introduce legacy-torch flag for backward compatibility on older Intel Macs not receiving torch updates

This commit is contained in:
Csaba Kecskemeti 2026-01-17 18:38:03 -08:00
parent 10c98cbdf6
commit 68a7c144a3
1 changed files with 79 additions and 34 deletions

View File

@ -22,6 +22,9 @@ import math
import numpy as np
import torch
# Check for legacy torch compatibility flag (needed for older PyTorch versions, e.g., 2.2.2 on Intel Mac)
_LEGACY_TORCH = "--legacy-torch" in sys.argv
if TYPE_CHECKING:
from torch import Tensor
@ -11086,44 +11089,82 @@ class LazyTorchTensor(gguf.LazyBase):
}
# only used when byteswapping data. Only correct size is needed
_dtype_byteswap_map: dict[torch.dtype, type] = {
torch.float64: np.float64,
torch.float32: np.float32,
torch.bfloat16: np.float16,
torch.float16: np.float16,
torch.int64: np.int64,
torch.uint64: np.uint64,
torch.int32: np.int32,
torch.uint32: np.uint32,
torch.int16: np.int16,
torch.uint16: np.uint16,
torch.int8: np.int8,
torch.uint8: np.uint8,
torch.bool: np.uint8,
torch.float8_e4m3fn: np.uint8,
torch.float8_e5m2: np.uint8,
}
if _LEGACY_TORCH:
# Compatible with older PyTorch versions (e.g., 2.2.2 on Intel Mac)
# Missing in PyTorch < 2.3: uint64, uint32, uint16
_dtype_byteswap_map: dict[torch.dtype, type] = {
torch.float64: np.float64,
torch.float32: np.float32,
torch.bfloat16: np.float16,
torch.float16: np.float16,
torch.int64: np.int64,
torch.int32: np.int32,
torch.int16: np.int16,
torch.int8: np.int8,
torch.uint8: np.uint8,
torch.bool: np.uint8,
torch.float8_e4m3fn: np.uint8,
torch.float8_e5m2: np.uint8,
}
else:
_dtype_byteswap_map: dict[torch.dtype, type] = {
torch.float64: np.float64,
torch.float32: np.float32,
torch.bfloat16: np.float16,
torch.float16: np.float16,
torch.int64: np.int64,
torch.uint64: np.uint64,
torch.int32: np.int32,
torch.uint32: np.uint32,
torch.int16: np.int16,
torch.uint16: np.uint16,
torch.int8: np.int8,
torch.uint8: np.uint8,
torch.bool: np.uint8,
torch.float8_e4m3fn: np.uint8,
torch.float8_e5m2: np.uint8,
}
# used for safetensors slices
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
_dtype_str_map: dict[str, torch.dtype] = {
"F64": torch.float64,
"F32": torch.float32,
"BF16": torch.bfloat16,
"F16": torch.float16,
# "U64": torch.uint64,
"I64": torch.int64,
# "U32": torch.uint32,
"I32": torch.int32,
# "U16": torch.uint16,
"I16": torch.int16,
"U8": torch.uint8,
"I8": torch.int8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
if _LEGACY_TORCH:
# Compatible with older PyTorch versions (e.g., 2.2.2 on Intel Mac)
_dtype_str_map: dict[str, torch.dtype] = {
"F64": torch.float64,
"F32": torch.float32,
"BF16": torch.bfloat16,
"F16": torch.float16,
# "U64": torch.uint64,
"I64": torch.int64,
# "U32": torch.uint32,
"I32": torch.int32,
# "U16": torch.uint16,
"I16": torch.int16,
"U8": torch.uint8,
"I8": torch.int8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
else:
_dtype_str_map: dict[str, torch.dtype] = {
"F64": torch.float64,
"F32": torch.float32,
"BF16": torch.bfloat16,
"F16": torch.float16,
# "U64": torch.uint64,
"I64": torch.int64,
# "U32": torch.uint32,
"I32": torch.int32,
# "U16": torch.uint16,
"I16": torch.int16,
"U8": torch.uint8,
"I8": torch.int8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
@ -11277,6 +11318,10 @@ def parse_args() -> argparse.Namespace:
"It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
"Default these modules are not included.")
)
parser.add_argument(
"--legacy-torch", action="store_true",
help="Use legacy PyTorch dtype mappings for compatibility with older PyTorch versions (e.g., 2.2.2 on Intel Mac)."
)
args = parser.parse_args()
if not args.print_supported_models and args.model is None: