Merge branch 'master' into imatrix

This commit is contained in:
Ed Addario 2025-12-06 15:06:15 +01:00
commit 6076bfd02c
No known key found for this signature in database
GPG Key ID: E7875815A3230993
322 changed files with 75016 additions and 18084 deletions

View File

@ -1,120 +0,0 @@
name: Build on RISCV Linux Machine by Cloud-V
on:
pull_request:
workflow_dispatch:
workflow_call:
jobs:
debian-13-riscv64-native: # Bianbu 2.2
runs-on: [self-hosted, RISCV64]
steps:
- name: Install prerequisites
run: |
sudo apt-get update || true
sudo apt-get install -y libatomic1
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo apt-get update || true
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
ccache \
cmake
- name: Setup ccache
run: |
mkdir -p $HOME/.ccache
ccache -M 5G -d $HOME/.ccache
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
echo "$GITHUB_WORKSPACE"
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
- name: Build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

View File

@ -547,6 +547,46 @@ jobs:
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
ubuntu-24-wasm-webgpu:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-wasm-webgpu
evict-old-files: 1d
- name: Install Emscripten
run: |
git clone https://github.com/emscripten-core/emsdk.git
cd emsdk
./emsdk install latest
./emsdk activate latest
- name: Fetch emdawnwebgpu
run: |
DAWN_TAG="v20251027.212519"
EMDAWN_PKG="emdawnwebgpu_pkg-${DAWN_TAG}.zip"
echo "Downloading ${EMDAWN_PKG}"
curl -L -o emdawn.zip \
"https://github.com/google/dawn/releases/download/${DAWN_TAG}/${EMDAWN_PKG}"
unzip emdawn.zip
- name: Build WASM WebGPU
run: |
source emsdk/emsdk_env.sh
emcmake cmake -B build-wasm \
-DGGML_WEBGPU=ON \
-DLLAMA_CURL=OFF \
-DEMDAWNWEBGPU_DIR=emdawnwebgpu_pkg
cmake --build build-wasm --target test-backend-ops -j $(nproc)
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.1.2
@ -1562,33 +1602,33 @@ jobs:
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
# ggml-ci-x64-amd-vulkan:
# runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# - name: Test
# id: ggml-ci
# run: |
# vulkaninfo --summary
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
# ggml-ci-x64-amd-rocm:
# runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# - name: Test
# id: ggml-ci
# run: |
# amd-smi static
# GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-mac-metal:
runs-on: [self-hosted, macOS, ARM64]
@ -1642,6 +1682,337 @@ jobs:
run: |
GG_BUILD_KLEIDIAI=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ubuntu-cpu-cmake-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Check environment
run: |
uname -a
gcc --version
g++ --version
ldd --version
cmake --version
rustc --version
- name: Setup ccache
run: |
# Set unique cache directory for this job
export CCACHE_DIR="$HOME/.ccache/cpu-cmake-rv64-native"
mkdir -p "$CCACHE_DIR"
# Configure ccache for optimal performance
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
# Enable more aggressive caching
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DGGML_RPC=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L 'main|curl' --verbose --timeout 900
- name: Test llama2c conversion
id: llama2c_test
run: |
cd build
echo "Fetch tokenizer"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
ubuntu-cmake-sanitizer-riscv64-native:
runs-on: RISCV64
continue-on-error: true
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug]
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
# Unique cache directory per matrix combination
export CCACHE_DIR="$HOME/.ccache/sanitizer-${{ matrix.sanitizer }}-${{ matrix.build_type }}"
mkdir -p "$CCACHE_DIR"
# Configure ccache
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=ON \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-llguidance-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/llguidance-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_LLGUIDANCE=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-cmake-rpc-riscv64-native:
runs-on: RISCV64
continue-on-error: true
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/rpc-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose
ggml-ci-arm64-graviton4-kleidiai:
runs-on: ah-ubuntu_22_04-c8g_8x

View File

@ -66,14 +66,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
name: llama-bin-macos-arm64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz
name: llama-bin-macos-arm64.tar.gz
macOS-x64:
runs-on: macos-15-intel
@ -120,14 +127,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz
name: llama-bin-macos-x64.tar.gz
ubuntu-22-cpu:
strategy:
matrix:
@ -182,14 +196,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
name: llama-bin-ubuntu-${{ matrix.build }}.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz
name: llama-bin-ubuntu-${{ matrix.build }}.tar.gz
ubuntu-22-vulkan:
runs-on: ubuntu-22.04
@ -235,14 +256,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
name: llama-bin-ubuntu-vulkan-x64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz
name: llama-bin-ubuntu-vulkan-x64.tar.gz
windows-cpu:
runs-on: windows-2025
@ -298,7 +326,7 @@ jobs:
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
7z a -snl llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@ -380,7 +408,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
7z a -snl llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@ -434,7 +462,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
7z a -snl llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@ -526,7 +554,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
7z a -snl llama-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload the release package
uses: actions/upload-artifact@v4
@ -632,7 +660,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
7z a -snl llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@ -685,58 +713,20 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
zip -y -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
tar -czvf llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz -C build-apple llama.xcframework
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
name: llama-${{ steps.tag.outputs.name }}-xcframework
name: llama-${{ steps.tag.outputs.name }}-xcframework.zip
openEuler-cann:
strategy:
matrix:
arch: [x86, aarch64]
chip_type: ['910b', '310p']
build: ['Release']
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
container: ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc1.alpha001-910b-openeuler22.03-py3.11' || '8.2.rc1-310p-openeuler22.03-py3.11' }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake libcurl-devel
git config --global --add safe.directory "$GITHUB_WORKSPACE"
- name: Build
run: |
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
-DGGML_CANN=on \
-DSOC_TYPE=ascend${{ matrix.chip_type }}
cmake --build build -j $(nproc)
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip ./build/bin/*
- name: Upload artifacts
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
name: llama-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
path: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
name: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@ -759,7 +749,6 @@ jobs:
- macOS-arm64
- macOS-x64
- ios-xcode-build
- openEuler-cann
steps:
- name: Clone
@ -814,6 +803,7 @@ jobs:
echo "Moving other artifacts..."
mv -v artifact/*.zip release
mv -v artifact/*.tar.gz release
- name: Create release
id: create_release
@ -822,6 +812,33 @@ jobs:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ steps.tag.outputs.name }}
body: |
> [!WARNING]
> **Release Format Update**: Linux releases will soon use .tar.gz archives instead of .zip. Please make the necessary changes to your deployment scripts.
<details open>
${{ github.event.head_commit.message }}
</details>
**macOS/iOS:**
- [macOS Apple Silicon (arm64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz)
- [macOS Intel (x64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz)
- [iOS XCFramework](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz)
**Linux:**
- [Ubuntu x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.tar.gz)
- [Ubuntu x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz)
- [Ubuntu s390x (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-s390x.tar.gz)
**Windows:**
- [Windows x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-x64.zip)
- [Windows arm64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-arm64.zip)
- [Windows x64 (CUDA)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-12.4-x64.zip)
- [Windows x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-vulkan-x64.zip)
- [Windows x64 (SYCL)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip)
- [Windows x64 (HIP)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-hip-radeon-x64.zip)
- name: Upload release
id: upload_release
@ -833,7 +850,7 @@ jobs:
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./release')) {
if (path.extname(file) === '.zip') {
if (path.extname(file) === '.zip' || file.endsWith('.tar.gz')) {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
owner: context.repo.owner,

View File

@ -9,6 +9,7 @@ jobs:
update:
name: Update Winget Package
runs-on: ubuntu-latest
if: github.repository_owner == 'ggml-org'
steps:
- name: Install cargo binstall

2
.gitignore vendored
View File

@ -134,3 +134,5 @@ poetry.toml
# IDE
/*.code-workspace
/.windsurf/
# emscripten
a.out.*

View File

@ -33,10 +33,24 @@ endif()
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
option(LLAMA_WASM_MEM64 "llama: use 64-bit memory in WASM builds" ON)
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" ON)
# Use 64-bit memory to support backend_get_memory queries
# TODO: analyze performance impact, see https://spidermonkey.dev/blog/2025/01/15/is-memory64-actually-worth-using
if (LLAMA_WASM_MEM64)
add_compile_options("-sMEMORY64=1")
add_link_options("-sMEMORY64=1")
endif()
add_link_options("-sALLOW_MEMORY_GROWTH=1")
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" OFF)
option(LLAMA_BUILD_HTML "llama: build HTML file" ON)
if (LLAMA_BUILD_HTML)
set(CMAKE_EXECUTABLE_SUFFIX ".html")
endif()
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@ -58,6 +72,12 @@ if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
if (LLAMA_STANDALONE)
# enable parallel builds for msbuild
list(APPEND CMAKE_VS_GLOBALS UseMultiToolTask=true)
list(APPEND CMAKE_VS_GLOBALS EnforceProcessCountAcrossBuilds=true)
endif()
if (CMAKE_SYSTEM_NAME STREQUAL "iOS")
set(LLAMA_TOOLS_INSTALL_DEFAULT OFF)
else()
@ -179,11 +199,6 @@ if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# build the library
#

View File

@ -7,16 +7,20 @@
/ci/ @ggerganov
/cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov
/common/arg.* @ggerganov @ericcurtin
/common/arg.* @ggerganov
/common/base64.hpp.* @ggerganov
/common/build-info.* @ggerganov
/common/chat.* @pwilkin
/common/chat-peg-parser.* @aldehir
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/peg-parser.* @aldehir
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov
/common/unicode.* @aldehir
/convert_*.py @CISC
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
@ -81,14 +85,14 @@
/src/llama-vocab.* @CISC
/src/models/ @CISC
/tests/ @ggerganov
/tests/test-chat-.* @pwilkin
/tools/batched-bench/ @ggerganov
/tools/main/ @ggerganov
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
/tools/quantize/ @ggerganov
/tools/rpc/ @rgerganov
/tools/run/ @ericcurtin
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
/tools/server/* @ngxson @ggerganov # no subdir
/tools/server/webui/ @allozaur
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov

View File

@ -16,9 +16,10 @@ The project differentiates between 3 levels of contributors:
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
- If your PR becomes stale, rebase it on top of latest `master` to get maintainers attention
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
- Using AI to generate PRs is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before publishing the PR. Note that trivial tab autocompletions do not require disclosure.
# Pull requests (for maintainers)

View File

@ -613,3 +613,4 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
- [subprocess.h](https://github.com/sheredom/subprocess.h) - Single-header process launching solution for C and C++ - Public domain

View File

@ -65,4 +65,6 @@ However, If you have discovered a security vulnerability in this project, please
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
Please note that using AI to identify vulnerabilities and generate reports is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before submitting the report.
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.

View File

@ -45,7 +45,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_SCHED_NO_REALLOC=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=${LLAMA_FATAL_WARNINGS:-ON} -DLLAMA_CURL=ON -DGGML_SCHED_NO_REALLOC=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"

View File

@ -39,26 +39,10 @@ if(Git_FOUND)
endif()
endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
if(CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()
else()
execute_process(
COMMAND ${CMAKE_C_COMPILER} --version
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
set(BUILD_COMPILER ${OUT})
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
endif()

View File

@ -52,6 +52,8 @@ add_library(${TARGET} STATIC
chat-parser.h
chat-parser-xml-toolcall.h
chat-parser-xml-toolcall.cpp
chat-peg-parser.cpp
chat-peg-parser.h
chat.cpp
chat.h
common.cpp
@ -69,12 +71,16 @@ add_library(${TARGET} STATIC
log.h
ngram-cache.cpp
ngram-cache.h
peg-parser.cpp
peg-parser.h
regex-partial.cpp
regex-partial.h
sampling.cpp
sampling.h
speculative.cpp
speculative.h
unicode.cpp
unicode.h
)
if (BUILD_SHARED_LIBS)

View File

@ -30,6 +30,7 @@
#include <thread> // for hardware_concurrency
#include <vector>
#ifndef __EMSCRIPTEN__
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
@ -41,6 +42,8 @@
#else
#include <sys/syslimits.h>
#endif
#endif
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
using json = nlohmann::ordered_json;
@ -212,13 +215,13 @@ struct handle_model_result {
static handle_model_result common_params_handle_model(
struct common_params_model & model,
const std::string & bearer_token,
const std::string & model_path_default,
bool offline) {
handle_model_result result;
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
model.path = common_docker_resolve_model(model.docker_repo);
model.name = model.docker_repo; // set name for consistency
} else if (!model.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
@ -227,7 +230,8 @@ static handle_model_result common_params_handle_model(
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
exit(1); // built without CURL, error message already printed
}
model.hf_repo = auto_detected.repo;
model.name = model.hf_repo; // repo name with tag
model.hf_repo = auto_detected.repo; // repo name without tag
model.hf_file = auto_detected.ggufFile;
if (!auto_detected.mmprojFile.empty()) {
result.found_mmproj = true;
@ -257,8 +261,6 @@ static handle_model_result common_params_handle_model(
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.path.empty()) {
model.path = model_path_default;
}
}
@ -405,7 +407,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
// handle model and download
{
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
auto res = common_params_handle_model(params.model, params.hf_token, params.offline);
if (params.no_mmproj) {
params.mmproj = {};
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
@ -415,12 +417,18 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
// only download mmproj if the current example is using it
for (auto & ex : mmproj_examples) {
if (ctx_arg.ex == ex) {
common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
common_params_handle_model(params.mmproj, params.hf_token, params.offline);
break;
}
}
common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
}
// model is required (except for server)
// TODO @ngxson : maybe show a list of available models in CLI in this case
if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage) {
throw std::invalid_argument("error: --model is required\n");
}
if (params.escape) {
@ -1221,7 +1229,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.warmup = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(common_arg(
{"--spm-infill"},
string_format(
@ -2090,11 +2098,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"-m", "--model"}, "FNAME",
ex == LLAMA_EXAMPLE_EXPORT_LORA
? std::string("model path from which to load base model")
: string_format(
"model path (default: `models/$filename` with filename from `--hf-file` "
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
),
? "model path from which to load base model"
: "model path to load",
[](common_params & params, const std::string & value) {
params.model.path = value;
}
@ -2486,12 +2491,50 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"path to save slot kv cache (default: disabled)",
[](common_params & params, const std::string & value) {
params.slot_save_path = value;
if (!fs_is_directory(params.slot_save_path)) {
throw std::invalid_argument("not a directory: " + value);
}
// if doesn't end with DIRECTORY_SEPARATOR, add it
if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
params.slot_save_path += DIRECTORY_SEPARATOR;
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--media-path"}, "PATH",
"directory for loading local media files; files can be accessed via file:// URLs using relative paths (default: disabled)",
[](common_params & params, const std::string & value) {
params.media_path = value;
if (!fs_is_directory(params.media_path)) {
throw std::invalid_argument("not a directory: " + value);
}
// if doesn't end with DIRECTORY_SEPARATOR, add it
if (!params.media_path.empty() && params.media_path[params.media_path.size() - 1] != DIRECTORY_SEPARATOR) {
params.media_path += DIRECTORY_SEPARATOR;
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--models-dir"}, "PATH",
"directory containing models for the router server (default: disabled)",
[](common_params & params, const std::string & value) {
params.models_dir = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_DIR"));
add_opt(common_arg(
{"--models-max"}, "N",
string_format("for router server, maximum number of models to load simultaneously (default: %d, 0 = unlimited)", params.models_max),
[](common_params & params, int value) {
params.models_max = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_MAX"));
add_opt(common_arg(
{"--no-models-autoload"},
"disables automatic loading of models (default: enabled)",
[](common_params & params) {
params.models_autoload = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_MODELS_AUTOLOAD"));
add_opt(common_arg(
{"--jinja"},
string_format("use jinja template for chat (default: %s)\n", params.use_jinja ? "enabled" : "disabled"),
@ -2674,7 +2717,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_OFFLINE"));
add_opt(common_arg(
{"-lv", "--verbosity", "--log-verbosity"}, "N",
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
string_format("Set the verbosity threshold. Messages with a higher verbosity will be ignored. Values:\n"
" - 0: generic output\n"
" - 1: error\n"
" - 2: warning\n"
" - 3: info\n"
" - 4: debug\n"
"(default: %d)\n", params.verbosity),
[](common_params & params, int value) {
params.verbosity = value;
common_log_set_verbosity_thold(value);

View File

@ -1,6 +1,8 @@
#include "chat-parser.h"
#include "chat-peg-parser.h"
#include "common.h"
#include "log.h"
#include "peg-parser.h"
#include "regex-partial.h"
#include <algorithm>
@ -1483,6 +1485,11 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
}
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax) {
if (syntax.format == COMMON_CHAT_FORMAT_PEG_SIMPLE ||
syntax.format == COMMON_CHAT_FORMAT_PEG_NATIVE ||
syntax.format == COMMON_CHAT_FORMAT_PEG_CONSTRUCTED) {
return common_chat_peg_parse(syntax.parser, input, is_partial, syntax);
}
common_chat_msg_parser builder(input, is_partial, syntax);
try {
common_chat_parse(builder);
@ -1500,3 +1507,36 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
}
return msg;
}
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax) {
if (parser.empty()) {
throw std::runtime_error("Failed to parse due to missing parser definition.");
}
LOG_DBG("Parsing input with format %s: %s\n", common_chat_format_name(syntax.format), input.c_str());
common_peg_parse_context ctx(input, is_partial);
auto result = parser.parse(ctx);
if (result.fail()) {
throw std::runtime_error(std::string("Failed to parse input at pos ") + std::to_string(result.end));
}
common_chat_msg msg;
msg.role = "assistant";
if (syntax.format == COMMON_CHAT_FORMAT_PEG_NATIVE) {
auto mapper = common_chat_peg_native_mapper(msg);
mapper.from_ast(ctx.ast, result);
} else if (syntax.format == COMMON_CHAT_FORMAT_PEG_CONSTRUCTED) {
auto mapper = common_chat_peg_constructed_mapper(msg);
mapper.from_ast(ctx.ast, result);
} else {
// Generic mapper
auto mapper = common_chat_peg_mapper(msg);
mapper.from_ast(ctx.ast, result);
}
if (!is_partial) {
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
}
return msg;
}

114
common/chat-peg-parser.cpp Normal file
View File

@ -0,0 +1,114 @@
#include "chat-peg-parser.h"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
static std::string_view trim_trailing_space(std::string_view sv) {
while (!sv.empty() && std::isspace(static_cast<unsigned char>(sv.back()))) {
sv.remove_suffix(1);
}
return sv;
}
void common_chat_peg_mapper::from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result) {
arena.visit(result, [this](const common_peg_ast_node & node) {
map(node);
});
}
void common_chat_peg_mapper::map(const common_peg_ast_node & node) {
bool is_reasoning = node.tag == common_chat_peg_builder::REASONING;
bool is_content = node.tag == common_chat_peg_builder::CONTENT;
if (is_reasoning) {
result.reasoning_content = std::string(trim_trailing_space(node.text));
}
if (is_content) {
result.content = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_native_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_native_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_native_builder::TOOL_NAME;
bool is_tool_id = node.tag == common_chat_peg_native_builder::TOOL_ID;
bool is_tool_args = node.tag == common_chat_peg_native_builder::TOOL_ARGS;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
}
if (is_tool_id && current_tool) {
current_tool->id = std::string(trim_trailing_space(node.text));
}
if (is_tool_name && current_tool) {
current_tool->name = std::string(trim_trailing_space(node.text));
}
if (is_tool_args && current_tool) {
current_tool->arguments = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_constructed_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_constructed_builder::TOOL_NAME;
bool is_tool_close = node.tag == common_chat_peg_constructed_builder::TOOL_CLOSE;
bool is_arg_open = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_OPEN;
bool is_arg_close = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_CLOSE;
bool is_arg_name = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_NAME;
bool is_arg_string = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_STRING_VALUE;
bool is_arg_json = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_JSON_VALUE;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
arg_count = 0;
}
if (is_tool_name) {
current_tool->name = std::string(node.text);
current_tool->arguments = "{";
}
if (is_arg_open) {
needs_closing_quote = false;
}
if (is_arg_name && current_tool) {
if (arg_count > 0) {
current_tool->arguments += ",";
}
current_tool->arguments += json(trim_trailing_space(node.text)).dump() + ":";
++arg_count;
}
if (is_arg_string && current_tool) {
// Serialize to JSON, but exclude the end quote
std::string dumped = json(node.text).dump();
current_tool->arguments += dumped.substr(0, dumped.size() - 1);
needs_closing_quote = true;
}
if (is_arg_close && current_tool) {
if (needs_closing_quote) {
current_tool->arguments += "\"";
}
}
if (is_arg_json && current_tool) {
current_tool->arguments += std::string(trim_trailing_space(node.text));
}
if (is_tool_close && current_tool) {
current_tool->arguments += "}";
}
}

105
common/chat-peg-parser.h Normal file
View File

@ -0,0 +1,105 @@
#pragma once
#include "chat.h"
#include "peg-parser.h"
class common_chat_peg_builder : public common_peg_parser_builder {
public:
static constexpr const char * REASONING_BLOCK = "reasoning-block";
static constexpr const char * REASONING = "reasoning";
static constexpr const char * CONTENT = "content";
common_peg_parser reasoning_block(const common_peg_parser & p) { return tag(REASONING_BLOCK, p); }
common_peg_parser reasoning(const common_peg_parser & p) { return tag(REASONING, p); }
common_peg_parser content(const common_peg_parser & p) { return tag(CONTENT, p); }
};
inline common_peg_arena build_chat_peg_parser(const std::function<common_peg_parser(common_chat_peg_builder & builder)> & fn) {
common_chat_peg_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_mapper {
public:
common_chat_msg & result;
common_chat_peg_mapper(common_chat_msg & msg) : result(msg) {}
virtual void from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result);
virtual void map(const common_peg_ast_node & node);
};
class common_chat_peg_native_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_ID = "tool-id";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARGS = "tool-args";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_id(const common_peg_parser & p) { return atomic(tag(TOOL_ID, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_args(const common_peg_parser & p) { return tag(TOOL_ARGS, p); }
};
class common_chat_peg_native_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
public:
common_chat_peg_native_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_native_parser(const std::function<common_peg_parser(common_chat_peg_native_builder & builder)> & fn) {
common_chat_peg_native_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_constructed_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARG = "tool-arg";
static constexpr const char * TOOL_ARG_OPEN = "tool-arg-open";
static constexpr const char * TOOL_ARG_CLOSE = "tool-arg-close";
static constexpr const char * TOOL_ARG_NAME = "tool-arg-name";
static constexpr const char * TOOL_ARG_STRING_VALUE = "tool-arg-string-value";
static constexpr const char * TOOL_ARG_JSON_VALUE = "tool-arg-json-value";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_arg(const common_peg_parser & p) { return tag(TOOL_ARG, p); }
common_peg_parser tool_arg_open(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_OPEN, p)); }
common_peg_parser tool_arg_close(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_CLOSE, p)); }
common_peg_parser tool_arg_name(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_NAME, p)); }
common_peg_parser tool_arg_string_value(const common_peg_parser & p) { return tag(TOOL_ARG_STRING_VALUE, p); }
common_peg_parser tool_arg_json_value(const common_peg_parser & p) { return tag(TOOL_ARG_JSON_VALUE, p); }
};
class common_chat_peg_constructed_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
int arg_count = 0;
bool needs_closing_quote = false;
public:
common_chat_peg_constructed_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_constructed_parser(const std::function<common_peg_parser(common_chat_peg_constructed_builder & builder)> & fn) {
common_chat_peg_constructed_builder builder;
builder.set_root(fn(builder));
return builder.build();
}

View File

@ -85,29 +85,36 @@ json common_chat_msg::to_json_oaicompat() const
return message;
}
std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg) {
std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new) {
std::vector<common_chat_msg_diff> diffs;
if (previous_msg.reasoning_content != new_msg.reasoning_content) {
auto & diff = diffs.emplace_back();
diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, new_msg.reasoning_content);
}
if (previous_msg.content != new_msg.content) {
auto & diff = diffs.emplace_back();
diff.content_delta = string_diff(previous_msg.content, new_msg.content);
if (msg_new.tool_calls.size() > msg_prv.tool_calls.size()) {
diffs.reserve(msg_new.tool_calls.size() - msg_prv.tool_calls.size() + 3);
} else {
diffs.reserve(3);
}
if (new_msg.tool_calls.size() < previous_msg.tool_calls.size()) {
// TODO: these can become expensive for long messages - how to optimize?
if (msg_prv.reasoning_content != msg_new.reasoning_content) {
auto & diff = diffs.emplace_back();
diff.reasoning_content_delta = string_diff(msg_prv.reasoning_content, msg_new.reasoning_content);
}
if (msg_prv.content != msg_new.content) {
auto & diff = diffs.emplace_back();
diff.content_delta = string_diff(msg_prv.content, msg_new.content);
}
if (msg_new.tool_calls.size() < msg_prv.tool_calls.size()) {
throw std::runtime_error("Invalid diff: now finding less tool calls!");
}
if (!previous_msg.tool_calls.empty()) {
auto idx = previous_msg.tool_calls.size() - 1;
const auto & pref = previous_msg.tool_calls[idx];
const auto & newf = new_msg.tool_calls[idx];
if (!msg_prv.tool_calls.empty()) {
const auto idx = msg_prv.tool_calls.size() - 1;
const auto & pref = msg_prv.tool_calls[idx];
const auto & newf = msg_new.tool_calls[idx];
if (pref.name != newf.name) {
throw std::runtime_error("Invalid diff: tool call mismatch!");
}
auto args_diff = string_diff(pref.arguments, newf.arguments);
const auto args_diff = string_diff(pref.arguments, newf.arguments);
if (!args_diff.empty() || pref.id != newf.id) {
auto & diff = diffs.emplace_back();
diff.tool_call_index = idx;
@ -118,11 +125,12 @@ std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const comm
diff.tool_call_delta.arguments = args_diff;
}
}
for (size_t idx = previous_msg.tool_calls.size(); idx < new_msg.tool_calls.size(); ++idx) {
for (size_t idx = msg_prv.tool_calls.size(); idx < msg_new.tool_calls.size(); ++idx) {
auto & diff = diffs.emplace_back();
diff.tool_call_index = idx;
diff.tool_call_delta = new_msg.tool_calls[idx];
diff.tool_call_delta = msg_new.tool_calls[idx];
}
return diffs;
}
@ -163,7 +171,7 @@ common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::strin
if (tool_choice == "required") {
return COMMON_CHAT_TOOL_CHOICE_REQUIRED;
}
throw std::runtime_error("Invalid tool_choice: " + tool_choice);
throw std::invalid_argument("Invalid tool_choice: " + tool_choice);
}
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates) {
@ -186,17 +194,17 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
try {
if (!messages.is_array()) {
throw std::runtime_error("Expected 'messages' to be an array, got " + messages.dump());
throw std::invalid_argument("Expected 'messages' to be an array, got " + messages.dump());
}
for (const auto & message : messages) {
if (!message.is_object()) {
throw std::runtime_error("Expected 'message' to be an object, got " + message.dump());
throw std::invalid_argument("Expected 'message' to be an object, got " + message.dump());
}
common_chat_msg msg;
if (!message.contains("role")) {
throw std::runtime_error("Missing 'role' in message: " + message.dump());
throw std::invalid_argument("Missing 'role' in message: " + message.dump());
}
msg.role = message.at("role");
@ -209,11 +217,11 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
} else if (content.is_array()) {
for (const auto & part : content) {
if (!part.contains("type")) {
throw std::runtime_error("Missing content part type: " + part.dump());
throw std::invalid_argument("Missing content part type: " + part.dump());
}
const auto & type = part.at("type");
if (type != "text") {
throw std::runtime_error("Unsupported content part type: " + type.dump());
throw std::invalid_argument("Unsupported content part type: " + type.dump());
}
common_chat_msg_content_part msg_part;
msg_part.type = type;
@ -221,25 +229,25 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
msg.content_parts.push_back(msg_part);
}
} else if (!content.is_null()) {
throw std::runtime_error("Invalid 'content' type: expected string or array, got " + content.dump() + " (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
throw std::invalid_argument("Invalid 'content' type: expected string or array, got " + content.dump() + " (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
}
}
if (has_tool_calls) {
for (const auto & tool_call : message.at("tool_calls")) {
common_chat_tool_call tc;
if (!tool_call.contains("type")) {
throw std::runtime_error("Missing tool call type: " + tool_call.dump());
throw std::invalid_argument("Missing tool call type: " + tool_call.dump());
}
const auto & type = tool_call.at("type");
if (type != "function") {
throw std::runtime_error("Unsupported tool call type: " + tool_call.dump());
throw std::invalid_argument("Unsupported tool call type: " + tool_call.dump());
}
if (!tool_call.contains("function")) {
throw std::runtime_error("Missing tool call function: " + tool_call.dump());
throw std::invalid_argument("Missing tool call function: " + tool_call.dump());
}
const auto & fc = tool_call.at("function");
if (!fc.contains("name")) {
throw std::runtime_error("Missing tool call name: " + tool_call.dump());
throw std::invalid_argument("Missing tool call name: " + tool_call.dump());
}
tc.name = fc.at("name");
tc.arguments = fc.at("arguments");
@ -250,7 +258,7 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
}
}
if (!has_content && !has_tool_calls) {
throw std::runtime_error("Expected 'content' or 'tool_calls' (ref: https://github.com/ggml-org/llama.cpp/issues/8367 & https://github.com/ggml-org/llama.cpp/issues/12279)");
throw std::invalid_argument("Expected 'content' or 'tool_calls' (ref: https://github.com/ggml-org/llama.cpp/issues/8367 & https://github.com/ggml-org/llama.cpp/issues/12279)");
}
if (message.contains("reasoning_content")) {
msg.reasoning_content = message.at("reasoning_content");
@ -353,18 +361,18 @@ std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & too
try {
if (!tools.is_null()) {
if (!tools.is_array()) {
throw std::runtime_error("Expected 'tools' to be an array, got " + tools.dump());
throw std::invalid_argument("Expected 'tools' to be an array, got " + tools.dump());
}
for (const auto & tool : tools) {
if (!tool.contains("type")) {
throw std::runtime_error("Missing tool type: " + tool.dump());
throw std::invalid_argument("Missing tool type: " + tool.dump());
}
const auto & type = tool.at("type");
if (!type.is_string() || type != "function") {
throw std::runtime_error("Unsupported tool type: " + tool.dump());
throw std::invalid_argument("Unsupported tool type: " + tool.dump());
}
if (!tool.contains("function")) {
throw std::runtime_error("Missing tool function: " + tool.dump());
throw std::invalid_argument("Missing tool function: " + tool.dump());
}
const auto & function = tool.at("function");
@ -649,6 +657,9 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_QWEN3_CODER_XML: return "Qwen3 Coder";
case COMMON_CHAT_FORMAT_APRIEL_1_5: return "Apriel 1.5";
case COMMON_CHAT_FORMAT_XIAOMI_MIMO: return "Xiaomi MiMo";
case COMMON_CHAT_FORMAT_PEG_SIMPLE: return "peg-simple";
case COMMON_CHAT_FORMAT_PEG_NATIVE: return "peg-native";
case COMMON_CHAT_FORMAT_PEG_CONSTRUCTED: return "peg-constructed";
default:
throw std::runtime_error("Unknown chat format");
}

