diff --git a/src/llama.cpp b/src/llama.cpp index 98fb770844..0162ae8d58 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -359,6 +359,11 @@ static void llama_params_fit_impl( // for the first partial layer varying parts can overflow, all further layers use LAYER_FRACTION_MOE: layer_fraction_t overflow_type = LAYER_FRACTION_MOE; + + uint32_t n_full() const { + assert(n_layer >= n_part); + return n_layer - n_part; + } }; const size_t ntbo = llama_max_tensor_buft_overrides(); @@ -382,7 +387,7 @@ static void llama_params_fit_impl( size_t itbo = 0; for (size_t id = 0; id < nd; id++) { - il0 += ngl_per_device[id].n_layer - ngl_per_device[id].n_part; + il0 += ngl_per_device[id].n_full(); for (uint32_t il = il0; il < il0 + ngl_per_device[id].n_part; il++) { if (itbo + 1 >= ntbo) { tensor_buft_overrides[itbo].pattern = nullptr; @@ -393,7 +398,7 @@ static void llama_params_fit_impl( + std::to_string(ntbo) + " is insufficient for model"); } tensor_buft_overrides[itbo].pattern = get_overflow_pattern(il, il == il0 ? ngl_per_device[id].overflow_type : LAYER_FRACTION_MOE); - tensor_buft_overrides[itbo].buft = overflow_bufts[id]; + tensor_buft_overrides[itbo].buft = il == il0 ? overflow_bufts[id] : ggml_backend_cpu_buffer_type(); itbo++; } il0 += ngl_per_device[id].n_part; @@ -468,20 +473,14 @@ static void llama_params_fit_impl( LLAMA_LOG_DEBUG("%s: id=%zu, target=%" PRId64 " MiB\n", __func__, id, targets[id]/MiB); } - std::vector overflow_bufts; // which bufts the partial layers of a device overflow to: + std::vector overflow_bufts; // which bufts the first partial layer of a device overflows to: overflow_bufts.reserve(nd); - for (size_t id = 0; id < nd - 1; ++id) { - overflow_bufts.push_back(ggml_backend_dev_buffer_type(devs[id + 1])); + for (size_t id = 0; id < nd; id++) { + overflow_bufts.push_back(ggml_backend_cpu_buffer_type()); } - overflow_bufts.push_back(ggml_backend_cpu_buffer_type()); std::vector ngl_per_device(nd); std::vector mem = get_memory_for_layers(__func__, ngl_per_device, overflow_bufts); - if (hp_nex > 0) { - for (size_t id = 0; id < nd; id++) { - ngl_per_device[id].overflow_type = LAYER_FRACTION_MOE; - } - } // optimize the number of layers per device using the method of false position: // - ngl_per_device has 0 layers for each device, lower bound @@ -512,9 +511,6 @@ static void llama_params_fit_impl( if (mem_high[id] > targets[id]) { assert(ngl_per_device_high[id].n_layer > ngl_per_device[id].n_layer); uint32_t delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer; - if (hp_nex > 0 && size_t(id) == nd - 1) { - delta--; - } LLAMA_LOG_DEBUG("%s: start filling device %" PRIu32 ", delta=%" PRIu32 "\n", __func__, id, delta); while (delta > 1) { uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]); @@ -524,7 +520,8 @@ static void llama_params_fit_impl( std::vector ngl_per_device_test = ngl_per_device; ngl_per_device_test[id].n_layer += step_size; if (hp_nex) { - ngl_per_device_test[id].n_part += step_size; + ngl_per_device_test[id].n_part += size_t(id) == nd - 1 && ngl_per_device_test[id].n_part == 0 ? + step_size - 1 : step_size; // the first layer is the output layer which must always be full } const std::vector mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); @@ -573,7 +570,7 @@ static void llama_params_fit_impl( assert(id_dense_start < nd); LLAMA_LOG_INFO("%s: converting dense-only layers to full layers and filling them front-to-back with overflow to next device/system memory:\n", __func__); - for (size_t id = 0; id <= id_dense_start; id++) { + for (size_t id = 0; id <= id_dense_start && id_dense_start < nd; id++) { std::vector ngl_per_device_high = ngl_per_device; for (size_t jd = id_dense_start; jd < nd; jd++) { const uint32_t n_layer_move = jd < nd - 1 ? ngl_per_device_high[jd].n_layer : ngl_per_device_high[jd].n_layer - 1; @@ -585,12 +582,8 @@ static void llama_params_fit_impl( std::vector mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts); if (mem_high[id] > targets[id]) { - assert(ngl_per_device_high[id].n_layer >= ngl_per_device_high[id].n_part); - assert(ngl_per_device[id].n_layer >= ngl_per_device[id].n_part); - assert((ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part) - >= ngl_per_device[id].n_layer - ngl_per_device[id].n_part); - uint32_t delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part) - - (ngl_per_device[id].n_layer - ngl_per_device[id].n_part); + assert(ngl_per_device_high[id].n_full() >= ngl_per_device[id].n_full()); + uint32_t delta = ngl_per_device_high[id].n_full() - ngl_per_device[id].n_full(); while (delta > 1) { uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]); step_size = std::max(step_size, uint32_t(1)); @@ -606,7 +599,7 @@ static void llama_params_fit_impl( ngl_per_device_test[id].n_layer += n_convert_jd; n_converted_test += n_convert_jd; - if (ngl_per_device_test[id_dense_start_test].n_layer > 0) { + if (ngl_per_device_test[id_dense_start_test].n_part > 0) { break; } } @@ -625,8 +618,8 @@ static void llama_params_fit_impl( LLAMA_LOG_DEBUG("%s: set ngl_per_device_high[%zu].(n_layer, n_part)=(%" PRIu32 ", %" PRIu32 "), id_dense_start_high=%zu\n", __func__, id, ngl_per_device_high[id].n_layer, ngl_per_device_high[id].n_part, id_dense_start_high); } - delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part) - - (ngl_per_device[id].n_layer - ngl_per_device[id].n_part); + assert(ngl_per_device_high[id].n_full() >= ngl_per_device[id].n_full()); + delta = ngl_per_device_high[id].n_full() - ngl_per_device[id].n_full(); } } else { ngl_per_device = ngl_per_device_high; @@ -644,14 +637,19 @@ static void llama_params_fit_impl( ngl_per_device_test[id_dense_start_test].n_part--; ngl_per_device_test[id].n_layer++; ngl_per_device_test[id].n_part++; - if (ngl_per_device_test[id_dense_start_test].n_layer == 0) { + if (ngl_per_device_test[id_dense_start_test].n_part == 0) { id_dense_start_test++; } ngl_per_device_test[id].overflow_type = LAYER_FRACTION_UP; + std::vector overflow_bufts_test = overflow_bufts; + if (id < nd - 1) { + overflow_bufts_test[id] = ggml_backend_dev_buffer_type(devs[id + 1]); + } LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_UP\n", __func__); - std::vector mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); + std::vector mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test); if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) { ngl_per_device = ngl_per_device_test; + overflow_bufts = overflow_bufts_test; mem = mem_test; id_dense_start = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", UP), id_dense_start=%zu\n", @@ -659,9 +657,10 @@ static void llama_params_fit_impl( ngl_per_device_test[id].overflow_type = LAYER_FRACTION_GATE; LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_GATE\n", __func__); - mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); + mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test); if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) { ngl_per_device = ngl_per_device_test; + overflow_bufts = overflow_bufts_test; mem = mem_test; id_dense_start = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", GATE), id_dense_start=%zu\n", @@ -670,9 +669,10 @@ static void llama_params_fit_impl( } else { ngl_per_device_test[id].overflow_type = LAYER_FRACTION_ATTN; LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_ATTN\n", __func__); - mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); + mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test); if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) { ngl_per_device = ngl_per_device_test; + overflow_bufts = overflow_bufts_test; mem = mem_test; id_dense_start = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", ATTN), id_dense_start=%zu\n", @@ -687,6 +687,14 @@ static void llama_params_fit_impl( __func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB); } + // print info for devices that were not changed during the conversion from dense only to full layers: + for (size_t id = id_dense_start + 1; id < nd; id++) { + const int64_t projected_margin = dmds_full[id].free - mem[id]; + LLAMA_LOG_INFO( + "%s: - %s: %2" PRIu32 " layers (%2" PRIu32 " overflowing), %6" PRId64 " MiB used, %6" PRId64 " MiB free\n", + __func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB); + } + set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams); }