i: u32) { - src0[dst_i] = src0[src0_i] {{OP}} src1[src1_i]; -} - -@group(0) @binding(2) -var params: Params; - -#enddecl(INPLACE) - -#end(DECLS) - - -#define(SHADER) - -enable f16; - -#include "binary_head.tmpl" - -@group(0) @binding(0) -var src0: array<{{TYPE}}>; - -@group(0) @binding(1) -var src1: array<{{TYPE}}>; - -DECLS - -override wg_size: u32; -@compute @workgroup_size(wg_size) -fn main(@builtin(global_invocation_id) gid: vec3) { - if (gid.x < params.ne) { - update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x)); - } -} - -#end(SHADER) diff --git a/ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl b/ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl new file mode 100644 index 0000000000..55dd66408a --- /dev/null +++ b/ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl @@ -0,0 +1,107 @@ +enable f16; + +struct Params { + ne: u32, + + // offsets in elements + offset_src0: u32, + offset_src1: u32, + offset_dst: u32, + + stride_src1_0: u32, + stride_src1_1: u32, + stride_src1_2: u32, + stride_src1_3: u32, + + a_ne0: u32, + a_ne1: u32, + a_ne2: u32, + + b_ne0: u32, + b_ne1: u32, + b_ne2: u32, + b_ne3: u32, +}; + +fn src1_index(_i: u32) -> u32 { + var i = _i; + let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0); + i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0); + let a_i2 = i / (params.a_ne1 * params.a_ne0); + i = i % (params.a_ne1 * params.a_ne0); + let a_i1 = i / params.a_ne0; + let a_i0 = i % params.a_ne0; + + // handle repetition of b + // index loops back to the beginning and repeats after elements are exhausted = modulo + let b_i0 = a_i0 % params.b_ne0; + let b_i1 = a_i1 % params.b_ne1; + let b_i2 = a_i2 % params.b_ne2; + let b_i3 = a_i3 % params.b_ne3; + + // compute index for position in b's flat array + return b_i0 * params.stride_src1_0 + + b_i1 * params.stride_src1_1 + + b_i2 * params.stride_src1_2 + + b_i3 * params.stride_src1_3; +} + +#ifdef TYPE_F32 +#define DataType f32 +#endif +#ifdef TYPE_F16 +#define DataType f16 +#endif + +@group(0) @binding(0) +var src0: array; + +@group(0) @binding(1) +var src1 : array; + +#ifdef INPLACE +@group(0) @binding(2) +var params: Params; + +#elif defined(OVERLAP) +@group(0) @binding(2) +var params: Params; + +#else +@group(0) @binding(2) +var dst: array; + +@group(0) @binding(3) +var params: Params; +#endif + +fn op(a: DataType, b: DataType) -> DataType { +#ifdef OP_ADD + return a + b; +#elif defined(OP_SUB) + return a - b; +#elif defined(OP_MUL) + return a * b; +#elif defined(OP_DIV) + return a / b; +#endif +} + +fn update(dst_i: u32, src0_i: u32, src1_i: u32){ + let result = op(src0[src0_i], src1[src1_i]); + +#ifdef INPLACE + src0[dst_i] = result; +#elif defined(OVERLAP) + src1[dst_i] = result; +#else + dst[dst_i] = result; +#endif +} + +@compute @workgroup_size(WG_SIZE) +fn main(@builtin(global_invocation_id) gid: vec3) { + if (gid.x < params.ne) { + update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x)); + } +} diff --git a/ggml/src/ggml-webgpu/wgsl-shaders/binary_head.tmpl b/ggml/src/ggml-webgpu/wgsl-shaders/binary_head.tmpl deleted file mode 100644 index 4b254f468d..0000000000 --- a/ggml/src/ggml-webgpu/wgsl-shaders/binary_head.tmpl +++ /dev/null @@ -1,45 +0,0 @@ -struct Params { - ne: u32, - - // offsets in elements - offset_src0: u32, - offset_src1: u32, - offset_dst: u32, - - stride_src1_0: u32, - stride_src1_1: u32, - stride_src1_2: u32, - stride_src1_3: u32, - - a_ne0: u32, - a_ne1: u32, - a_ne2: u32, - - b_ne0: u32, - b_ne1: u32, - b_ne2: u32, - b_ne3: u32, -}; - -fn src1_index(_i: u32) -> u32 { - var i = _i; - let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0); - i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0); - let a_i2 = i / (params.a_ne1 * params.a_ne0); - i = i % (params.a_ne1 * params.a_ne0); - let a_i1 = i / params.a_ne0; - let a_i0 = i % params.a_ne0; - - // handle repetition of b - // index loops back to the beginning and repeats after elements are exhausted = modulo - let b_i0 = a_i0 % params.b_ne0; - let b_i1 = a_i1 % params.b_ne1; - let b_i2 = a_i2 % params.b_ne2; - let b_i3 = a_i3 % params.b_ne3; - - // compute index for position in b's flat array - return b_i0 * params.stride_src1_0 + - b_i1 * params.stride_src1_1 + - b_i2 * params.stride_src1_2 + - b_i3 * params.stride_src1_3; -} From 3228e7728789e0456d0458ce38d20d0b1d60a9aa Mon Sep 17 00:00:00 2001 From: Alex Trotta <44127594+Ahajha@users.noreply.github.com> Date: Fri, 6 Feb 2026 15:05:19 -0500 Subject: [PATCH 25/26] gguf-py : bump sentencepiece version (#19319) * gguf-py: Bump sentencepiece version There's a new version that's been out for a while that addresses the issues mentioned in https://github.com/ggml-org/llama.cpp/pull/14200. There's a long chain of reasons I would like this change, but the short version is that it allows people who use both `sentencepiece` and `gguf` to take advantage of these fixes. On conda-forge, currently, it locks the version (since there is no notion of optional dependencies). Regardless, I don't think this should be too controversial. * review feedback --- gguf-py/pyproject.toml | 2 +- pyproject.toml | 2 +- requirements/requirements-convert_legacy_llama.txt | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index f6c4cd14e7..48693ae3e3 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -23,7 +23,7 @@ numpy = ">=1.17" tqdm = ">=4.27" pyyaml = ">=5.1" requests = ">=2.25" -sentencepiece = { version = ">=0.1.98,<=0.2.0", optional = true } +sentencepiece = { version = ">=0.1.98,<0.3.0", optional = true } PySide6 = { version = "^6.9", python = ">=3.9,<3.14", optional = true } [tool.poetry.dev-dependencies] diff --git a/pyproject.toml b/pyproject.toml index 3d71b055a8..422f53c7c7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -17,7 +17,7 @@ classifiers = [ [tool.poetry.dependencies] python = ">=3.9" numpy = "^1.25.0" -sentencepiece = ">=0.1.98,<=0.2.0" +sentencepiece = ">=0.1.98,<0.3.0" transformers = ">=4.35.2,<5.0.0" protobuf = ">=4.21.0,<5.0.0" gguf = { path = "./gguf-py" } diff --git a/requirements/requirements-convert_legacy_llama.txt b/requirements/requirements-convert_legacy_llama.txt index dbab3b9508..4898bf7ee2 100644 --- a/requirements/requirements-convert_legacy_llama.txt +++ b/requirements/requirements-convert_legacy_llama.txt @@ -1,5 +1,5 @@ numpy~=1.26.4 -sentencepiece~=0.2.0 +sentencepiece>=0.1.98,<0.3.0 transformers>=4.57.1,<5.0.0 From b83111815e9a79949257e9d4b087206b320a3063 Mon Sep 17 00:00:00 2001 From: forforever73 <63285796+forforever73@users.noreply.github.com> Date: Sat, 7 Feb 2026 04:06:14 +0800 Subject: [PATCH 26/26] model : support Step3.5-Flash (#19283) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Support Step3.5-Flash * fix: norm.weight + 1 (HF zero_centered=true) * step35: simplify GGUF conversion + drop redundant rope KVs * Address review feedback * rename limits -> clamp * Apply suggestions from code review Co-authored-by: Sigbjørn Skjæret * Apply suggestion from @CISC Co-authored-by: Sigbjørn Skjæret * rename swiglu limits -> swiglu clamp in LLM_KV * avoid CI fail * Apply suggestions from code review * Apply suggestions from code review * disabled KV shifting for LLM_ARCH_STEP35 * Apply suggestions from code review * mistakenly removed cmath * add model size && apply missed suggestion * assert partial_rotary_factors * fix CI errors: * load freq_base_swa --------- Co-authored-by: lvyichen Co-authored-by: Sigbjørn Skjæret --- convert_hf_to_gguf.py | 131 ++++++++++++++++++++++++- gguf-py/gguf/constants.py | 70 ++++++++++---- gguf-py/gguf/gguf_writer.py | 6 ++ gguf-py/gguf/tensor_mapping.py | 9 ++ src/CMakeLists.txt | 1 + src/llama-arch.cpp | 64 +++++++++---- src/llama-arch.h | 3 + src/llama-graph.cpp | 41 ++++++++ src/llama-hparams.h | 5 + src/llama-kv-cache-iswa.cpp | 4 +- src/llama-kv-cache.cpp | 4 + src/llama-model.cpp | 103 ++++++++++++++++++++ src/llama-model.h | 1 + src/models/models.h | 4 + src/models/step35-iswa.cpp | 168 +++++++++++++++++++++++++++++++++ 15 files changed, 576 insertions(+), 38 deletions(-) create mode 100644 src/models/step35-iswa.cpp diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index c167de8a46..843c00a896 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -920,7 +920,7 @@ class TextModel(ModelBase): self.gguf_writer.add_expert_group_used_count(n_group_used) logger.info(f"gguf: expert groups used count = {n_group_used}") - if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation_func"], optional=True)) is not None: + if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation", "moe_router_activation_func"], optional=True)) is not None: if score_func == "sigmoid": self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID) elif score_func == "softmax": @@ -7912,6 +7912,135 @@ class MimoV2Model(TextModel): raise ValueError(f"Unprocessed experts: {experts}") +@ModelBase.register("Step3p5ForCausalLM") +class Step35Model(TextModel): + model_arch = gguf.MODEL_ARCH.STEP35 + + def set_gguf_parameters(self): + rope_theta = self.hparams.get("rope_theta") + if isinstance(rope_theta, list): + self.hparams["rope_theta"] = float(rope_theta[0]) + self.hparams["local_rope_theta"] = float(rope_theta[1]) + self.rope_parameters["rope_theta"] = self.hparams["rope_theta"] + self.rope_parameters["sliding_attention"] = {"rope_theta": self.hparams["local_rope_theta"]} + + super().set_gguf_parameters() + + layer_types = self.hparams.get("layer_types") or [] + partial_rotary_factors = self.hparams.get("partial_rotary_factors") or [] + attn_other = self.hparams.get("attention_other_setting") or {} + + n_head_base = self.hparams["num_attention_heads"] + n_kv_base = self.hparams["num_attention_groups"] + + n_head_swa = attn_other.get("num_attention_heads", n_head_base) + n_kv_swa = attn_other.get("num_attention_groups", n_kv_base) + + layer_types = layer_types[: self.block_count] + partial_rotary_factors = partial_rotary_factors[: self.block_count] + assert [1.0 if lt == "sliding_attention" else 0.5 for lt in layer_types] == partial_rotary_factors + head_arr = [n_head_swa if lt == "sliding_attention" else n_head_base for lt in layer_types] + kv_arr = [n_kv_swa if lt == "sliding_attention" else n_kv_base for lt in layer_types] + swa_pat = [lt == "sliding_attention" for lt in layer_types] + + self.gguf_writer.add_head_count(head_arr) + self.gguf_writer.add_head_count_kv(kv_arr) + + self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) + self.gguf_writer.add_sliding_window_pattern(swa_pat) + + self.gguf_writer.add_value_length(self.hparams["head_dim"]) + + # MoE params + self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"]) + self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"]) + self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"]) + self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["share_expert_dim"]) + + if (moe_router_scaling_factor := self.hparams.get("moe_router_scaling_factor")) is not None: + self.gguf_writer.add_expert_weights_scale(moe_router_scaling_factor) + if (norm_expert_weight := self.hparams.get("norm_expert_weight")) is not None: + self.gguf_writer.add_expert_weights_norm(norm_expert_weight) + + # leading dense blocks + leading_dense = 0 + moe_layers_enum = self.hparams.get("moe_layers_enum") + if isinstance(moe_layers_enum, str) and moe_layers_enum.strip(): + moe_layers = sorted(int(i) for i in moe_layers_enum.strip().split(",")) + if moe_layers: + leading_dense = max(0, moe_layers[0]) + self.gguf_writer.add_leading_dense_block_count(leading_dense) + self.gguf_writer.add_moe_every_n_layers(int(self.hparams.get("moe_every_n_layer", 1))) + + self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5)) + + # Optional per-layer SwiGLU clamps. + if (limits := self.hparams.get("swiglu_limits")) is not None: + limits_f = [0.0 if v is None else float(v) for v in limits[: self.block_count]] + self.gguf_writer.add_swiglu_clamp_exp(limits_f) + if (limits_shared := self.hparams.get("swiglu_limits_shared")) is not None: + limits_shared_f = [0.0 if v is None else float(v) for v in limits_shared[: self.block_count]] + self.gguf_writer.add_swiglu_clamp_shexp(limits_shared_f) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None): + # remove mtp layers + if (m := re.match(r"model\.layers\.(\d+)\.", name)) is not None: + il = int(m.group(1)) + n_main = int(self.hparams.get("num_hidden_layers", self.block_count)) + if il >= n_main: + return + if name.endswith("norm.weight"): + data_torch += 1.0 + # Map router bias (expert selection bias) to a GGUF bias tensor + if name.endswith(".moe.router_bias"): + name += ".bias" + + if name.endswith((".self_attn.g_proj.weight", ".moe.gate.weight", ".moe.up_proj.weight", ".moe.gate_proj.weight", ".moe.down_proj.weight")): + data_torch = data_torch.squeeze().contiguous() + + yield from super().modify_tensors(data_torch, name, bid) + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + # Step35 can optionally use Llama-3 style RoPE scaling (HF: rope_scaling.rope_type == "llama3"). + # llama.cpp represents this via a single extra tensor: "rope_freqs.weight" (aka MODEL_TENSOR.ROPE_FREQS). + rope_params = self.rope_parameters.get("full_attention", self.rope_parameters) + rope_type = rope_params.get("rope_type") or "" + if rope_type.lower() != "llama3": + return + + # Step35 configs can carry per-layer rope_theta as a list; for llama3 rope factors we use the base value. + rope_theta = self.hparams.get("rope_theta", 10000.0) + if isinstance(rope_theta, list): + rope_theta = rope_theta[0] + base = float(rope_theta) + if (dim := self.hparams.get("head_dim")) is None: + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] + dim = int(dim) + + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = float(rope_params.get("factor", 8.0)) + low_freq_factor = float(rope_params.get("low_freq_factor", 1.0)) + high_freq_factor = float(rope_params.get("high_freq_factor", 4.0)) + old_context_len = int(rope_params.get("original_max_position_embeddings", self.hparams.get("original_max_position_embeddings", 8192))) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + + rope_factors: list[float] = [] + for freq in freqs: + wavelen = 2 * math.pi / float(freq) + if wavelen < high_freq_wavelen: + rope_factors.append(1.0) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1.0 / ((1.0 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) + + @ModelBase.register("PanguEmbeddedForCausalLM") class PanguEmbeddedModel(TextModel): model_arch = gguf.MODEL_ARCH.PANGU_EMBED diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 3ddbc73d1c..3af4fffe95 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -146,6 +146,8 @@ class Keys: ALTUP_ACTIVE_IDX = "{arch}.altup.active_idx" ALTUP_NUM_INPUTS = "{arch}.altup.num_inputs" EMBD_LENGTH_PER_LAYER_INP = "{arch}.embedding_length_per_layer_input" + SWIGLU_CLAMP_EXP = "{arch}.swiglu_clamp_exp" + SWIGLU_CLAMP_SHEXP = "{arch}.swiglu_clamp_shexp" DENSE_FEAT_IN_SIZE = "{arch}.