Add a workaround for compilation with ROCWMMA_FATTN and gfx9 (#19461)

There is an upstream problem [1] with AMD's LLVM 22 fork and
rocWMMA 2.2.0 causing compilation issues on devices without
native fp16 support (CDNA devices).

The specialized types aren't resolved properly:
```
/opt/rocm/include/rocwmma/internal/mfma_impl.hpp:2549:37: error: ambiguous partial specializations of 'amdgcn_mfma<__half, __half, __half, 16, 16, 16>'
 2549 |             using ARegsT = typename Impl::ARegsT;
```

Add a workaround to explicitly declare the types and cast when
compiling with HIP and ROCWMMA_FATTN [2].  When this is actually
fixed upstream some guards can be used to detect and wrap the
version that has the fix to only apply when necessary.

Link: https://github.com/ROCm/rocm-libraries/issues/4398 [1]
Link: https://github.com/ggml-org/llama.cpp/issues/19269 [2]

Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
This commit is contained in:
Mario Limonciello 2026-02-12 02:38:35 -06:00 committed by GitHub
parent fa16e517a3
commit 6845f7f87f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 26 additions and 5 deletions

View File

@ -63,11 +63,19 @@ static __global__ void flash_attn_ext_f16(
constexpr int frag_m = ncols == 8 ? 32 : 16;
constexpr int frag_n = ncols == 8 ? 8 : 16;
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
#if defined(GGML_USE_HIP)
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, _Float16, wmma::row_major> frag_a_K;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, _Float16, wmma::col_major> frag_a_V;
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, _Float16, wmma::col_major> frag_b;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, _Float16> frag_c_VKQ;
#else
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::row_major> frag_a_K;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::col_major> frag_a_V;
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, half, wmma::col_major> frag_b;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
#endif
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
@ -126,6 +134,19 @@ static __global__ void flash_attn_ext_f16(
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
half2 * VKQ2 = (half2 *) VKQ;
#if defined(GGML_USE_HIP)
const _Float16 * K_h_f16 = reinterpret_cast<const _Float16 *>(K_h);
const _Float16 * V_h_f16 = reinterpret_cast<const _Float16 *>(V_h);
_Float16 * KQ_f16 = reinterpret_cast<_Float16 *>(KQ);
_Float16 * VKQ_f16 = reinterpret_cast<_Float16 *>(VKQ);
#else
const half * K_h_f16 = K_h;
const half * V_h_f16 = V_h;
half * KQ_f16 = KQ;
half * VKQ_f16 = VKQ;
#endif
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
@ -160,7 +181,7 @@ static __global__ void flash_attn_ext_f16(
for (int i0 = 0; i0 < D; i0 += 16) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ_f16 + j0*D_padded + i0, D_padded);
}
}
@ -180,7 +201,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
frag_a_K K_a;
wmma::load_matrix_sync(K_a, K_h + int64_t(k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
wmma::load_matrix_sync(K_a, K_h_f16 + int64_t(k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
@ -310,7 +331,7 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
wmma::load_matrix_sync(
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
KQ + j0*(kqar*kqs_padded) + k,
KQ_f16 + j0*(kqar*kqs_padded) + k,
kqar*kqs_padded);
}
}
@ -328,7 +349,7 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
frag_a_V v_a;
wmma::load_matrix_sync(v_a, V_h + int64_t(k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
wmma::load_matrix_sync(v_a, V_h_f16 + int64_t(k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
@ -344,7 +365,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
wmma::store_matrix_sync(
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
KQ_f16 + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
D_padded, wmma::mem_col_major);
}