View File

@ -3,6 +3,7 @@
#pragma once
#include "common.h"
#include "peg-parser.h"
#include <functional>
#include <chrono>
#include <string>
@ -76,7 +77,7 @@ struct common_chat_msg_diff {
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new);
bool operator==(const common_chat_msg_diff & other) const {
return content_delta == other.content_delta
@ -124,6 +125,11 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_APRIEL_1_5,
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
// These are intended to be parsed by the PEG parser
COMMON_CHAT_FORMAT_PEG_SIMPLE,
COMMON_CHAT_FORMAT_PEG_NATIVE,
COMMON_CHAT_FORMAT_PEG_CONSTRUCTED,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@ -154,6 +160,7 @@ struct common_chat_params {
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
std::string parser;
};
struct common_chat_syntax {
@ -163,6 +170,7 @@ struct common_chat_syntax {
bool reasoning_in_content = false;
bool thinking_forced_open = false;
bool parse_tool_calls = true;
common_peg_arena parser = {};
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
@ -206,6 +214,7 @@ const char* common_chat_format_name(common_chat_format format);
const char* common_reasoning_format_name(common_reasoning_format format);
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);

View File

@ -694,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
if (!filename.length()) {
// Empty filename invalid
return false;
@ -754,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@ -782,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
#include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@ -859,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32
}
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
@ -893,6 +920,8 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif
@ -912,7 +941,7 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list_files(const std::string & path) {
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
@ -929,12 +958,20 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect

View File

@ -12,6 +12,10 @@
#include <vector>
#include <map>
#if defined(_WIN32) && !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x0A00
#endif
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
#else
@ -26,8 +30,6 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_time_meas {
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
@ -223,6 +225,7 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
@ -369,7 +372,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t verbosity = 3; // LOG_LEVEL_INFO
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
@ -478,9 +481,15 @@ struct common_params {
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false;
std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f;
@ -632,8 +641,9 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
@ -642,8 +652,9 @@ struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list_files(const std::string & path);
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// Model utils

View File

@ -24,6 +24,7 @@
#include "http.h"
#endif
#ifndef __EMSCRIPTEN__
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
@ -35,6 +36,8 @@
#else
#include <sys/syslimits.h>
#endif
#endif
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
// isatty
@ -430,7 +433,7 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L);
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 0L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
auto data_vec = static_cast<std::vector<char> *>(data);
@ -1054,7 +1057,7 @@ std::string common_docker_resolve_model(const std::string &) {
std::vector<common_cached_model_info> common_list_cached_models() {
std::vector<common_cached_model_info> models;
const std::string cache_dir = fs_get_cache_directory();
const std::vector<common_file_info> files = fs_list_files(cache_dir);
const std::vector<common_file_info> files = fs_list(cache_dir, false);
for (const auto & file : files) {
if (string_starts_with(file.name, "manifest=") && string_ends_with(file.name, ".json")) {
common_cached_model_info model_info;

View File

@ -14,8 +14,10 @@ struct common_cached_model_info {
std::string model;
std::string tag;
size_t size = 0; // GGUF size in bytes
// return string representation like "user/model:tag"
// if tag is "latest", it will be omitted
std::string to_string() const {
return user + "/" + model + ":" + tag;
return user + "/" + model + (tag == "latest" ? "" : ":" + tag);
}
};

View File

@ -974,7 +974,7 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());

View File

@ -443,8 +443,22 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps);
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@ -21,8 +21,14 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_DEBUG 4
#define LOG_LEVEL_INFO 3
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors {
LOG_COLORS_AUTO = -1,
@ -67,10 +73,11 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
//
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
@ -95,14 +102,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
} \
} while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

1712
common/peg-parser.cpp Normal file

File diff suppressed because it is too large Load Diff

459
common/peg-parser.h Normal file
View File

@ -0,0 +1,459 @@
#pragma once
#include <nlohmann/json_fwd.hpp>
#include <memory>
#include <unordered_map>
#include <string>
#include <string_view>
#include <functional>
#include <vector>
#include <variant>
struct common_grammar_builder;
class common_peg_parser_builder;
using common_peg_parser_id = size_t;
constexpr common_peg_parser_id COMMON_PEG_INVALID_PARSER_ID = static_cast<common_peg_parser_id>(-1);
using common_peg_ast_id = size_t;
constexpr common_peg_ast_id COMMON_PEG_INVALID_AST_ID = static_cast<common_peg_ast_id>(-1);
// Lightweight wrapper around common_peg_parser_id for convenience
class common_peg_parser {
common_peg_parser_id id_;
common_peg_parser_builder & builder_;
public:
common_peg_parser(const common_peg_parser & other) : id_(other.id_), builder_(other.builder_) {}
common_peg_parser(common_peg_parser_id id, common_peg_parser_builder & builder) : id_(id), builder_(builder) {}
common_peg_parser & operator=(const common_peg_parser & other);
common_peg_parser & operator+=(const common_peg_parser & other);
common_peg_parser & operator|=(const common_peg_parser & other);
operator common_peg_parser_id() const { return id_; }
common_peg_parser_id id() const { return id_; }
common_peg_parser_builder & builder() const { return builder_; }
// Creates a sequence
common_peg_parser operator+(const common_peg_parser & other) const;
// Creates a sequence separated by spaces.
common_peg_parser operator<<(const common_peg_parser & other) const;
// Creates a choice
common_peg_parser operator|(const common_peg_parser & other) const;
common_peg_parser operator+(const char * str) const;
common_peg_parser operator+(const std::string & str) const;
common_peg_parser operator<<(const char * str) const;
common_peg_parser operator<<(const std::string & str) const;
common_peg_parser operator|(const char * str) const;
common_peg_parser operator|(const std::string & str) const;
};
common_peg_parser operator+(const char * str, const common_peg_parser & p);
common_peg_parser operator+(const std::string & str, const common_peg_parser & p);
common_peg_parser operator<<(const char * str, const common_peg_parser & p);
common_peg_parser operator<<(const std::string & str, const common_peg_parser & p);
common_peg_parser operator|(const char * str, const common_peg_parser & p);
common_peg_parser operator|(const std::string & str, const common_peg_parser & p);
enum common_peg_parse_result_type {
COMMON_PEG_PARSE_RESULT_FAIL = 0,
COMMON_PEG_PARSE_RESULT_SUCCESS = 1,
COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT = 2,
};
const char * common_peg_parse_result_type_name(common_peg_parse_result_type type);
struct common_peg_ast_node {
common_peg_ast_id id;
std::string rule;
std::string tag;
size_t start;
size_t end;
std::string_view text;
std::vector<common_peg_ast_id> children;
bool is_partial = false;
};
struct common_peg_parse_result;
using common_peg_ast_visitor = std::function<void(const common_peg_ast_node & node)>;
class common_peg_ast_arena {
std::vector<common_peg_ast_node> nodes_;
public:
common_peg_ast_id add_node(
const std::string & rule,
const std::string & tag,
size_t start,
size_t end,
std::string_view text,
std::vector<common_peg_ast_id> children,
bool is_partial = false
) {
common_peg_ast_id id = nodes_.size();
nodes_.push_back({id, rule, tag, start, end, text, std::move(children), is_partial});
return id;
}
const common_peg_ast_node & get(common_peg_ast_id id) const { return nodes_.at(id); }
size_t size() const { return nodes_.size(); }
void clear() { nodes_.clear(); }
void visit(common_peg_ast_id id, const common_peg_ast_visitor & visitor) const;
void visit(const common_peg_parse_result & result, const common_peg_ast_visitor & visitor) const;
};
struct common_peg_parse_result {
common_peg_parse_result_type type = COMMON_PEG_PARSE_RESULT_FAIL;
size_t start = 0;
size_t end = 0;
std::vector<common_peg_ast_id> nodes;
common_peg_parse_result() = default;
common_peg_parse_result(common_peg_parse_result_type type, size_t start)
: type(type), start(start), end(start) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end)
: type(type), start(start), end(end) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end, std::vector<common_peg_ast_id> nodes)
: type(type), start(start), end(end), nodes(std::move(nodes)) {}
bool fail() const { return type == COMMON_PEG_PARSE_RESULT_FAIL; }
bool need_more_input() const { return type == COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT; }
bool success() const { return type == COMMON_PEG_PARSE_RESULT_SUCCESS; }
};
struct common_peg_parse_context {
std::string input;
bool is_partial;
common_peg_ast_arena ast;
int parse_depth;
common_peg_parse_context()
: is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input)
: input(input), is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input, bool is_partial)
: input(input), is_partial(is_partial), parse_depth(0) {}
};
class common_peg_arena;
// Parser variants
struct common_peg_epsilon_parser {};
struct common_peg_start_parser {};
struct common_peg_end_parser {};
struct common_peg_literal_parser {
std::string literal;
};
struct common_peg_sequence_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_choice_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_repetition_parser {
common_peg_parser_id child;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_and_parser {
common_peg_parser_id child;
};
struct common_peg_not_parser {
common_peg_parser_id child;
};
struct common_peg_any_parser {};
struct common_peg_space_parser {};
struct common_peg_chars_parser {
struct char_range {
uint32_t start;
uint32_t end;
bool contains(uint32_t codepoint) const { return codepoint >= start && codepoint <= end; }
};
std::string pattern;
std::vector<char_range> ranges;
bool negated;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_json_string_parser {};
struct common_peg_until_parser {
std::vector<std::string> delimiters;
};
struct common_peg_schema_parser {
common_peg_parser_id child;
std::string name;
std::shared_ptr<nlohmann::ordered_json> schema;
// Indicates if the GBNF should accept a raw string that matches the schema.
bool raw;
};
struct common_peg_rule_parser {
std::string name;
common_peg_parser_id child;
bool trigger;
};
struct common_peg_ref_parser {
std::string name;
};
struct common_peg_atomic_parser {
common_peg_parser_id child;
};
struct common_peg_tag_parser {
common_peg_parser_id child;
std::string tag;
};
// Variant holding all parser types
using common_peg_parser_variant = std::variant<
common_peg_epsilon_parser,
common_peg_start_parser,
common_peg_end_parser,
common_peg_literal_parser,
common_peg_sequence_parser,
common_peg_choice_parser,
common_peg_repetition_parser,
common_peg_and_parser,
common_peg_not_parser,
common_peg_any_parser,
common_peg_space_parser,
common_peg_chars_parser,
common_peg_json_string_parser,
common_peg_until_parser,
common_peg_schema_parser,
common_peg_rule_parser,
common_peg_ref_parser,
common_peg_atomic_parser,
common_peg_tag_parser
>;
class common_peg_arena {
std::vector<common_peg_parser_variant> parsers_;
std::unordered_map<std::string, common_peg_parser_id> rules_;
common_peg_parser_id root_ = COMMON_PEG_INVALID_PARSER_ID;
public:
const common_peg_parser_variant & get(common_peg_parser_id id) const { return parsers_.at(id); }
common_peg_parser_variant & get(common_peg_parser_id id) { return parsers_.at(id); }
size_t size() const { return parsers_.size(); }
bool empty() const { return parsers_.empty(); }
common_peg_parser_id get_rule(const std::string & name) const;
bool has_rule(const std::string & name) const { return rules_.find(name) != rules_.end(); }
common_peg_parser_id root() const { return root_; }
void set_root(common_peg_parser_id id) { root_ = id; }
common_peg_parse_result parse(common_peg_parse_context & ctx, size_t start = 0) const;
common_peg_parse_result parse(common_peg_parser_id id, common_peg_parse_context & ctx, size_t start) const;
void resolve_refs();
void build_grammar(const common_grammar_builder & builder, bool lazy = false) const;
std::string dump(common_peg_parser_id id) const;
nlohmann::json to_json() const;
static common_peg_arena from_json(const nlohmann::json & j);
std::string save() const;
void load(const std::string & data);
friend class common_peg_parser_builder;
private:
common_peg_parser_id add_parser(common_peg_parser_variant parser);
void add_rule(const std::string & name, common_peg_parser_id id);
common_peg_parser_id resolve_ref(common_peg_parser_id id);
};
class common_peg_parser_builder {
common_peg_arena arena_;
common_peg_parser wrap(common_peg_parser_id id) { return common_peg_parser(id, *this); }
common_peg_parser add(const common_peg_parser_variant & p) { return wrap(arena_.add_parser(p)); }
public:
common_peg_parser_builder();
// Match nothing, always succeed.
// S -> ε
common_peg_parser eps() { return add(common_peg_epsilon_parser{}); }
// Matches the start of the input.
// S -> ^
common_peg_parser start() { return add(common_peg_start_parser{}); }
// Matches the end of the input.
// S -> $
common_peg_parser end() { return add(common_peg_end_parser{}); }
// Matches an exact literal string.
// S -> "hello"
common_peg_parser literal(const std::string & literal) { return add(common_peg_literal_parser{literal}); }
// Matches a sequence of parsers in order, all must succeed.
// S -> A B C
common_peg_parser sequence() { return add(common_peg_sequence_parser{}); }
common_peg_parser sequence(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser sequence(const std::vector<common_peg_parser> & parsers);
common_peg_parser sequence(std::initializer_list<common_peg_parser> parsers);
// Matches the first parser that succeeds from a list of alternatives.
// S -> A | B | C
common_peg_parser choice() { return add(common_peg_choice_parser{}); }
common_peg_parser choice(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser choice(const std::vector<common_peg_parser> & parsers);
common_peg_parser choice(std::initializer_list<common_peg_parser> parsers);
// Matches one or more repetitions of a parser.
// S -> A+
common_peg_parser one_or_more(const common_peg_parser & p) { return repeat(p, 1, -1); }
// Matches zero or more repetitions of a parser, always succeeds.
// S -> A*
common_peg_parser zero_or_more(const common_peg_parser & p) { return repeat(p, 0, -1); }
// Matches zero or one occurrence of a parser, always succeeds.
// S -> A?
common_peg_parser optional(const common_peg_parser & p) { return repeat(p, 0, 1); }
// Positive lookahead: succeeds if child parser succeeds, consumes no input.
// S -> &A
common_peg_parser peek(const common_peg_parser & p) { return add(common_peg_and_parser{p}); }
// Negative lookahead: succeeds if child parser fails, consumes no input.
// S -> !A
common_peg_parser negate(const common_peg_parser & p) { return add(common_peg_not_parser{p}); }
// Matches any single character.
// S -> .
common_peg_parser any() { return add(common_peg_any_parser{}); }
// Matches between min and max repetitions of characters from a character class.
// S -> [a-z]{m,n}
//
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser chars(const std::string & classes, int min = 1, int max = -1);
// Creates a lightweight reference to a named rule (resolved during build()).
// Use this for forward references in recursive grammars.
// expr_ref -> expr
common_peg_parser ref(const std::string & name) { return add(common_peg_ref_parser{name}); }
// Matches zero or more whitespace characters (space, tab, newline).
// S -> [ \t\n]*
common_peg_parser space() { return add(common_peg_space_parser{}); }
// Matches all characters until a delimiter is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until(const std::string & delimiter) { return add(common_peg_until_parser{{delimiter}}); }
// Matches all characters until one of the delimiters in the list is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until_one_of(const std::vector<std::string> & delimiters) { return add(common_peg_until_parser{delimiters}); }
// Matches everything
// S -> .*
common_peg_parser rest() { return until_one_of({}); }
// Matches between min and max repetitions of a parser (inclusive).
// S -> A{m,n}
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser repeat(const common_peg_parser & p, int min, int max) { return add(common_peg_repetition_parser{p, min,max}); }
// Matches exactly n repetitions of a parser.
// S -> A{n}
common_peg_parser repeat(const common_peg_parser & p, int n) { return repeat(p, n, n); }
// Creates a complete JSON parser supporting objects, arrays, strings, numbers, booleans, and null.
// value -> object | array | string | number | true | false | null
common_peg_parser json();
common_peg_parser json_object();
common_peg_parser json_string();
common_peg_parser json_array();
common_peg_parser json_number();
common_peg_parser json_bool();
common_peg_parser json_null();
// Matches JSON string content without the surrounding quotes.
// Useful for extracting content within a JSON string.
common_peg_parser json_string_content();
// Matches a JSON object member with a key and associated parser as the
// value.
common_peg_parser json_member(const std::string & key, const common_peg_parser & p);
// Wraps a parser with JSON schema metadata for grammar generation.
// Used internally to convert JSON schemas to GBNF grammar rules.
common_peg_parser schema(const common_peg_parser & p, const std::string & name, const nlohmann::ordered_json & schema, bool raw = false);
// Creates a named rule, stores it in the grammar, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", json_obj | json_arr | ...)
common_peg_parser rule(const std::string & name, const common_peg_parser & p, bool trigger = false);
// Creates a named rule using a builder function, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", [&]() { return json_object() | json_array() | ... })
common_peg_parser rule(const std::string & name, const std::function<common_peg_parser()> & builder, bool trigger = false);
// Creates a trigger rule. When generating a lazy grammar from the parser,
// only trigger rules and descendents are emitted.
common_peg_parser trigger_rule(const std::string & name, const common_peg_parser & p) { return rule(name, p, true); }
common_peg_parser trigger_rule(const std::string & name, const std::function<common_peg_parser()> & builder) { return rule(name, builder, true); }
// Creates an atomic parser. Atomic parsers do not create an AST node if
// the child results in a partial parse, i.e. NEEDS_MORE_INPUT. This is
// intended for situations where partial output is undesirable.
common_peg_parser atomic(const common_peg_parser & p) { return add(common_peg_atomic_parser{p}); }
// Tags create nodes in the generated AST for semantic purposes.
// Unlike rules, you can tag multiple nodes with the same tag.
common_peg_parser tag(const std::string & tag, const common_peg_parser & p) { return add(common_peg_tag_parser{p.id(), tag}); }
void set_root(const common_peg_parser & p);
common_peg_arena build();
};
// Helper function for building parsers
common_peg_arena build_peg_parser(const std::function<common_peg_parser(common_peg_parser_builder & builder)> & fn);

64
common/unicode.cpp Normal file
View File

@ -0,0 +1,64 @@
#include "unicode.h"
// implementation adopted from src/unicode.cpp
size_t utf8_sequence_length(unsigned char first_byte) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(first_byte) >> 4;
return lookup[highbits];
}
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset) {
if (offset >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
// ASCII fast path
if (!(input[offset] & 0x80)) {
return utf8_parse_result(utf8_parse_result::SUCCESS, input[offset], 1);
}
// Invalid: continuation byte as first byte
if (!(input[offset] & 0x40)) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
// 2-byte sequence
if (!(input[offset] & 0x20)) {
if (offset + 1 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x1f) << 6) | (input[offset + 1] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 2);
}
// 3-byte sequence
if (!(input[offset] & 0x10)) {
if (offset + 2 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x0f) << 12) | ((input[offset + 1] & 0x3f) << 6) | (input[offset + 2] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 3);
}
// 4-byte sequence
if (!(input[offset] & 0x08)) {
if (offset + 3 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80 || (input[offset + 3] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x07) << 18) | ((input[offset + 1] & 0x3f) << 12) | ((input[offset + 2] & 0x3f) << 6) | (input[offset + 3] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 4);
}
// Invalid first byte
return utf8_parse_result(utf8_parse_result::INVALID);
}

22
common/unicode.h Normal file
View File

@ -0,0 +1,22 @@
#pragma once
#include <cstdint>
#include <string_view>
// UTF-8 parsing utilities for streaming-aware unicode support
struct utf8_parse_result {
uint32_t codepoint; // Decoded codepoint (only valid if status == SUCCESS)
size_t bytes_consumed; // How many bytes this codepoint uses (1-4)
enum status { SUCCESS, INCOMPLETE, INVALID } status;
utf8_parse_result(enum status s, uint32_t cp = 0, size_t bytes = 0)
: codepoint(cp), bytes_consumed(bytes), status(s) {}
};
// Determine the expected length of a UTF-8 sequence from its first byte
// Returns 0 for invalid first bytes
size_t utf8_sequence_length(unsigned char first_byte);
// Parse a single UTF-8 codepoint from input
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset);

View File

@ -1524,6 +1524,79 @@ class TextModel(ModelBase):
special_vocab._set_special_token("bos", 151643)
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_mistral(self):
if not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
vocab = MistralVocab(self.dir_model)
logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
local_template_file_path = self.dir_model / "chat_template.jinja"
if self.is_mistral_format and local_template_file_path.is_file():
# Ministral-3 and other new Mistral models come with chat templates.
# ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
logger.info("Using an existing Mistral local chat template.")
with open(local_template_file_path, "r", encoding="utf-8") as f:
template = f.read()
elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
template_dir = Path(__file__).parent / "models/templates/"
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
if self.is_mistral_format:
logger.info(
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
)
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
else:
logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
template = None
if template is not None:
self.gguf_writer.add_chat_template(template)
class MmprojModel(ModelBase):
model_type = ModelType.MMPROJ
@ -1581,10 +1654,27 @@ class MmprojModel(ModelBase):
# load preprocessor config
self.preprocessor_config = {}
if not self.is_mistral_format:
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
# prefer preprocessor_config.json if possible
preprocessor_config_path = self.dir_model / "preprocessor_config.json"
if preprocessor_config_path.is_file():
with open(preprocessor_config_path, "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
# prefer processor_config.json if possible
processor_config_path = self.dir_model / "processor_config.json"
if processor_config_path.is_file():
with open(processor_config_path, "r", encoding="utf-8") as f:
cfg = json.load(f)
# move image_processor to root level for compat
if "image_processor" in cfg:
cfg = {
**cfg,
**cfg["image_processor"],
}
# merge configs
self.preprocessor_config = {**self.preprocessor_config, **cfg}
def get_vision_config(self) -> dict[str, Any] | None:
config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
return self.global_config.get(config_name)
@ -2277,67 +2367,6 @@ class LlamaModel(TextModel):
if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def _set_vocab_mistral(self):
if not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
vocab = MistralVocab(self.dir_model)
logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
template_dir = Path(__file__).parent / "models/templates/"
if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
if self.is_mistral_format:
logger.info(
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
)
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
self.gguf_writer.add_chat_template(template)
else:
logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
def set_vocab(self):
if self.is_mistral_format:
return self._set_vocab_mistral()
@ -2797,9 +2826,38 @@ class Llama4VisionModel(MmprojModel):
@ModelBase.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_arch = gguf.MODEL_ARCH.MISTRAL3
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# for compatibility, we use LLAMA arch for older models
# TODO: remove this once everyone has migrated to newer version of llama.cpp
if self.hparams.get("model_type") != "ministral3":
self.model_arch = gguf.MODEL_ARCH.LLAMA
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
self.gguf_writer.add_architecture()
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_params = self.hparams.get("rope_parameters")
if self.hparams.get("model_type") == "ministral3":
assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# TODO: probably not worth supporting quantized weight, as official BF16 is also available
if name.endswith("weight_scale_inv"):
raise ValueError("This is a quantized weight, please use BF16 weight instead")
name = name.replace("language_model.", "")
if "multi_modal_projector" in name or "vision_tower" in name:
return []
@ -9809,12 +9867,22 @@ class ApertusModel(LlamaModel):
class MistralModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_arch = gguf.MODEL_ARCH.MISTRAL3
model_name = "Mistral"
hf_arch = ""
is_mistral_format = True
undo_permute = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# for compatibility, we use LLAMA arch for older models
# TODO: remove this once everyone migrates to newer version of llama.cpp
if "llama_4_scaling" not in self.hparams:
self.model_arch = gguf.MODEL_ARCH.LLAMA
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
self.gguf_writer.add_architecture()
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
@staticmethod
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
@ -9854,6 +9922,112 @@ class MistralModel(LlamaModel):
return template
def set_gguf_parameters(self):
super().set_gguf_parameters()
MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
@staticmethod
def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
if "yarn" in hparams:
yarn_params = hparams["yarn"]
gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
if "llama_4_scaling" in hparams:
gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
class MistralMoeModel(DeepseekV2Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
model_name = "Mistral"
hf_arch = ""
is_mistral_format = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
logger.info("Using MistralMoeModel")
# remap hparams from Mistral MoE format to DeepseekV2 format
# we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
# ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
config = self.hparams
# Mistral key -> HF key
config_mapping = {
"dim": "hidden_size",
"norm_eps": "rms_norm_eps",
"n_kv_heads": "num_key_value_heads",
"n_layers": "num_hidden_layers",
"n_heads": "num_attention_heads",
"hidden_dim": "intermediate_size",
}
# HF key -> (Mistral key, default value)
top_level_mapping_with_default = {
"model_type": ("model_type", "transformer"),
"hidden_act": ("activation", "silu"),
"tie_word_embeddings": ("tied_embeddings", False),
"max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
"max_position_embeddings": ("max_position_embeddings", 128_000),
}
# mapping top-level keys
for key, new_key in config_mapping.items():
if key in config:
config[new_key] = config[key]
for new_key, (key, default_value) in top_level_mapping_with_default.items():
config[new_key] = config.get(key, default_value)
# mapping MoE-specific keys
moe_config_map = {
"route_every_n": "moe_layer_freq",
"first_k_dense_replace": "first_k_dense_replace",
"num_experts_per_tok": "num_experts_per_tok",
"num_experts": "n_routed_experts",
"expert_hidden_dim": "moe_intermediate_size",
"routed_scale": "routed_scaling_factor",
"num_shared_experts": "n_shared_experts",
"num_expert_groups": "n_group",
"num_expert_groups_per_tok": "topk_group",
}
moe = config["moe"]
for key, new_key in moe_config_map.items():
if key in moe:
config[new_key] = moe[key]
# provide missing values
config["topk_method"] = None
config["norm_topk_prob"] = True
config["scoring_func"] = "softmax"
def set_vocab(self):
self._set_vocab_mistral()
def set_gguf_parameters(self):
super().set_gguf_parameters()
MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
yarn_params = self.hparams["yarn"]
self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
return []
# rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
if name.endswith(".qscale_act"):
name = name.replace(".qscale_act", ".input_scale")
if name.endswith(".qscale_weight"):
name = name.replace(".qscale_weight", ".weight_scale")
if ".wkv_b." in name:
name = name.replace(".wkv_b.", ".kv_b_proj.")
if ".experts." in name:
name = name.replace(".experts.", ".mlp.experts.")
name = name.replace(".w1.", ".gate_proj.")
name = name.replace(".w2.", ".down_proj.")
name = name.replace(".w3.", ".up_proj.")
name = "model." + name
return super().modify_tensors(data_torch, name, bid)
class PixtralModel(LlavaVisionModel):
model_name = "Pixtral"
@ -10408,6 +10582,8 @@ def main() -> None:
elif args.mmproj:
assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
model_class = PixtralModel
elif "moe" in hparams:
model_class = MistralMoeModel
else:
model_class = MistralModel

View File

@ -431,11 +431,22 @@ docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/ren
### For Linux users:
#### Using the LunarG Vulkan SDK
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
> [!IMPORTANT]
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
#### Using system packages
On Debian / Ubuntu, you can install the required dependencies using:
```sh
sudo apt-get install libvulkan-dev glslc
```
#### Common steps
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
```bash
vulkaninfo

288
docs/development/parsing.md Normal file
View File

@ -0,0 +1,288 @@
# Parsing Model Output
The `common` library contains a PEG parser implementation suitable for parsing
model output.
Types with the prefix `common_peg_*` are intended for general use and may have
applications beyond parsing model output, such as parsing user-provided regex
patterns.
Types with the prefix `common_chat_peg_*` are specialized helpers for model
output.
The parser features:
- Partial parsing of streaming input
- Built-in JSON parsers
- AST generation with semantics via "tagged" nodes
## Example
Below is a contrived example demonstrating how to use the PEG parser to parse
output from a model that emits arguments as JSON.
```cpp
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
// Build a choice of all available tools
auto tool_choice = p.choice();
for (const auto & tool : tools) {
const auto & function = tool.at("function");
std::string name = function.at("name");
const auto & schema = function.at("parameters");
auto tool_name = p.json_member("name", "\"" + p.literal(name) + "\"");
auto tool_args = p.json_member("arguments", p.schema(p.json(), "tool-" + name + "-schema", schema));
tool_choice |= p.rule("tool-" + name, "{" << tool_name << "," << tool_args << "}");
}
// Define the tool call structure: <tool_call>[{tool}]</tool_call>
auto tool_call = p.trigger_rule("tool-call",
p.sequence({
p.literal("<tool_call>["),
tool_choice,
p.literal("]</tool_call>")
})
);
// Parser accepts content, optionally followed by a tool call
return p.sequence({
p.content(p.until("<tool_call>")),
p.optional(tool_call),
p.end()
});
});
```
For a more complete example, see `test_example_native()` in
[tests/test-chat-peg-parser.cpp](tests/test-chat-peg-parser.cpp).
## Parsers/Combinators
### Basic Matchers
- **`eps()`** - Matches nothing and always succeeds (epsilon/empty match)
- **`start()`** - Matches the start of input (anchor `^`)
- **`end()`** - Matches the end of input (anchor `$`)
- **`literal(string)`** - Matches an exact literal string
- **`any()`** - Matches any single character (`.`)
### Combinators
- **`sequence(...)`** - Matches parsers in order; all must succeed
- **`choice(...)`** - Matches the first parser that succeeds from alternatives (ordered choice)
- **`one_or_more(p)`** - Matches one or more repetitions (`+`)
- **`zero_or_more(p)`** - Matches zero or more repetitions (`*`)
- **`optional(p)`** - Matches zero or one occurrence (`?`)
- **`repeat(p, min, max)`** - Matches between min and max repetitions (use `-1` for unbounded)
- **`repeat(p, n)`** - Matches exactly n repetitions
### Lookahead
- **`peek(p)`** - Positive lookahead: succeeds if parser succeeds without consuming input (`&`)
- **`negate(p)`** - Negative lookahead: succeeds if parser fails without consuming input (`!`)
### Character Classes & Utilities
- **`chars(classes, min, max)`** - Matches repetitions of characters from a character class
- **`space()`** - Matches zero or more whitespace characters (space, tab, newline)
- **`until(delimiter)`** - Matches characters until delimiter is found (delimiter not consumed)
- **`until_one_of(delimiters)`** - Matches characters until any delimiter in the list is found
- **`rest()`** - Matches everything remaining (`.*`)
### JSON Parsers
- **`json()`** - Complete JSON parser (objects, arrays, strings, numbers, booleans, null)
- **`json_object()`** - JSON object parser
- **`json_array()`** - JSON array parser
- **`json_string()`** - JSON string parser
- **`json_number()`** - JSON number parser
- **`json_bool()`** - JSON boolean parser
- **`json_null()`** - JSON null parser
- **`json_string_content()`** - JSON string content without surrounding quotes
- **`json_member(key, p)`** - JSON object member with specific key and value parser
### Grammar Building
- **`ref(name)`** - Creates a lightweight reference to a named rule (for recursive grammars)
- **`rule(name, p, trigger)`** - Creates a named rule and returns a reference
- **`trigger_rule(name, p)`** - Creates a trigger rule (entry point for lazy grammar generation)
- **`schema(p, name, schema, raw)`** - Wraps parser with JSON schema metadata for grammar generation
### AST Control
- **`atomic(p)`** - Prevents AST node creation for partial parses
- **`tag(tag, p)`** - Creates AST nodes with semantic tags (multiple nodes can share tags)
## GBNF Grammar Generation
The PEG parser also acts as a convenient DSL for generating GBNF grammars, with
some exceptions.
```cpp
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
foreach_function(params.tools, [&](const json & fn) {
builder.resolve_refs(fn.at("parameters"));
});
parser.build_grammar(builder, data.grammar_lazy);
});
```
The notable exception is the `negate(p)` lookahead parser, which cannot be
defined as a CFG grammar and therefore does not produce a rule. Its usage
should be limited and preferably hidden behind a `schema()` parser. In many
cases, `until(delimiter)` or `until_one_of(delimiters)` is a better choice.
Another limitation is that the PEG parser requires an unambiguous grammar. In
contrast, the `llama-grammar` implementation can support ambiguous grammars,
though they are difficult to parse.
### Lazy Grammars
During lazy grammar generation, only rules reachable from a `trigger_rule(p)`
are emitted in the grammar. All trigger rules are added as alternations in the
root rule. It is still necessary to define trigger patterns, as the parser has
no interaction with the grammar sampling.
### JSON Schema
The `schema(p, name, schema, raw)` parser will use the `json-schema-to-grammar`
implementation to generate the grammar instead of the underlying parser.
The `raw` option emits a grammar suitable for a raw string instead of a JSON
string. In other words, it won't be wrapped in quotes or require escaping
quotes. It should only be used when `type == "string"`.
The downside is that it can potentially lead to ambiguous grammars. For
example, if a user provides the pattern `^.*$`, the following grammar may be
generated:
```
root ::= "<arg>" .* "</arg>"
```
This creates an ambiguous grammar that cannot be parsed by the PEG parser. To
help mitigate this, if `.*` is found in the pattern, the grammar from the
underlying parser will be emitted instead.
## Common AST Shapes for Chat Parsing
Most model output can be placed in one of the following categories:
- Content only
- Tool calling with arguments emitted as a single JSON object
- Tool calling with arguments emitted as separate entities, either XML
(Qwen3-Coder, MiniMax M2) or pseudo-function calls (LFM2)
To provide broad coverage,
[`common/chat-peg-parser.h`](common/chat-peg-parser.h) contains builders and
mappers that help create parsers and visitors/extractors for these types. They
require parsers to tag nodes to conform to an AST "shape". This normalization
makes it easy to extract information and generalize parsing.
### Simple
The `common_chat_peg_builder` builds a `simple` parser that supports
content-only models with optional reasoning.
- **`reasoning(p)`** - Tag node for extracting `reasoning_content`
- **`content(p)`** - Tag node for extracting `content`
```cpp
build_chat_peg_parser([&](common_chat_peg_parser & p) {
return p.sequence({
p.optional("<think>" + p.reasoning(p.until("</think>")) + "</think>"),
p.content(p.until("<tool_call>")),
p.end()
});
});
```
Use `common_chat_peg_mapper` to extract the content. Note that this is already
done for you in `common_chat_peg_parser` when
`chat_format == COMMON_CHAT_FORMAT_PEG_SIMPLE`.
```cpp
auto result = parser.parse(ctx);
common_chat_msg msg;
auto mapper = common_chat_peg_mapper(msg);
mapper.from_ast(ctx.ast, result);
```
### Native
The `common_chat_peg_native_builder` builds a `native` parser suitable for
models that emit tool arguments as a direct JSON object.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_id(p)`** - Tag the tool call ID (optional)
- **`tool_name(p)`** - Tag the tool name
- **`tool_args(p)`** - Tag the tool arguments
```cpp
build_chat_peg_native_parser([&](common_chat_peg_native_parser & p) {
auto get_weather_tool = p.tool(p.sequence({
p.tool_open(p.literal("{")),
p.json_member("name", "\"" + p.tool_name(p.literal("get_weather")) + "\""),
p.literal(","),
p.json_member("arguments", p.tool_args(p.json())),
p.tool_close(p.literal("}"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```
### Constructed
The `common_chat_peg_constructed_builder` builds a `constructed` parser
suitable for models that emit tool arguments as separate entities, such as XML
tags.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_name(p)`** - Tag the tool name
- **`tool_arg(p)`** - Tag a complete tool argument (name + value)
- **`tool_arg_open(p)`** - Tag start of a tool argument
- **`tool_arg_close(p)`** - Tag end of a tool argument
- **`tool_arg_name(p)`** - Tag the argument name
- **`tool_arg_string_value(p)`** - Tag string value for the argument
- **`tool_arg_json_value(p)`** - Tag JSON value for the argument
```cpp
build_chat_peg_constructed_parser([&](common_chat_peg_constructed_builder & p) {
auto location_arg = p.tool_arg(
p.tool_arg_open("<parameter name=\"" + p.tool_arg_name(p.literal("location")) + "\">"),
p.tool_arg_string_value(p.until("</parameter>")),
p.tool_arg_close(p.literal("</parameter>"))
);
auto get_weather_tool = p.tool(p.sequence({
p.tool_open("<function name=\"" + p.tool_name(p.literal("get_weather")) + "\">"),
location_arg,
p.tool_close(p.literal("</function>"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```

View File

@ -12,110 +12,111 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| ADD_ID | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | 🟡 | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SET | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | 🟡 | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | 🟡 | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | WebGPU | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | ❌ | 🟡 | ✅ | ✅ | ❌ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | ✅ | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ❌ | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SET | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -5005,8 +5005,8 @@
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=f32,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","0","no","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","0","no","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","1","yes","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=1","support","0","no","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=2","support","0","no","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=3","support","0","no","Vulkan"
@ -5032,14 +5032,14 @@
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
@ -5271,7 +5271,7 @@
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_1,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
@ -5415,21 +5415,49 @@
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,3],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,3,5,7]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7]","support","0","no","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","ADD","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","SUB","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","MUL","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
@ -5655,6 +5683,7 @@
"Vulkan0","MUL","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","DIV","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","ADD1","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","ADD1","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=0.000000,inplace=0","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=0","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=1","support","1","yes","Vulkan"
@ -8644,9 +8673,13 @@
"Vulkan0","CLAMP","type=f16,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","0","no","Vulkan"
"Vulkan0","LEAKY_RELU","type=f16,ne_a=[7,1,5,3],negative_slope=0.100000","support","0","no","Vulkan"
"Vulkan0","FLOOR","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SQR","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","SQRT","type=f32,ne=[10,3,3,2]","support","1","yes","Vulkan"
"Vulkan0","LOG","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
@ -8666,9 +8699,13 @@
"Vulkan0","CLAMP","type=f32,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","Vulkan"
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,1,1],n_past=5","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,1],n_past=5","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,2],n_past=5","support","1","yes","Vulkan"
@ -9411,28 +9448,405 @@
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","1","yes","Vulkan"
"Vulkan0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[12,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","Vulkan"
@ -9445,6 +9859,10 @@
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=1","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=none","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic,flags=none","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=0","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=1","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
@ -9479,23 +9897,37 @@
"Vulkan0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","Vulkan"
"Vulkan0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","1","yes","Vulkan"
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","1","yes","Vulkan"
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=1048576.000000,step=1.000000","support","1","yes","Vulkan"
"Vulkan0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","Vulkan"
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[10,5,4,3],negative_slope=0.100000","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[127,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[128,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[255,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[256,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[511,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[512,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[1023,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[1024,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[2047,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[2048,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[242004,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[375960,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","Vulkan"
"Vulkan0","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","Vulkan"
"Vulkan0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","Vulkan"
"Vulkan0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","1","yes","Vulkan"

Can't render this file because it is too large.

18741
docs/ops/WebGPU.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -20,6 +20,7 @@ else()
add_subdirectory(gguf-hash)
add_subdirectory(gguf)
add_subdirectory(idle)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(parallel)

View File

@ -0,0 +1,5 @@
set(TARGET llama-idle)
add_executable(${TARGET} idle.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

3
examples/idle/README.md Normal file
View File

@ -0,0 +1,3 @@
# llama.cpp/example/idle
https://github.com/ggml-org/llama.cpp/pull/17766

110
examples/idle/idle.cpp Normal file
View File

@ -0,0 +1,110 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
#include <vector>
static void print_usage(int /*argc*/, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers]\n", argv[0]);
printf("\n");
}
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}
common_init();
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// we need just a dummy token to evaluate
std::vector<llama_token> prompt_tokens(1, llama_vocab_bos(vocab));
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = 512;
ctx_params.n_batch = 512;
ctx_params.no_perf = false;
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
const int n_iters = 3;
// warm-up
llama_decode(ctx, batch);
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx);
for (int64_t t_pause_ms = 0; t_pause_ms <= 4000; t_pause_ms += 800) {
double t_sum_us = 0.0;
double t_sum2_us = 0.0;
for (int i = 0; i < n_iters; i++) {
// this pause is important - it simulates "idle GPU"
std::this_thread::sleep_for(std::chrono::milliseconds(t_pause_ms));
const int64_t t_start_us = llama_time_us();
// this should take constant time
llama_decode(ctx, batch);
llama_synchronize(ctx);
const int64_t t_end_us = llama_time_us();
const double t_cur_us = t_end_us - t_start_us;
#if 1
// print individual decode times
printf(" - decode time: %8.2f ms\n", t_cur_us / 1000);
#endif
t_sum_us += t_cur_us;
t_sum2_us += t_cur_us * t_cur_us;
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx); // just in case
}
const double t_avg_us = t_sum_us / n_iters;
const double t_dev_us = sqrt((t_sum2_us / (n_iters - 1)) - (t_avg_us * t_avg_us * n_iters) / (n_iters - 1));
printf("iters: %4d, pause: %5d ms, avg decode time: %8.2f +/- %4.2f ms\n", n_iters, (int) t_pause_ms, t_avg_us / 1000, t_dev_us / 1000);
fflush(stdout);
}
llama_free(ctx);
llama_model_free(model);
return 0;
}

View File

@ -241,6 +241,12 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
// this one is managed by common_init_result
//llama_free(ctx);
llama_free(ctx2);
llama_free(ctx3);
if (result0 != result2) {
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
return 1;

View File

@ -18,6 +18,7 @@ cd llama.cpp
cmake -S . -B build
cmake --build build
cmake --install build --prefix inst
```
### Build simple-cmake-pkg

View File

@ -175,11 +175,6 @@ option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requi
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
if (MINGW)
set(GGML_WIN_VER "0xA00" CACHE STRING "ggml: Windows version")
endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(GGML_CPU "ggml: enable CPU backend" ON)
@ -226,7 +221,7 @@ option(GGML_WEBGPU "ggml: use WebGPU"
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_WEBGPU_CPU_PROFILE "ggml: enable WebGPU profiling (CPU)" OFF)
option(GGML_WEBGPU_GPU_PROFILE "ggml: enable WebGPU profiling (GPU)" OFF)
option(GGML_WEBGPU_JSPI "ggml: use JSPI for WebGPU" ON)
option(GGML_ZDNN "ggml: use zDNN" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
@ -408,62 +403,67 @@ if (MSVC)
/wd4996 # Disable POSIX deprecation warnings
/wd4702 # Unreachable code warnings
)
function(disable_msvc_warnings target_name)
set(MSVC_COMPILE_OPTIONS
"$<$<COMPILE_LANGUAGE:C>:/utf-8>"
"$<$<COMPILE_LANGUAGE:CXX>:/utf-8>"
)
function(configure_msvc_target target_name)
if(TARGET ${target_name})
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
target_compile_options(${target_name} PRIVATE ${MSVC_COMPILE_OPTIONS})
endif()
endfunction()
disable_msvc_warnings(ggml-base)
disable_msvc_warnings(ggml)
disable_msvc_warnings(ggml-cpu)
disable_msvc_warnings(ggml-cpu-x64)
disable_msvc_warnings(ggml-cpu-sse42)
disable_msvc_warnings(ggml-cpu-sandybridge)
disable_msvc_warnings(ggml-cpu-haswell)
disable_msvc_warnings(ggml-cpu-skylakex)
disable_msvc_warnings(ggml-cpu-icelake)
disable_msvc_warnings(ggml-cpu-alderlake)
configure_msvc_target(ggml-base)
configure_msvc_target(ggml)
configure_msvc_target(ggml-cpu)
configure_msvc_target(ggml-cpu-x64)
configure_msvc_target(ggml-cpu-sse42)
configure_msvc_target(ggml-cpu-sandybridge)
configure_msvc_target(ggml-cpu-haswell)
configure_msvc_target(ggml-cpu-skylakex)
configure_msvc_target(ggml-cpu-icelake)
configure_msvc_target(ggml-cpu-alderlake)
if (GGML_BUILD_EXAMPLES)
disable_msvc_warnings(common-ggml)
disable_msvc_warnings(common)
configure_msvc_target(common-ggml)
configure_msvc_target(common)
disable_msvc_warnings(mnist-common)
disable_msvc_warnings(mnist-eval)
disable_msvc_warnings(mnist-train)
configure_msvc_target(mnist-common)
configure_msvc_target(mnist-eval)
configure_msvc_target(mnist-train)
disable_msvc_warnings(gpt-2-ctx)
disable_msvc_warnings(gpt-2-alloc)
disable_msvc_warnings(gpt-2-backend)
disable_msvc_warnings(gpt-2-sched)
disable_msvc_warnings(gpt-2-quantize)
disable_msvc_warnings(gpt-2-batched)
configure_msvc_target(gpt-2-ctx)
configure_msvc_target(gpt-2-alloc)
configure_msvc_target(gpt-2-backend)
configure_msvc_target(gpt-2-sched)
configure_msvc_target(gpt-2-quantize)
configure_msvc_target(gpt-2-batched)
disable_msvc_warnings(gpt-j)
disable_msvc_warnings(gpt-j-quantize)
configure_msvc_target(gpt-j)
configure_msvc_target(gpt-j-quantize)
disable_msvc_warnings(magika)
disable_msvc_warnings(yolov3-tiny)
disable_msvc_warnings(sam)
configure_msvc_target(magika)
configure_msvc_target(yolov3-tiny)
configure_msvc_target(sam)
disable_msvc_warnings(simple-ctx)
disable_msvc_warnings(simple-backend)
configure_msvc_target(simple-ctx)
configure_msvc_target(simple-backend)
endif()
if (GGML_BUILD_TESTS)
disable_msvc_warnings(test-mul-mat)
disable_msvc_warnings(test-arange)
disable_msvc_warnings(test-backend-ops)
disable_msvc_warnings(test-cont)
disable_msvc_warnings(test-conv-transpose)
disable_msvc_warnings(test-conv-transpose-1d)
disable_msvc_warnings(test-conv1d)
disable_msvc_warnings(test-conv2d)
disable_msvc_warnings(test-conv2d-dw)
disable_msvc_warnings(test-customop)
disable_msvc_warnings(test-dup)
disable_msvc_warnings(test-opt)
disable_msvc_warnings(test-pool)
configure_msvc_target(test-mul-mat)
configure_msvc_target(test-arange)
configure_msvc_target(test-backend-ops)
configure_msvc_target(test-cont)
configure_msvc_target(test-conv-transpose)
configure_msvc_target(test-conv-transpose-1d)
configure_msvc_target(test-conv1d)
configure_msvc_target(test-conv2d)
configure_msvc_target(test-conv2d-dw)
configure_msvc_target(test-customop)
configure_msvc_target(test-dup)
configure_msvc_target(test-opt)
configure_msvc_target(test-pool)
endif ()
endif()

View File

@ -1,6 +1,5 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
@ -8,7 +7,7 @@ extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 3
#define RPC_PROTO_MINOR_VERSION 5
#define RPC_PROTO_MINOR_VERSION 6
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16

View File

@ -204,6 +204,10 @@
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#if defined(_WIN32) && !defined(_WIN32_WINNT)
# define _WIN32_WINNT 0x0A00
#endif
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
@ -2148,7 +2152,8 @@ extern "C" {
};
enum ggml_scale_flag {
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8),
GGML_SCALE_FLAG_ANTIALIAS = (1 << 9),
};
// interpolate
@ -2278,7 +2283,7 @@ extern "C" {
float stop,
float step);
#define GGML_KQ_MASK_PAD 64
#define GGML_KQ_MASK_PAD 1
// q: [n_embd_k, n_batch, n_head, ne3 ]
// k: [n_embd_k, n_kv, n_head_kv, ne3 ]

View File

@ -127,10 +127,6 @@ if (NOT MSVC)
endif()
endif()
if (MINGW)
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# POSIX conformance
#

View File

@ -723,6 +723,12 @@ struct ggml_backend_sched {
bool op_offload;
int debug;
// used for debugging graph reallocations [GGML_SCHED_DEBUG_REALLOC]
// ref: https://github.com/ggml-org/llama.cpp/pull/17617
int debug_realloc;
int debug_graph_size;
int debug_prev_graph_size;
};
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
@ -1234,10 +1240,8 @@ void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgra
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
}
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy");
}
@ -1289,6 +1293,11 @@ void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgra
}
int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
// remember the actual graph_size for performing reallocation checks later [GGML_SCHED_DEBUG_REALLOC]
sched->debug_prev_graph_size = sched->debug_graph_size;
sched->debug_graph_size = graph_size;
if (sched->graph.size < graph_size) {
sched->graph.size = graph_size;
sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
@ -1395,14 +1404,21 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
#ifdef GGML_SCHED_NO_REALLOC
GGML_ABORT("%s: failed to allocate graph, but graph re-allocation is disabled by GGML_SCHED_NO_REALLOC\n", __func__);
#endif
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
if (sched->debug_realloc > 0) {
// we are interested only in situations where the graph was reallocated even though its size remained the same [GGML_SCHED_DEBUG_REALLOC]
// example: https://github.com/ggml-org/llama.cpp/pull/17143
const bool unexpected = !backend_ids_changed && sched->debug_prev_graph_size == sched->debug_graph_size;
if (unexpected || sched->debug_realloc > 1) {
GGML_ABORT("%s: unexpected graph reallocation (graph size = %d, nodes = %d, leafs = %d), debug_realloc = %d\n", __func__,
sched->debug_graph_size, sched->graph.n_nodes, sched->graph.n_leafs, sched->debug_realloc);
}
}
// the re-allocation may cause the split inputs to be moved to a different address
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
for (int i = 0; i < sched->n_backends; i++) {
@ -1620,6 +1636,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
sched->debug_realloc = 0;
#ifdef GGML_SCHED_NO_REALLOC
sched->debug_realloc = 1;
#endif
const char * GGML_SCHED_DEBUG_REALLOC = getenv("GGML_SCHED_DEBUG_REALLOC");
sched->debug_realloc = GGML_SCHED_DEBUG_REALLOC ? atoi(GGML_SCHED_DEBUG_REALLOC) : sched->debug_realloc;
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
@ -1636,6 +1660,9 @@ ggml_backend_sched_t ggml_backend_sched_new(
sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
sched->debug_graph_size = 0;
sched->debug_prev_graph_size = 0;
sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
sched->context_buffer = (char *) malloc(sched->context_buffer_size);

View File

@ -2500,6 +2500,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
if (op->op_params[0] != GGML_SCALE_MODE_NEAREST) {
return false;
}
if (op->op_params[0] & GGML_SCALE_FLAG_ANTIALIAS) {
return false;
}
return true;
}
case GGML_OP_POOL_2D:
@ -2561,6 +2564,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
return true;
case GGML_OP_OUT_PROD:
{
#ifdef ASCEND_310P
// Ger is not supported on 310p device
return false;
#endif
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:

View File

@ -8,6 +8,10 @@
#include <sys/sysctl.h>
#endif
#if !defined(HWCAP2_SVE2)
#define HWCAP2_SVE2 (1 << 1)
#endif
#if !defined(HWCAP2_I8MM)
#define HWCAP2_I8MM (1 << 13)
#endif

View File

@ -505,7 +505,6 @@ void ggml_gemv_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
@ -645,7 +644,6 @@ void ggml_gemv_q4_K_8x8_q8_K(int n,
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);

View File

@ -683,22 +683,14 @@ bool ggml_is_numa(void) {
}
#if defined(__ARM_ARCH)
#if defined(__linux__) && defined(__aarch64__)
#include <sys/auxv.h>
#endif
static void ggml_init_arm_arch_features(void) {
#if defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
#if defined(__linux__)
ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
#else
// TODO: add support of SVE for non-linux systems
#error "TODO: SVE is not supported on this platform. To use SVE, sve_cnt needs to be initialized here."
#endif
#endif
#include <arm_sve.h>
static void ggml_init_arm_arch_features(void) {
ggml_arm_arch_features.sve_cnt = svcntb();
}
#else
static void ggml_init_arm_arch_features(void) {}
#endif
#endif // __ARM_ARCH
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
@ -2706,6 +2698,11 @@ struct ggml_cplan ggml_graph_plan(
n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
}
#if defined(__EMSCRIPTEN__) && !defined(__EMSCRIPTEN_PTHREADS__)
// Emscripten without pthreads support can only use a single thread
n_threads = 1;
#endif
size_t work_size = 0;
struct ggml_cplan cplan;