{dense}_feat_in" DENSE_FEAT_OUT_SIZE = "{arch}.{dense}_feat_out" @@ -179,20 +181,20 @@ class Keys: TEMPERATURE_SCALE = "{arch}.attention.temperature_scale" class Rope: - DIMENSION_COUNT = "{arch}.rope.dimension_count" - DIMENSION_SECTIONS = "{arch}.rope.dimension_sections" - FREQ_BASE = "{arch}.rope.freq_base" - FREQ_BASE_SWA = "{arch}.rope.freq_base_swa" - SCALING_TYPE = "{arch}.rope.scaling.type" - SCALING_FACTOR = "{arch}.rope.scaling.factor" - SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor" - SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" - SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" - SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier" - SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor" - SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor" - SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast" - SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow" + DIMENSION_COUNT = "{arch}.rope.dimension_count" + DIMENSION_SECTIONS = "{arch}.rope.dimension_sections" + FREQ_BASE = "{arch}.rope.freq_base" + FREQ_BASE_SWA = "{arch}.rope.freq_base_swa" + SCALING_TYPE = "{arch}.rope.scaling.type" + SCALING_FACTOR = "{arch}.rope.scaling.factor" + SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor" + SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" + SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" + SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier" + SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor" + SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor" + SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast" + SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow" class Split: LLM_KV_SPLIT_NO = "split.no" @@ -462,6 +464,7 @@ class MODEL_ARCH(IntEnum): PANGU_EMBED = auto() MISTRAL3 = auto() MIMO2 = auto() + STEP35 = auto() LLAMA_EMBED = auto() MAINCODER = auto() KIMI_LINEAR = auto() @@ -892,6 +895,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.PANGU_EMBED: "pangu-embedded", MODEL_ARCH.MISTRAL3: "mistral3", MODEL_ARCH.MIMO2: "mimo2", + MODEL_ARCH.STEP35: "step35", MODEL_ARCH.LLAMA_EMBED: "llama-embed", MODEL_ARCH.MAINCODER: "maincoder", MODEL_ARCH.KIMI_LINEAR: "kimi-linear", @@ -3364,6 +3368,32 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_UP_EXP, MODEL_TENSOR.FFN_EXP_PROBS_B, ], + MODEL_ARCH.STEP35: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_GATE, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.FFN_UP_SHEXP, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_EXP_PROBS_B, + ], MODEL_ARCH.LLAMA_EMBED: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -3753,12 +3783,12 @@ KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS # RoPE -KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT -KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE -KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE -KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR -KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN -KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED +KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT +KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE +KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE +KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR +KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN +KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED # SSM KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index f720aa2d54..62172b24c3 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -824,6 +824,12 @@ class GGUFWriter: def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None: self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value) + def add_swiglu_clamp_exp(self, values: Sequence[float]) -> None: + self.add_array(Keys.LLM.SWIGLU_CLAMP_EXP.format(arch=self.arch), values) + + def add_swiglu_clamp_shexp(self, values: Sequence[float]) -> None: + self.add_array(Keys.LLM.SWIGLU_CLAMP_SHEXP.format(arch=self.arch), values) + def add_expert_group_scale(self, value: float) -> None: self.add_float32(Keys.LLM.EXPERT_GROUP_SCALE.format(arch=self.arch), value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index e16c06c2a3..167ade7803 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -359,6 +359,7 @@ class TensorNameMap: MODEL_TENSOR.ATTN_GATE: ( "model.layers.{bid}.self_attn.gate_proj", # afmoe + "model.layers.{bid}.self_attn.g_proj", # step3.5 head-wise attention gate ), # Feed-forward norm @@ -423,6 +424,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.router.gate", # afmoe "layers.{bid}.gate", # mistral-large "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe + "model.layers.{bid}.moe.gate", # step3.5 ), MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( @@ -439,6 +441,7 @@ class TensorNameMap: "backbone.layers.