This commit is contained in:
Jan Boon 2026-02-08 21:20:52 +08:00 committed by GitHub
commit 68505e0686
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 279 additions and 22 deletions

View File

@ -1577,6 +1577,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.sampling.ignore_eos = true;
}
).set_sparam());
add_opt(common_arg(
{"--blue-noise"},
"use blue noise RNG for sampling instead of white noise",
[](common_params & params) {
params.sampling.blue_noise = true;
}
).set_sparam());
add_opt(common_arg(
{"--temp"}, "N",
string_format("temperature (default: %.2f)", (double)params.sampling.temp),

View File

@ -209,6 +209,7 @@ struct common_params_sampling {
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
bool blue_noise = false; // use blue noise RNG instead of white noise for dist sampler
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers

View File

@ -313,7 +313,11 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, st
samplers.push_back(llama_sampler_init_adaptive_p(params.adaptive_target, params.adaptive_decay, params.seed));
} else {
// default: sample from distribution
samplers.push_back(llama_sampler_init_dist(params.seed));
if (params.blue_noise) {
samplers.push_back(llama_sampler_init_dist_blue_noise(params.seed));
} else {
samplers.push_back(llama_sampler_init_dist(params.seed));
}
}
} else if (params.mirostat == 1) {
samplers.push_back(llama_sampler_init_temp(params.temp));

View File

@ -1295,7 +1295,8 @@ extern "C" {
LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
/// seed == LLAMA_DEFAULT_SEED to use a random seed.
LLAMA_API struct llama_sampler * llama_sampler_init_dist(uint32_t seed);
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
LLAMA_API struct llama_sampler * llama_sampler_init_dist_blue_noise(uint32_t seed);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
/// Setting k <= 0 makes this a noop

View File

@ -214,7 +214,8 @@ static void llama_token_data_array_partial_sort_inplace(llama_token_data_array *
cur_p->sorted = true;
}
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
template<typename RNG>
static int llama_sample_dist(llama_token_data_array * cur_p, RNG & rng) {
// iterator for the probabilities
#ifdef __GNUC__
#pragma GCC diagnostic push
@ -333,6 +334,201 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
cur_p->size = k;
}
// generative error diffusion for sequential blue noise
// pseudo-random number generator with ~6db/octave blue noise
// this generator produces a uniform distribution
// important: blue noise properties cannot be preserved when
// the generator is used for multiple purposes simultaneously
// nor when multiple next calls are used to construct a larger value
// nor when integer outputs are used with the modulo operator
struct blue_noise_rng {
uint8_t bit_depth = 0;
uint32_t seed = 0;
uint32_t position = 0;
// binary tree of 1-bit 50% duty cycle error diffusion dithering blue noise generators
std::vector<std::array<int8_t, 2>> states; // {err0, err1} per tree node
blue_noise_rng() = default;
blue_noise_rng(uint8_t bit_depth, uint32_t seed) {
init(bit_depth, seed);
}
// currently this uses lowbias32 as the white noise RNG source
// in practice, any white noise RNG source works
// this random noise is used to perturb the error diffusion weights (binary decision)
// as well as to fill in the low bits of the double precision output to eliminate aliasing
static uint32_t hash(uint32_t x) { // lowbias32
x ^= x >> 16; x *= 0x21f0aaad;
x ^= x >> 15; x *= 0x735a2d97;
x ^= x >> 15;
return x;
}
void init(uint8_t depth, uint32_t s) {
bit_depth = std::clamp<uint8_t>(depth, 1, 16);
seed = hash(s);
const int n = (1 << bit_depth) - 1;
states.resize(n); // at 16-bit depth, this uses 128KB of state
reset();
}
void reset() {
const int n = (int)states.size();
position = 0;
// 5 reachable states with distribution 3:3:2:1:1
// established based on empirical testing
static const int8_t tbl[10][2] = {
{ 0, 0}, { 0, 0}, { 0, 0},
{-1, 0}, {-1, 0}, {-1, 0},
{ 0, -1}, { 0, -1},
{-2, 0},
{-1, -1},
};
for (int i = 0; i < n; i++) {
uint32_t h = hash((uint32_t)i ^ seed) % 10;
states[i] = {tbl[h][0], tbl[h][1]}; // random initial state
}
}
uint16_t next(uint32_t * hash_remainder = nullptr) {
uint32_t h = hash(position ^ seed);
position++;
// traverse binary tree, one error diffusion ditherer per population split
// thresholding output at any value still produces blue noise
uint32_t acc = 0;
for (int level = 0; level < bit_depth; level++) {
auto & s = states[(1 << level) - 1 + acc]; // heap-style index
int out = (s[0] >= 0) ? 1 : 0;
int8_t qe = s[0] + (int8_t)(out ? -1 : 1); // inverse autocorrelation
s[0] = s[1]; // step forward
s[1] = 0;
// error diffusion dithering using binary weight perturbation
s[(h >> level) & 1 ? 0 : 1] += qe; // forward to t+1 or defer to t+2
acc = acc * 2 + out;
}
if (hash_remainder) {
*hash_remainder = h >> bit_depth; // unused bits from random hash
}
return (uint16_t)acc;
}
// blue noise in the upper bit_depth bits, white noise hash remainder in the lower bits
// do not use with modulo operator, as it would just produce white noise
uint32_t next32() {
uint32_t rem;
uint32_t val = next(&rem);
return (val << (32 - bit_depth)) | rem;
}
// uniform double in [0, 1) with blue noise temporal autocorrelation
double nextf() {
double res = 0.0;
res += hash(position ^ ~seed); // fill low bits with white noise
res *= 1.0 / 4294967296.0;
res += next32();
res *= 1.0 / 4294967296.0;
if (res >= 1.0) res = std::nextafter(1.0, 0.0);
return res;
}
};
// abstract RNG interface for the dist sampler
struct llama_dist_rng {
virtual ~llama_dist_rng() = default;
virtual bool requires_sorted() = 0; // whether the RNG requires sorted input for proper properties
// for compatilibility with std::discrete_distribution
// nly used in a disabled branch of llama_sampler_dist_apply
virtual uint32_t rng_min() = 0;
virtual uint32_t rng_max() = 0;
virtual uint32_t next() = 0; // uniform bits in [rng_min(), rng_max()]
virtual double nextf() = 0; // uniform double in [0, 1)
virtual void reseed(uint32_t s) = 0;
virtual std::unique_ptr<llama_dist_rng> clone() const = 0;
};
// adapter to satisfy UniformRandomBitGenerator for std::discrete_distribution
// note: not guaranteed to preserve blue noise properties
// this is only used in a disabled branch of llama_sampler_dist_apply, added for compatibility
struct llama_dist_urbg {
using result_type = uint32_t;
llama_dist_rng & rng;
result_type min() { return rng.rng_min(); }
result_type max() { return rng.rng_max(); }
result_type operator()() { return rng.next(); }
};
struct llama_dist_rng_mt19937 : llama_dist_rng {
std::mt19937 rng;
llama_dist_rng_mt19937(uint32_t seed) : rng(seed) {}
bool requires_sorted() override { return false; }
uint32_t rng_min() override { return std::mt19937::min(); }
uint32_t rng_max() override { return std::mt19937::max(); }
uint32_t next() override {
return rng();
}
double nextf() override {
std::uniform_real_distribution<double> dist(0.0, 1.0);
return dist(rng);
}
void reseed(uint32_t s) override {
rng.seed(s);
}
std::unique_ptr<llama_dist_rng> clone() const override {
return std::make_unique<llama_dist_rng_mt19937>(*this);
}
};
struct llama_dist_rng_blue : llama_dist_rng {
blue_noise_rng bn_rng;
llama_dist_rng_blue(uint32_t seed) : bn_rng(16, seed) {}
bool requires_sorted() override { return true; }
uint32_t rng_min() override { return 0; }
uint32_t rng_max() override { return (1u << bn_rng.bit_depth) - 1; }
uint32_t next() override {
return bn_rng.next();
}
double nextf() override {
return bn_rng.nextf();
}
void reseed(uint32_t s) override {