{bid}.mixer.gate.e_score_correction", # nemotron-h-moe "model.layers.{bid}.mlp.e_score_correction", # exaone-moe "model.layers.{bid}.block_sparse_moe.gate.e_score_correction", # kimi + "model.layers.{bid}.moe.router_bias", # step3.5 expert selection bias ), # Feed-forward up @@ -493,6 +496,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.experts.up_proj", # llama4 "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker + "model.layers.{bid}.moe.up_proj", # step3.5 ), MODEL_TENSOR.FFN_UP_SHEXP: ( @@ -504,6 +508,7 @@ class TensorNameMap: "layers.{bid}.shared_experts.w3", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe "model.layers.{bid}.block_sparse_moe.shared_experts.up_proj", # kimi + "model.layers.{bid}.share_expert.up_proj", # step3.5 ), MODEL_TENSOR.FFN_UP_CHEXP: ( @@ -543,6 +548,7 @@ class TensorNameMap: "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged) "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4 "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker + "model.layers.{bid}.moe.gate_proj", # step3.5 ), MODEL_TENSOR.FFN_GATE_SHEXP: ( @@ -552,6 +558,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan "layers.{bid}.shared_experts.w1", # mistral-large "model.layers.{bid}.block_sparse_moe.shared_experts.gate_proj", # kimi + "model.layers.{bid}.share_expert.gate_proj", # step3.5 ), MODEL_TENSOR.FFN_GATE_CHEXP: ( @@ -606,6 +613,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.experts.down_proj", # llama4 "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker + "model.layers.{bid}.moe.down_proj", # step3.5 ), MODEL_TENSOR.FFN_DOWN_SHEXP: ( @@ -617,6 +625,7 @@ class TensorNameMap: "layers.{bid}.shared_experts.w2", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe "model.layers.{bid}.block_sparse_moe.shared_experts.down_proj", # kimi + "model.layers.{bid}.share_expert.down_proj", # step3.5 ), MODEL_TENSOR.FFN_DOWN_CHEXP: ( diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 5238a5e934..2115fc4255 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -135,6 +135,7 @@ add_library(llama models/stablelm.cpp models/starcoder.cpp models/starcoder2.cpp + models/step35-iswa.cpp models/t5-dec.cpp models/t5-enc.cpp models/wavtokenizer-dec.cpp diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index a8bf1c9b80..bd78f1e556 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -117,7 +117,8 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_RND1, "rnd1" }, { LLM_ARCH_PANGU_EMBED, "pangu-embedded" }, { LLM_ARCH_MISTRAL3, "mistral3" }, - { LLM_ARCH_MIMO2, "mimo2" }, + { LLM_ARCH_MIMO2, "mimo2" }, + { LLM_ARCH_STEP35, "step35" }, { LLM_ARCH_LLAMA_EMBED, "llama-embed" }, { LLM_ARCH_MAINCODER, "maincoder" }, { LLM_ARCH_KIMI_LINEAR, "kimi-linear" }, @@ -162,6 +163,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" }, { LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, "%s.expert_chunk_feed_forward_length" }, + { LLM_KV_SWIGLU_CLAMP_EXP, "%s.swiglu_clamp_exp" }, + { LLM_KV_SWIGLU_CLAMP_SHEXP, "%s.swiglu_clamp_shexp" }, { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, @@ -220,21 +223,21 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" }, { LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" }, - { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, - { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" }, - { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, - { LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" }, - { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, - { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, - { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, - { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, - { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, - { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, - { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, - { LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" }, - { LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" }, - { LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" }, - { LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" }, + { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, + { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" }, + { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, + { LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" }, + { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, + { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, + { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, + { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, + { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, + { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, + { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, + { LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" }, + { LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" }, + { LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" }, + { LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" }, { LLM_KV_SPLIT_NO, "split.no" }, { LLM_KV_SPLIT_COUNT, "split.count" }, @@ -2279,6 +2282,35 @@ static std::set llm_get_tensor_names(llm_arch arch) { LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_FFN_EXP_PROBS_B, }; + case LLM_ARCH_STEP35: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_GATE, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; case LLM_ARCH_GPTJ: case LLM_ARCH_UNKNOWN: return { diff --git a/src/llama-arch.h b/src/llama-arch.h index f092f72834..e8263369b8 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -122,6 +122,7 @@ enum llm_arch { LLM_ARCH_PANGU_EMBED, LLM_ARCH_MISTRAL3, LLM_ARCH_MIMO2, + LLM_ARCH_STEP35, LLM_ARCH_LLAMA_EMBED, LLM_ARCH_MAINCODER, LLM_ARCH_KIMI_LINEAR, @@ -166,6 +167,8 @@ enum llm_kv { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, + LLM_KV_SWIGLU_CLAMP_EXP, + LLM_KV_SWIGLU_CLAMP_SHEXP, LLM_KV_USE_PARALLEL_RESIDUAL, LLM_KV_TENSOR_DATA_LAYOUT, LLM_KV_EXPERT_COUNT, diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index 165cbc0a7d..bba747d37b 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -13,6 +13,8 @@ #include #include #include +#include +#include #include void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) { @@ -1014,6 +1016,26 @@ ggml_tensor * llm_graph_context::build_ffn( switch (type_op) { case LLM_FFN_SILU: if (gate && type_gate == LLM_FFN_PAR) { + // Step35: HF clamps gate (after SiLU) and up before multiplication + if (arch == LLM_ARCH_STEP35 && il >= 0) { + const float limit = hparams.swiglu_clamp_shexp[il]; + constexpr float eps = 1e-6f; + if (limit > eps) { + ggml_tensor * gate_act = ggml_silu(ctx0, cur); + cb(gate_act, "ffn_silu", il); + gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit); + cb(gate_act, "ffn_silu_clamped", il); + + tmp = ggml_clamp(ctx0, tmp, -limit, limit); + cb(tmp, "ffn_up_clamped", il); + + cur = ggml_mul(ctx0, gate_act, tmp); + cb(cur, "ffn_swiglu_limited", il); + type_gate = LLM_FFN_SEQ; + break; + } + } + cur = ggml_swiglu_split(ctx0, cur, tmp); cb(cur, "ffn_swiglu", il); type_gate = LLM_FFN_SEQ; @@ -1316,6 +1338,25 @@ ggml_tensor * llm_graph_context::build_moe_ffn( switch (type_op) { case LLM_FFN_SILU: if (gate_exps) { + // Step35: per-layer clamp for routed experts + if (arch == LLM_ARCH_STEP35 && il >= 0) { + const float limit = hparams.swiglu_clamp_exp[il]; + constexpr float eps = 1e-6f; + if (limit > eps) { + ggml_tensor * gate_act = ggml_silu(ctx0, cur); + cb(gate_act, "ffn_moe_silu", il); + gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit); + cb(gate_act, "ffn_moe_silu_clamped", il); + + up = ggml_clamp(ctx0, up, -limit, limit); + cb(up, "ffn_moe_up_clamped", il); + + cur = ggml_mul(ctx0, gate_act, up); + cb(cur, "ffn_moe_swiglu_limited", il); + break; + } + } + cur = ggml_swiglu_split(ctx0, cur, up); cb(cur, "ffn_moe_swiglu", il); } else { diff --git a/src/llama-hparams.h b/src/llama-hparams.h index a435043cfe..6c695bdbf6 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -206,6 +206,11 @@ struct llama_hparams { enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; + + // Step35: optional per-layer clamps for (Swi)GLU + std::array swiglu_clamp_exp; // clamping for expert FFN + std::array swiglu_clamp_shexp; // shared expert + // this value n_pattern means that every nth layer is dense (i.e. non-SWA) // dense_first means whether the pattern is start with a dense layer // note that if n_pattern == 0, all layers are SWA diff --git a/src/llama-kv-cache-iswa.cpp b/src/llama-kv-cache-iswa.cpp index 3a34102a23..26e2cb4270 100644 --- a/src/llama-kv-cache-iswa.cpp +++ b/src/llama-kv-cache-iswa.cpp @@ -218,7 +218,9 @@ llama_memory_context_ptr llama_kv_cache_iswa::init_update(llama_context * lctx, } bool llama_kv_cache_iswa::get_can_shift() const { - return kv_base->get_size() == kv_swa->get_size(); + return kv_base->get_can_shift() && + kv_swa->get_can_shift() && + kv_base->get_size() == kv_swa->get_size(); } void llama_kv_cache_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const { diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp index c35cd6761b..cb702b2a59 100644 --- a/src/llama-kv-cache.cpp +++ b/src/llama-kv-cache.cpp @@ -974,6 +974,10 @@ void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & } bool llama_kv_cache::get_can_shift() const { + // Step35 uses per-layer RoPE dims; K-shift assumes a single global n_rot. + if (model.arch == LLM_ARCH_STEP35) { + return false; + } return true; } diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 765e4de2e4..674d06c891 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -130,6 +130,7 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_100B_A6B: return "100B.A6B"; case LLM_TYPE_102B_A12B: return "102B.A12B"; case LLM_TYPE_106B_A12B: return "106B.A12B"; + case LLM_TYPE_196B_A11B: return "196B.A11B"; case LLM_TYPE_230B_A10B: return "230B.A10B"; case LLM_TYPE_235B_A22B: return "235B.A22B"; case LLM_TYPE_300B_A47B: return "300B.A47B"; @@ -560,6 +561,8 @@ void llama_model::load_hparams(llama_model_loader & ml) { std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f); std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f); std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f); + std::fill(hparams.swiglu_clamp_exp.begin(), hparams.swiglu_clamp_exp.end(), 0.0f); + std::fill(hparams.swiglu_clamp_shexp.begin(), hparams.swiglu_clamp_shexp.end(), 0.0f); ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false); ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false); @@ -2482,6 +2485,35 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_STEP35: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; + + // MoE + SWA parameters + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); + + // Step35 uses sigmoid gating by default (if not set in GGUF) + if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) { + hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID; + } + + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); + ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa); + ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, hparams.swa_layers, hparams.n_layer); + ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_EXP, hparams.swiglu_clamp_exp, hparams.n_layer, false); + ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_SHEXP, hparams.swiglu_clamp_shexp, hparams.n_layer, false); + + switch (hparams.n_layer) { + case 45: type = LLM_TYPE_196B_A11B; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; default: throw std::runtime_error("unsupported model architecture"); } @@ -7107,6 +7139,72 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); } } break; + case LLM_ARCH_STEP35: + { + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + // STEP35 supports per-layer partial RoPE dims; rope factors are stored as a single shared tensor + // ("rope_freqs.weight") and ggml uses only the first (n_rot_l/2) entries per layer. + uint32_t n_rot_max = 0; + for (int i = 0; i < n_layer; ++i) { + n_rot_max = std::max(n_rot_max, hparams.n_rot); + } + if (n_rot_max == 0) { + n_rot_max = n_rot; + } + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + const uint32_t n_head_l = hparams.n_head(i); + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i); + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED); + + // optional rope factors (llama3) / longrope tensors + if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { + layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + } else { + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + } + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_l}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v * n_head_l, n_embd}, 0); + + // head-wise attention gate (Step35 self_attn.g_proj) + layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_head_l}, TENSOR_NOT_REQUIRED); + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + // dense MLP (leading dense blocks) + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, TENSOR_NOT_REQUIRED); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); + + // MoE routed experts + selection bias (router_bias) + const int64_t n_ff_exp = hparams.n_ff_exp; + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); + + // shared expert MLP + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, TENSOR_NOT_REQUIRED); + } + } break; case LLM_ARCH_MAINCODER: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -8257,6 +8355,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { { llm = std::make_unique(*this, params); } break; + case LLM_ARCH_STEP35: + { + llm = std::make_unique(*this, params); + } break; default: GGML_ABORT("fatal error"); } @@ -8502,6 +8604,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_AFMOE: case LLM_ARCH_QWEN3NEXT: case LLM_ARCH_MIMO2: + case LLM_ARCH_STEP35: return LLAMA_ROPE_TYPE_NEOX; case LLM_ARCH_QWEN2VL: diff --git a/src/llama-model.h b/src/llama-model.h index 5b408bcea2..7b580043b3 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -123,6 +123,7 @@ enum llm_type { LLM_TYPE_100B_A6B, LLM_TYPE_102B_A12B, // Solar-Open LLM_TYPE_106B_A12B, // GLM-4.5-Air + LLM_TYPE_196B_A11B, // Step3.5-Flash LLM_TYPE_230B_A10B, // Minimax M2 LLM_TYPE_235B_A22B, LLM_TYPE_300B_A47B, // Ernie MoE big diff --git a/src/models/models.h b/src/models/models.h index 71c1fe8108..cfcbb9aaa5 100644 --- a/src/models/models.h +++ b/src/models/models.h @@ -583,6 +583,10 @@ struct llm_build_starcoder : public llm_graph_context { llm_build_starcoder(const llama_model & model, const llm_graph_params & params); }; +struct llm_build_step35_iswa : public llm_graph_context { + llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params); +}; + struct llm_build_t5_dec : public llm_graph_context { llm_build_t5_dec(const llama_model & model, const llm_graph_params & params); }; diff --git a/src/models/step35-iswa.cpp b/src/models/step35-iswa.cpp new file mode 100644 index 0000000000..f8737815a6 --- /dev/null +++ b/src/models/step35-iswa.cpp @@ -0,0 +1,168 @@ +#include "models.h" + +llm_build_step35_iswa::llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + ggml_tensor * inp_pos = build_inp_pos(); + auto * inp_attn = build_attn_inp_kv_iswa(); + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * inpSA = inpL; + + const uint32_t n_head_l = hparams.n_head(il); + const uint32_t n_head_kv_l = hparams.n_head_kv(il); + + const float freq_base_l = model.get_rope_freq_base(cparams, il); + const float freq_scale_l = model.get_rope_freq_scale(cparams, il); + + cur = inpL; + + // dump pre-attn RMSNorm input to pinpoint layer boundary issues + cb(cur, "attn_norm_in", il); + + // self-attention + { + cur = build_norm(cur, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il); + cb(cur, "attn_norm", il); + ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); + ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); + ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens); + Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens); + + // Q/K per-head RMSNorm (Step35 q_norm / k_norm) + if (model.layers[il].attn_q_norm) { + Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il); + cb(Qcur, "Qcur_normed", il); + } + if (model.layers[il].attn_k_norm) { + Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il); + cb(Kcur, "Kcur_normed", il); + } + + // RoPE (partial rotary factors per layer) + const bool is_swa = hparams.is_swa(il); + ggml_tensor * rope_factors = is_swa ? nullptr : model.get_rope_factors(cparams, il); + const int64_t n_rot_l = is_swa ? hparams.n_rot : (hparams.n_rot / 2); + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, rope_factors, + n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, + ext_factor, attn_factor, beta_fast, beta_slow + ); + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, rope_factors, + n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur_pos", il); + cb(Kcur, "Kcur_pos", il); + + const float kq_scale = 1.0f / sqrtf(float(n_embd_head_k)); + ggml_tensor * attn_out = build_attn(inp_attn, + nullptr, nullptr, + Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); + cb(attn_out, "attn_out", il); + // head-wise attention gate: sigmoid(g_proj(x)) in torch + if (model.layers[il].wqkv_gate) { + ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, cur); // [n_head_l, n_tokens] + cb(gate, "attn_gate", il); + + gate = ggml_sigmoid(ctx0, gate); + cb(gate, "attn_gate_sigmoid", il); + + // reshape + broadcast to [n_embd_head_v, n_head_l, n_tokens] + ggml_tensor * attn_3d = ggml_reshape_3d(ctx0, attn_out, n_embd_head_v, n_head_l, n_tokens); + ggml_tensor * gate_3d = ggml_reshape_3d(ctx0, gate, 1, n_head_l, n_tokens); + cb(gate_3d, "attn_gate_3d", il); + + attn_3d = ggml_mul(ctx0, attn_3d, gate_3d); + cb(attn_3d, "attn_gated_3d", il); + + attn_out = ggml_reshape_2d(ctx0, attn_3d, n_embd_head_v * n_head_l, n_tokens); + cb(attn_out, "attn_gated", il); + } + + // output projection + cur = build_lora_mm(model.layers[il].wo, attn_out); + cb(cur, "attn_proj", il); + } + + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il); + cb(cur, "ffn_norm", il); + + // feed-forward + if (model.layers[il].ffn_gate_inp == nullptr) { + // dense MLP + cur = build_ffn(cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, nullptr, + model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, nullptr, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, nullptr, + nullptr, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + } else { + // MoE routed experts + const bool norm_w = hparams.expert_weights_norm; + const float w_scale = hparams.expert_weights_scale; + const bool scale_w = w_scale != 0.0f; + ggml_tensor * moe_out = build_moe_ffn(cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + model.layers[il].ffn_exp_probs_b, + n_expert, n_expert_used, + LLM_FFN_SILU, + norm_w, scale_w, w_scale, + (llama_expert_gating_func_type) hparams.expert_gating_func, + il); + cb(moe_out, "ffn_moe_out", il); + + // shared expert MLP (always added on MoE layers in Step35) + ggml_tensor * sh_out = build_ffn(cur, + model.layers[il].ffn_up_shexp, nullptr, nullptr, + model.layers[il].ffn_gate_shexp, nullptr, nullptr, + model.layers[il].ffn_down_shexp, nullptr, nullptr, + nullptr, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(sh_out, "ffn_shared_out", il); + + cur = ggml_add(ctx0, moe_out, sh_out); + cb(cur, "ffn_out", il); + } + cur = ggml_add(ctx0, cur, ffn_inp); + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + inpL = cur; + } + + cur = inpL; + + cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1); + cb(cur, "result_norm", -1); + res->t_embd = cur; + + cur = build_lora_mm(model.output, cur); + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); +}