bn_rng.init(16, s);
}
std::unique_ptr<llama_dist_rng> clone() const override {
return std::make_unique<llama_dist_rng_blue>(*this);
}
};
static uint32_t get_rng_seed(uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
// use system clock if std::random_device is not a true RNG
@ -1023,7 +1219,7 @@ struct llama_sampler_dist : public llama_sampler_backend {
const uint32_t seed;
uint32_t seed_cur;
std::mt19937 rng;
std::unique_ptr<llama_dist_rng> rng;
ggml_tensor * inp_uniform;
};
@ -1049,6 +1245,11 @@ static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_da
return;
}
// sort if required by the RNG (e.g., blue noise needs sorted input for proper temporal properties)
if (ctx->rng->requires_sorted() && !cur_p->sorted) {
llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size);
}
// max logit for numerical stability
float max_l = cur_p->data[0].logit;
if (!cur_p->sorted) {
@ -1069,8 +1270,7 @@ static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_da
// sample from the obtained probabilities and normalize the probs in a single pass
// this is ~3x faster on Mac with full gpt-oss vocab than the version below
//
std::uniform_real_distribution<double> dist(0.0f, 1.0f);
const double rnd = dist(ctx->rng);
const double rnd = ctx->rng->nextf();
double sum_run = 0.0f;
const double sum_tgt = sum_cum*rnd;
@ -1101,28 +1301,31 @@ static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_da
cur_p->data[i].p /= sum_cum;
}
cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
// this implementation is not guaranteed to preserve blue noise properties
llama_dist_urbg urbg{*ctx->rng};
cur_p->selected = llama_sample_dist(cur_p, urbg);
#endif
}
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_dist *) smpl->ctx;
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
ctx->rng->reseed(ctx->seed_cur);
}
static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
auto * result = llama_sampler_init_dist(ctx->seed);
auto * ctx = (llama_sampler_dist *) smpl->ctx;
// copy the state
{
auto * result_ctx = (llama_sampler_dist *) result->ctx;
result_ctx->rng = ctx->rng;
}
return result;
return llama_sampler_init(
/* .iface = */ smpl->iface,
/* .ctx = */ new llama_sampler_dist {
{ctx->get_name()},
/* .seed = */ ctx->seed,
/* .seed_cur = */ ctx->seed_cur,
/* .rng = */ ctx->rng->clone(),
/* .inp_uniform = */ nullptr,
}
);
}
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
@ -1154,6 +1357,30 @@ static void llama_sampler_dist_backend_apply(
ggml_set_name (sctx->inp_uniform, "uniform");
ggml_set_input(sctx->inp_uniform);
// If the RNG requires sorted input (e.g., blue noise), sort logits first
// so the CDF walk operates in probability-rank space, not arbitrary vocab order.
if (sctx->rng->requires_sorted()) {
auto ggml_sort = [ctx](struct ggml_tensor * a, struct ggml_tensor * b) {
GGML_ASSERT(ggml_nrows(a) == 1);
struct ggml_tensor * a_reshaped = ggml_reshape_2d(ctx, a, 1, a->ne[0]);
struct ggml_tensor * a_sorted = ggml_get_rows(ctx, a_reshaped, b);
return ggml_reshape_1d(ctx, a_sorted, a->ne[0]);
};
struct ggml_tensor * sorted_idx = ggml_argsort(ctx, data->logits, GGML_SORT_ORDER_DESC);
ggml_set_name(sorted_idx, "dist_sorted_idx");
data->logits = ggml_sort(data->logits, sorted_idx);
ggml_set_name(data->logits, "dist_sorted_logits");
if (data->candidates) {
data->candidates = ggml_sort(data->candidates, sorted_idx);
} else {
data->candidates = sorted_idx;
}
ggml_set_name(data->candidates, "dist_sorted_candidates");
}
struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits);
ggml_set_name(probs, "dist_probs");
@ -1208,8 +1435,8 @@ static void llama_sampler_dist_backend_set_input(struct llama_sampler * smpl) {
// std::uniform_real_distribution<double> and
// std::uniform_real_distribution<float> with same rng will produce
// different sequences).
std::uniform_real_distribution<double> dist(0.0f, 1.0f);
const float rnd = dist(sctx->rng);
// nextf returns double, equivalent to std::uniform_real_distribution<double>
const float rnd = (float)sctx->rng->nextf();
ggml_backend_tensor_set(sctx->inp_uniform, &rnd, 0, sizeof(float));
}
@ -1232,10 +1459,24 @@ struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
return llama_sampler_init(
/* .iface = */ &llama_sampler_dist_i,
/* .ctx = */ new llama_sampler_dist {
("dist"),
{"dist"},
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .rng = */ std::mt19937(seed_cur),
/* .rng = */ std::make_unique<llama_dist_rng_mt19937>(seed_cur),
/* .inp_uniform = */ nullptr,
}
);
}
struct llama_sampler * llama_sampler_init_dist_blue_noise(uint32_t seed) {
auto seed_cur = get_rng_seed(seed);
return llama_sampler_init(
/* .iface = */ &llama_sampler_dist_i,
/* .ctx = */ new llama_sampler_dist {
{"dist-blue-noise"},
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .rng = */ std::make_unique<llama_dist_rng_blue>(seed_cur),
/* .inp_uniform = */ nullptr,
}
);

View File

@ -66,6 +66,7 @@ json task_params::to_json(bool only_metrics) const {
{"n_keep", n_keep},
{"n_discard", n_discard},
{"ignore_eos", sampling.ignore_eos},
{"blue_noise", sampling.blue_noise},
{"stream", stream},
{"n_probs", sampling.n_probs},
{"min_keep", sampling.min_keep},
@ -125,6 +126,7 @@ json task_params::to_json(bool only_metrics) const {
{"n_keep", n_keep},
{"n_discard", n_discard},
{"ignore_eos", sampling.ignore_eos},
{"blue_noise", sampling.blue_noise},
{"stream", stream},
{"logit_bias", format_logit_bias(sampling.logit_bias)},
{"n_probs", sampling.n_probs},
@ -467,6 +469,7 @@ task_params server_task::params_from_json_cmpl(
}
}
params.sampling.blue_noise = json_value(data, "blue_noise", params_base.sampling.blue_noise);
params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
if (params.sampling.ignore_eos) {
params.sampling.logit_bias.insert(