View File

@ -0,0 +1,333 @@
#pragma once
typedef vector unsigned char vec_t;
typedef __vector_quad acc_t;
template <typename TA>
class tinyBLAS_Q0_PPC {
public:
tinyBLAS_Q0_PPC(int64_t k,
const TA *A, int64_t lda,
const block_q8_0 *B, int64_t ldb,
float *C, int64_t ldc,
int ith, int nth);
void matmul(int64_t m, int64_t n);
void matmul_tiled_q0(int64_t m, int64_t n, int64_t mc, int64_t nc, int64_t kc) {
vec_t A_pack[mc*kc*2];
vec_t B_pack[nc*kc*2];
int comparray[mc*kc];
constexpr bool is_Ablock_q4 = std::is_same_v<TA, block_q4_0>;
int64_t ytiles = m / mc;
int64_t xtiles = n / nc;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles) {
end = tiles;
}
for (int64_t job = start; job < end; ++job) {
int64_t ii = (job / xtiles) * mc;
int64_t jj = (job % xtiles) * nc;
for (int64_t kk = 0; kk < k; kk += kc) {
if constexpr(is_Ablock_q4) {
packNormalInt4_large(A + ii*lda + kk, lda, mc, 4, (int8_t*)A_pack, comparray);
} else {
packNormal_large<int8_t, vector signed char>(A + ii*lda + kk, lda, mc, 8, (int8_t*)A_pack, false, comparray);
}
packNormal_large<uint8_t, vector unsigned char>(B + jj*ldb + kk, ldb, nc, 8, (uint8_t*)B_pack, true);
KERNEL_Q0(ii, jj, mc, nc, kc, kk, A_pack, B_pack, comparray);
}
}
}
private:
inline void save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J);
}
}
}
inline void add_save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
float * c_ptr = (float *)(C+ii+((jj+J)*ldc)+I);
*c_ptr += *((float*)&fin_res[idx+I]+J);
}
}
}
template<typename ArrayType>
inline void compute(acc_t* ACC, int c_idx, int s_idx, ArrayType& comparray, vector float* vs, vector float* fin_res) {
vector signed int vec_C[4];
vector float CA[4] = {0};
vector float res[4] = {0};
__builtin_mma_disassemble_acc(vec_C, ACC);
for (int i = 0; i < 4; i++) {
CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0));
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]);
}
}
inline void process_q4_elements(vector signed char (&c)[2], int* ca) {
const vector signed char lowMask = vec_splats((signed char)0xF);
const vector unsigned char v4 = vec_splats((unsigned char)0x4);
const vector signed char v8 = vec_splats((signed char)0x8);
vector signed int vsum = {0};
vector signed int vsum2 = {0};
c[0] = vec_and(c[1], lowMask);
c[1] = vec_sr(c[1], v4);
c[0] = vec_sub(c[0], v8);
c[1] = vec_sub(c[1], v8);
vsum = vec_sum4s(c[0], vsum);
vsum2 = vec_sum4s(c[1], vsum2);
vsum = vec_add(vsum, vsum2);
*(ca) = vsum[0] + vsum[1] + vsum[2] + vsum[3];
}
template <typename V1, typename V2>
inline void vector_permute_store(V2 &s1, V2 &s2, V2 &s3, V2 &s4, V1 *vecOffset, bool flip) {
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
V2 t1, t2, t3, t4, t5, t6, t7, t8;
vector unsigned char xor_vector;
uint8_t flip_vec = 0x80;
xor_vector = vec_splats(flip_vec);
t1 = vec_perm(s1, s2, swiz1);
t2 = vec_perm(s1, s2, swiz2);
t3 = vec_perm(s3, s4, swiz1);
t4 = vec_perm(s3, s4, swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else {
assert(false && "RN/RM values not supported");
}
}
template<int size>
void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray);
template<typename VA, typename VB>
void packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip);
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n);
void KERNEL_4x8(int64_t ii, int64_t jj);
void KERNEL_8x4(int64_t ii, int64_t jj);
void KERNEL_8x8(int64_t ii, int64_t jj);
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN);
template <int RM, int RN>
void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n);
void compute_scale(int64_t ii, int64_t jj, int blk, vector float* vs){
for (int I = 0; I<8; I++) {
float a_scale = unhalf((A+((ii+I)*lda)+blk)->d);
for (int J = 0; J<4; J++) {
*((float*)&vs[I]+J) = (a_scale * unhalf((B+((jj+J)*ldb)+blk)->d));
*((float*)&vs[I+8]+J) = (a_scale * unhalf((B+((jj+J+4)*ldb)+blk)->d));
}
}
}
inline void process_q8_elements(const int8_t *qs, int *ca) {
vector signed char c1 = vec_xl(0, qs);
vector signed char c2 = vec_xl(16, qs);
vector signed int vsum1 = {0};
vector signed int vsum2 = {0};
vsum1 = vec_sum4s(c1, vsum1);
vsum2 = vec_sum4s(c2, vsum2);
vector signed int vsum = vec_add(vsum1, vsum2);
*ca = vsum[0] + vsum[1] + vsum[2] + vsum[3];
}
template<typename VA, typename VB>
void packNormal_large(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip, int* comparray=nullptr) {
int64_t i, j;
block_q8_0 *aoffset = NULL;
VA *vecOffset = NULL;
block_q8_0* aoffsets[8];
__vector_pair arr[8];
VB c[8][2] = {0};
VB c1[8] = {0}; VB c2[8] = {0};
aoffset = const_cast<block_q8_0*>(a);
vecOffset = vec;
j = (rows >> 3);
int index = 0;
if (j > 0) {
do {
for (int it = 0; it < 8; it++)
aoffsets[it] = aoffset + it*lda;
aoffset += 8 * lda;
for (int blk = 0; blk < kc; blk++) {
for (int it = 0; it < 8; it++) {
arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)(aoffsets[it]+blk)->qs);
__builtin_vsx_disassemble_pair(c[it], &arr[it]);
c1[it] = c[it][0];
c2[it] = c[it][1];
if (comparray){
process_q8_elements((aoffsets[it]+ blk)->qs, &comparray[index + 8*blk + it]);
}
}
vector_permute_store<VA, VB>(c1[0], c1[1], c1[2], c1[3], vecOffset, flip);
vector_permute_store<VA, VB>(c2[0], c2[1], c2[2], c2[3], vecOffset+64, flip);
vector_permute_store<VA, VB>(c1[4], c1[5], c1[6], c1[7], vecOffset+128, flip);
vector_permute_store<VA, VB>(c2[4], c2[5], c2[6], c2[7], vecOffset+192, flip);
vecOffset += 256;
}
j--;
index += 8*kc;
} while(j > 0);
}
}
void packNormalInt4_large(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, int*comparray) {
int64_t i, j;
TA *aoffset = NULL;
int8_t *vecOffset = NULL;
TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
vector signed char c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2] = {0};
vector signed char c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2] = {0};
aoffset = const_cast<TA*>(a);
vecOffset = vec;
int index = 0;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset5 = aoffset4 + lda;
aoffset6 = aoffset5 + lda;
aoffset7 = aoffset6 + lda;
aoffset8 = aoffset7 + lda;
aoffset += 8 * lda;
for (int blk = 0; blk < kc; blk++) {
c1[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset1+blk)->qs));
c2[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset2+blk)->qs));
c3[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset3+blk)->qs));
c4[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset4+blk)->qs));
c5[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset5+blk)->qs));
c6[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset6+blk)->qs));
c7[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset7+blk)->qs));
c8[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset8+blk)->qs));
process_q4_elements(c1, &comparray[index + 8*blk+0]);
process_q4_elements(c2, &comparray[index + 8*blk+1]);
process_q4_elements(c3, &comparray[index + 8*blk+2]);
process_q4_elements(c4, &comparray[index + 8*blk+3]);
process_q4_elements(c5, &comparray[index + 8*blk+4]);
process_q4_elements(c6, &comparray[index + 8*blk+5]);
process_q4_elements(c7, &comparray[index + 8*blk+6]);
process_q4_elements(c8, &comparray[index + 8*blk+7]);
vector_permute_store<int8_t, vector signed char>(c1[0], c2[0], c3[0], c4[0], vecOffset, false);
vector_permute_store<int8_t, vector signed char>(c1[1], c2[1], c3[1], c4[1], vecOffset+64, false);
vector_permute_store<int8_t, vector signed char>(c5[0], c6[0], c7[0], c8[0], vecOffset+128, false);
vector_permute_store<int8_t, vector signed char>(c5[1], c6[1], c7[1], c8[1], vecOffset+192, false);
vecOffset += 256;
}
j--;
index += 8*kc;
} while (j > 0);
}
}
void KERNEL_Q0(int64_t ii, int64_t jj, int64_t mc, int64_t nc, int64_t kc, int64_t l, vec_t *vec_A, vec_t *vec_B, int *comparray) {
acc_t acc[8];
for (int i = 0; i < mc ; i += 8) {
for (int j = 0; j < nc; j += 8) {
vector float fin_res[16] = {0};
vector float vs[16] = {0};
for (int64_t kk = 0; kk < kc; kk+=2) {
for (int x = 0; x < 8; x++) {
__builtin_mma_xxsetaccz(&acc[x]);
}
int A_block_idx = (i/8)*(16*kc) + kk*16;
int B_block_idx = (j/8)*(16*kc)+ kk*16;
vec_t *A_block = &vec_A[A_block_idx];
vec_t *B_block = &vec_B[B_block_idx];
for (int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc[0], A_block[x], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[1], A_block[x + 8], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[2], A_block[x], B_block[x+8]);
__builtin_mma_xvi8ger4pp(&acc[3], A_block[x+8], B_block[x+8]);
}
compute_scale(ii+i, jj+j, l+kk, vs);
int c_index = (i/8)*(8*kc)+ kk*8;
int* c_block = &comparray[c_index];
compute(&acc[0], 0, 0, c_block, vs, fin_res);
compute(&acc[1], 4, 4, c_block, vs, fin_res);
compute(&acc[2], 0, 8, c_block, vs, fin_res);
compute(&acc[3], 4, 12, c_block, vs, fin_res);
A_block_idx = (i/8)*(16*kc) + (kk+1)*16;
B_block_idx = (j/8)*(16*kc)+ (kk+1)*16;
A_block = &vec_A[A_block_idx];
B_block = &vec_B[B_block_idx];
for (int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc[4], A_block[x], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[5], A_block[x + 8], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[6], A_block[x], B_block[x+8]);
__builtin_mma_xvi8ger4pp(&acc[7], A_block[x+8], B_block[x+8]);
}
compute_scale(ii+i, jj+j, l+kk+1, vs);
c_index = (i/8)*(8*kc)+ (kk+1)*8;
c_block = &comparray[c_index];
compute(&acc[4], 0, 0, c_block, vs, fin_res);
compute(&acc[5], 4, 4, c_block, vs, fin_res);
compute(&acc[6], 0, 8, c_block, vs, fin_res);
compute(&acc[7], 4, 12, c_block, vs, fin_res);
}
if (l == 0) {
save_res(ii+i, jj+j, 0, fin_res);
save_res(ii+i+4, jj+j, 4, fin_res);
save_res(ii+i, jj+j+4, 8, fin_res);
save_res(ii+i+4, jj+j+4, 12, fin_res);
} else {
add_save_res(ii+i, jj+j, 0, fin_res);
add_save_res(ii+i+4, jj+j, 4, fin_res);
add_save_res(ii+i, jj+j+4, 8, fin_res);
add_save_res(ii+i+4, jj+j+4, 12, fin_res);
}
}
}
}
const TA *const A;
const block_q8_0 *const B;
float *C;
const int64_t k;
int64_t kc;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};

View File

@ -117,8 +117,7 @@ inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vec_mul(x, y); }
#endif
#if defined(__MMA__)
typedef vector unsigned char vec_t;
typedef __vector_quad acc_t;
#include "sgemm-ppc.h"
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED FUSED MULTIPLY ADD
@ -1574,94 +1573,34 @@ class tinyBLAS_BF16_PPC {
};
template <typename TA>
class tinyBLAS_Q0_PPC {
public:
tinyBLAS_Q0_PPC(int64_t k,
tinyBLAS_Q0_PPC<TA>::tinyBLAS_Q0_PPC(int64_t k,
const TA *A, int64_t lda,
const block_q8_0 *B, int64_t ldb,
float *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
kc = 64;
}
void matmul(int64_t m, int64_t n) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::matmul(int64_t m, int64_t n) {
int mc = 64; int nc = 64;
if (n % 8 == 0 && n < nc) {
nc = n;
mc = 32 ;
kc = 32;
}
const bool is_aligned = ((m & (mc - 1)) == 0) & ((n & (nc - 1)) == 0) & ((k & (kc - 1)) == 0);
if (is_aligned) {
this->matmul_tiled_q0(m, n, mc, nc, kc);
} else {
mnpack(0, m, 0, n);
}
private:
inline void save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J);
}
}
}
template<typename TA>
template<int size>
inline void compute(acc_t* ACC, int c_idx, int s_idx, std::array<int, size>& comparray, vector float* vs, vector float* fin_res) {
vector signed int vec_C[4];
vector float CA[4] = {0};
vector float res[4] = {0};
__builtin_mma_disassemble_acc(vec_C, ACC);
for (int i = 0; i < 4; i++) {
CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0));
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]);
}
}
/* This function processes quantized data from block_q4_0 elements.
* First the we try to extract the two int4 values stored in single int8_t into two signed int8.
* And then we subtract each of the resultant element with 8, to convert signed int8 to unsigned int8.
* Also compute the rowsum which is required to compensate the above conversion. */
inline void process_q4_elements(vector signed char (&c)[2], int* ca) {
const vector signed char lowMask = vec_splats((signed char)0xF);
const vector unsigned char v4 = vec_splats((unsigned char)0x4);
const vector signed char v8 = vec_splats((signed char)0x8);
vector signed int vsum = {0};
vector signed int vsum2 = {0};
c[0] = vec_and(c[1], lowMask);
c[1] = vec_sr(c[1], v4);
c[0] = vec_sub(c[0], v8);
c[1] = vec_sub(c[1], v8);
vsum = vec_sum4s(c[0], vsum);
vsum2 = vec_sum4s(c[1], vsum2);
vsum = vec_add(vsum, vsum2);
*(ca) = vsum[0] + vsum[1] + vsum[2] + vsum[3];
}
template <typename V1, typename V2>
inline void vector_permute_store(V2 &s1, V2 &s2, V2 &s3, V2 &s4, V1 *vecOffset, bool flip) {
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
V2 t1, t2, t3, t4, t5, t6, t7, t8;
vector unsigned char xor_vector;
uint8_t flip_vec = 0x80;
xor_vector = vec_splats(flip_vec);
t1 = vec_perm(s1, s2, swiz1);
t2 = vec_perm(s1, s2, swiz2);
t3 = vec_perm(s3, s4, swiz1);
t4 = vec_perm(s3, s4, swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
}
template<int size>
void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray) {
void tinyBLAS_Q0_PPC<TA>::packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray) {
int64_t i, j;
TA *aoffset = NULL;
int8_t *vecOffset = NULL;
@ -1781,8 +1720,10 @@ class tinyBLAS_Q0_PPC {
}
}
}
template<typename TA>
template<typename VA, typename VB>
void packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
void tinyBLAS_Q0_PPC<TA>::packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
int64_t i, j;
block_q8_0 *aoffset = NULL;
VA *vecOffset = NULL;
@ -1822,7 +1763,6 @@ class tinyBLAS_Q0_PPC {
j--;
} while(j > 0);
}
if (rows & 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; it++ )
@ -1878,7 +1818,8 @@ class tinyBLAS_Q0_PPC {
}
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int m_rem = MIN(m - m0, 16);
int n_rem = MIN(n - n0, 16);
@ -1915,7 +1856,8 @@ class tinyBLAS_Q0_PPC {
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[16] = {0};
acc_t acc_0, acc_1;
std::array<int, 4> comparray {};
@ -1953,14 +1895,15 @@ class tinyBLAS_Q0_PPC {
aoffset += lda;
}
}
compute<4>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<4>(&acc_1, 0, 4, comparray, vs, fin_res);
compute(&acc_0, 0, 0, comparray, vs, fin_res);
compute(&acc_1, 0, 4, comparray, vs, fin_res);
}
save_res(ii, jj, 0, fin_res);
save_res(ii, jj+4, 4, fin_res);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[8] = {0};
acc_t acc_0, acc_1;
std::array<int, 8> comparray {};
@ -1997,16 +1940,18 @@ class tinyBLAS_Q0_PPC {
aoffset += lda;
}
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
compute(&acc_0, 0, 0, comparray, vs, fin_res);
compute(&acc_1, 4, 4, comparray, vs, fin_res);
}
save_res(ii, jj, 0, fin_res);
save_res(ii+4, jj, 4, fin_res);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[16] = {0};
acc_t acc_0, acc_1, acc_2, acc_3;
acc_t acc_4, acc_5, acc_6, acc_7;
std::array<int, 8> comparray {};
vector float fin_res[16] = {0};
vector float vs[16] = {0};
@ -2046,10 +1991,10 @@ class tinyBLAS_Q0_PPC {
aoffset += lda;
}
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
compute<8>(&acc_2, 0, 8, comparray, vs, fin_res);
compute<8>(&acc_3, 4, 12, comparray, vs, fin_res);
compute(&acc_0, 0, 0, comparray, vs, fin_res);
compute(&acc_1, 4, 4, comparray, vs, fin_res);
compute(&acc_2, 0, 8, comparray, vs, fin_res);
compute(&acc_3, 4, 12, comparray, vs, fin_res);
}
save_res(ii, jj, 0, fin_res);
save_res(ii+4, jj, 4, fin_res);
@ -2057,7 +2002,8 @@ class tinyBLAS_Q0_PPC {
save_res(ii+4, jj+4, 12, fin_res);
}
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
@ -2125,21 +2071,9 @@ class tinyBLAS_Q0_PPC {
}
}
template<typename TA>
template <int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else {
assert(false && "RN/RM values not supported");
}
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
NOINLINE void tinyBLAS_Q0_PPC<TA>::gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
@ -2151,20 +2085,12 @@ class tinyBLAS_Q0_PPC {
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
kernel<RM, RN>(ii, jj);
this->kernel<RM, RN>(ii, jj);
}
}
const TA *const A;
const block_q8_0 *const B;
float *C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
template class tinyBLAS_Q0_PPC<block_q4_0>;
template class tinyBLAS_Q0_PPC<block_q8_0>;
class tinyBLAS_PPC {
public:

View File

@ -6,6 +6,12 @@
#include <vecintrin.h>
#endif
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
#else
#define NOINLINE __attribute__((__noinline__))
#endif
#ifdef __cplusplus
extern "C" {
#endif

View File

@ -6383,7 +6383,7 @@ static void ggml_compute_forward_im2col_3d_f16(
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
@ -7420,6 +7420,65 @@ static void ggml_compute_forward_upscale_f32(
}
}
}
} else if (mode == GGML_SCALE_MODE_BILINEAR && (mode_flags & GGML_SCALE_FLAG_ANTIALIAS)) {
// Similar to F.interpolate(..., mode="bilinear", align_corners=False, antialias=True)
// https://github.com/pytorch/pytorch/blob/8871ff29b743948d1225389d5b7068f37b22750b/aten/src/ATen/native/cpu/UpSampleKernel.cpp
auto triangle_filter = [](float x) -> float {
return std::max(1.0f - fabsf(x), 0.0f);
};
// support and invscale, minimum 1 pixel for bilinear
const float support1 = std::max(1.0f, 1.0f / sf1);
const float invscale1 = 1.0f / support1;
const float support0 = std::max(1.0f, 1.0f / sf0);
const float invscale0 = 1.0f / support0;
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const float y = ((float) i1 + pixel_offset) / sf1;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const float x = ((float) i0 + pixel_offset) / sf0;
// the range of source pixels that contribute
const int64_t x_min = std::max<int64_t>(x - support0 + pixel_offset, 0);
const int64_t x_max = std::min<int64_t>(x + support0 + pixel_offset, ne00);
const int64_t y_min = std::max<int64_t>(y - support1 + pixel_offset, 0);
const int64_t y_max = std::min<int64_t>(y + support1 + pixel_offset, ne01);
// bilinear filter with antialiasing
float val = 0.0f;
float total_weight = 0.0f;
for (int64_t sy = y_min; sy < y_max; sy++) {
const float weight_y = triangle_filter((sy - y + pixel_offset) * invscale1);
for (int64_t sx = x_min; sx < x_max; sx++) {
const float weight_x = triangle_filter((sx - x + pixel_offset) * invscale0);
const float weight = weight_x * weight_y;
if (weight <= 0.0f) {
continue;
}
const float pixel = *(const float *)((const char *)src0->data + sx*nb00 + sy*nb01 + i02*nb02 + i03*nb03);
val += pixel * weight;
total_weight += weight;
}
}
if (total_weight > 0.0f) {
val /= total_weight;
}
float * dst_ptr = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*dst_ptr = val;
}
}
}
}
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;

View File

@ -226,7 +226,7 @@ static const char * cu_get_error_str(CUresult err) {
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#if defined(GGML_USE_HIP) && defined(RDNA4)
#if defined(GGML_USE_HIP) && (defined(RDNA4) || defined(RDNA3))
#define AMD_WMMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(RDNA4)
@ -294,7 +294,7 @@ static bool amd_mfma_available(const int cc) {
}
static bool amd_wmma_available(const int cc) {
return GGML_CUDA_CC_IS_RDNA4(cc);
return (GGML_CUDA_CC_IS_RDNA4(cc) || GGML_CUDA_CC_IS_RDNA3(cc));
}
static bool volta_mma_available(const int cc) {
@ -463,6 +463,53 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
return x;
}
template<typename T, int width = WARP_SIZE>
static __device__ __forceinline__ T warp_prefix_inclusive_sum(T x) {
const int lane_id = threadIdx.x % width;
#pragma unroll
for (int offset = 1; offset < width; offset <<= 1) {
const T t = __shfl_up_sync(0xffffffff, x, offset, width);
if (lane_id >= offset) {
x += t;
}
}
return x;
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ float2 warp_prefix_inclusive_sum(float2 a) {
const int lane_id = threadIdx.x % width;
#pragma unroll
for (int offset = 1; offset < width; offset <<= 1) {
const float t_x = __shfl_up_sync(0xffffffff, a.x, offset, width);
const float t_y = __shfl_up_sync(0xffffffff, a.y, offset, width);
if (lane_id >= offset) {
a.x += t_x;
a.y += t_y;
}
}
return a;
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ half2 warp_prefix_inclusive_sum(half2 a) {
#ifdef FP16_AVAILABLE
const int lane_id = threadIdx.x % width;
#pragma unroll
for (int offset = 1; offset < width; offset <<= 1) {
const half2 t = __shfl_up_sync(0xffffffff, a, offset, width);
if (lane_id >= offset) {
a = __hadd2(a, t);
}
}
return a;
#else
NO_DEVICE_CODE;
return a;
#endif // FP16_AVAILABLE
}
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
#ifdef FP16_AVAILABLE
@ -989,6 +1036,10 @@ struct ggml_cuda_concurrent_event {
int n_streams = 0;
std::unordered_map<const ggml_tensor *, int> stream_mapping;
// Original order of nodes in this concurrent region (before interleaving)
// Used to restore grouping for fusion within streams
std::vector<const ggml_tensor *> original_order;
const ggml_tensor * join_node;
ggml_cuda_concurrent_event() = default;
@ -1011,6 +1062,7 @@ struct ggml_cuda_concurrent_event {
, fork_event(other.fork_event)
, n_streams(other.n_streams)
, stream_mapping(std::move(other.stream_mapping))
, original_order(std::move(other.original_order))
, join_node(other.join_node) {
other.fork_event = nullptr;
}
@ -1121,11 +1173,9 @@ struct ggml_cuda_concurrent_event {
};
struct ggml_cuda_stream_context {
std::vector<const ggml_tensor *> original_nodes;
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> concurrent_events;
void reset() {
original_nodes.clear();
concurrent_events.clear();
}
};

View File

@ -0,0 +1,237 @@
#include <algorithm>
#include "cumsum.cuh"
#include "convert.cuh"
#include "ggml-cuda/common.cuh"
#include "ggml.h"
#ifdef GGML_CUDA_USE_CUB
# include <cub/device/device_scan.cuh>
#endif // GGML_CUDA_USE_CUB
template<typename T, int BLOCK_SIZE>
static __global__ void cumsum_cub_kernel(
const T * __restrict__ src,
T * __restrict__ dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t s1, const int64_t s2, const int64_t s3) {
#ifdef GGML_CUDA_USE_CUB
using BlockScan = cub::BlockScan<T, BLOCK_SIZE>;
__shared__ typename BlockScan::TempStorage temp_storage;
__shared__ T block_carry; // carry from previous tile
const int tid = threadIdx.x;
const int64_t i1 = blockIdx.x;
const int64_t i2 = blockIdx.y;
const int64_t i3 = blockIdx.z;
if (i1 >= ne01 || i2 >= ne02 || i3 >= ne03) {
return;
}
const T * src_row = src + i1 * s01 + i2 * s02 + i3 * s03;
T * dst_row = dst + i1 * s1 + i2 * s2 + i3 * s3;
if (tid == 0) {
block_carry = 0;
}
__syncthreads();
for (int64_t start = 0; start < ne00; start += BLOCK_SIZE) {
int64_t idx = start + tid;
T x = (idx < ne00) ? src_row[idx] : T(0);
T inclusive;
T block_total;
BlockScan(temp_storage).InclusiveSum(x, inclusive, block_total);
__syncthreads();
T final_val = inclusive + block_carry;
// store result
if (idx < ne00) {
dst_row[idx] = final_val;
}
__syncthreads();
if (tid == 0) {
block_carry += block_total;
}
__syncthreads();
}
#else
NO_DEVICE_CODE;
#endif // GGML_CUDA_USE_CUB
}
// Fallback kernel implementation (original)
template<typename T>
static __global__ void cumsum_kernel(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t s0, const int64_t s1, const int64_t s2, const int64_t s3) {
GGML_UNUSED_VARS(s00, s0);
const int tid = threadIdx.x;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int lane = tid % warp_size;
const int warp = tid / warp_size;
const int warps_per_block = blockDim.x / warp_size;
extern __shared__ float smem[];
float * s_vals = smem;
float * s_warp_sums = smem + blockDim.x;
float * s_carry = smem + blockDim.x + warps_per_block;
float * s_chunk_total = s_carry + 1;
// Initialize carry
if (tid == 0) {
*s_carry = 0.0f;
}
__syncthreads();
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;
const int64_t i1 = blockIdx.x;
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
const T * src_row = src + i1 * s01 + i2 * s02 + i3 * s03;
T * dst_row = dst + i1 * s1 + i2 * s2 + i3 * s3;
for (int64_t start = 0; start < ne00; start += blockDim.x) {
int64_t idx = start + tid;
float val = (idx < ne00) ? ggml_cuda_cast<float, T>(src_row[idx]) : 0.0f;
// 1. Warp inclusive scan
val = warp_prefix_inclusive_sum<T, warp_size>(val);
s_vals[tid] = val;
// Store warp total
if (lane == warp_size - 1) {
s_warp_sums[warp] = val;
}
__syncthreads();
// 2. Exclusive scan of warp sums (warp 0 only)
if (warp == 0) {
float w = (tid < warps_per_block) ? s_warp_sums[tid] : 0.0f;
float inc = warp_prefix_inclusive_sum<T, warp_size>(w);
if (tid < warps_per_block) {
s_warp_sums[tid] = inc - w; // exclusive sum
}
if (tid == warps_per_block - 1) {
*s_chunk_total = inc; // total sum of this chunk
}
}
__syncthreads();
float carry = *s_carry;
float final_val = s_vals[tid] + s_warp_sums[warp] + carry;
if (idx < ne00) {
dst_row[idx] = ggml_cuda_cast<T, float>(final_val);
}
__syncthreads();
// Update carry for next chunk
if (tid == 0) {
*s_carry += *s_chunk_total;
}
__syncthreads();
}
}
template<typename T>
static void cumsum_cuda(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
cudaStream_t stream) {
const size_t type_size = sizeof(T);
bool use_cub = false;
#ifdef GGML_CUDA_USE_CUB
// Check if we can use CUB (data must be contiguous along innermost dimension)
const bool is_contiguous = (nb00 == type_size) && (nb0 == type_size);
if (is_contiguous) {
use_cub = true;
}
#endif // GGML_CUDA_USE_CUB
dim3 grid_dims(ne01, ne02, ne03);
const auto &info = ggml_cuda_info().devices[ggml_cuda_get_device()];
const int warp_size = info.warp_size;
const int num_warps = (ne00 + warp_size - 1) / warp_size;
int block_size = num_warps * warp_size;
block_size = std::min(block_size, CUDA_CUMSUM_BLOCK_SIZE);
dim3 block_dims(block_size, 1, 1);
const int warps_per_block = block_size / warp_size;
const size_t shmem_size = (block_size + warps_per_block + 2) * sizeof(float);
if (use_cub) {
cumsum_cub_kernel<T, CUDA_CUMSUM_BLOCK_SIZE><<<grid_dims, CUDA_CUMSUM_BLOCK_SIZE, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb1 / type_size, nb2 / type_size, nb3 / type_size
);
} else {
cumsum_kernel<<<grid_dims, block_dims, shmem_size, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
}
}
void ggml_cuda_op_cumsum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == dst->type);
switch(src0->type) {
case GGML_TYPE_F32:
{
cumsum_cuda(
(const float *)src0->data, (float *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
stream
);
} break;
// We do not support those on CPU for now anyway, so comment them out because they cause errors on some CI platforms
/*case GGML_TYPE_F16:
{
cumsum_cuda(
(const half *)src0->data, (half *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
stream
);
} break;
case GGML_TYPE_BF16:
{
cumsum_cuda(
(const nv_bfloat16 *)src0->data, (nv_bfloat16 *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
stream
);
} break;*/
default:
GGML_ABORT("fatal error");
}
}

View File

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_CUMSUM_BLOCK_SIZE 256
void ggml_cuda_op_cumsum(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -10,6 +10,12 @@
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
// log(2) = 0.6931, by adding this to the KQ maximum used for the softmax the numerical range representable
// by the VKQ accumulators is effectively being shifted up by a factor of 8.
// This reduces issues with numerical overflow but also causes larger values to be flushed to zero.
// However, as the output from FlashAttention will usually be used as an input for a matrix multiplication this should be negligible.
#define FATTN_KQ_MAX_OFFSET 0.6931f
typedef void (* fattn_kernel_t)(
const char * __restrict__ Q,
const char * __restrict__ K,
@ -25,7 +31,7 @@ typedef void (* fattn_kernel_t)(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
@ -621,7 +627,8 @@ static __global__ void flash_attn_mask_to_KV_max(
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne03, const int ne11) {
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne03, const int ne11,
const int nbatch_fa) {
constexpr int ncols = ncols1*ncols2;
const int bidx0 = blockIdx.x;
@ -632,7 +639,7 @@ static __global__ void flash_attn_stream_k_fixup(
const float * dst_fixup_data = ((const float *) dst_fixup) + gridDim.x*(2*2*ncols);
const int iter_k = ne11 / FATTN_KQ_STRIDE;
const int iter_k = (ne11 + (nbatch_fa - 1)) / nbatch_fa;
const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;
const int kbc0 = (bidx0 + 0)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
@ -765,7 +772,7 @@ static __global__ void flash_attn_combine_results(
template <int DV, int ncols1, int ncols2>
void launch_fattn(
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
const int nbatch_fa, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
) {
constexpr int ncols = ncols1 * ncols2;
@ -790,8 +797,6 @@ void launch_fattn(
GGML_ASSERT(!V || V->nb[0] == ggml_element_size(V));
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
@ -915,7 +920,7 @@ void launch_fattn(
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
} else {
const int ntiles_KQ = (K->ne[1] + KQ_row_granularity - 1) / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
const int ntiles_KQ = (K->ne[1] + nbatch_fa - 1) / nbatch_fa; // Max. number of parallel blocks limited by tensor size.
// parallel_blocks must not be larger than what the tensor size allows:
parallel_blocks = std::min(parallel_blocks, ntiles_KQ);
@ -970,6 +975,9 @@ void launch_fattn(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
// TODO other tensor dimensions after removal of WMMA kernel:
const uint3 ne01 = init_fastdiv_values(Q->ne[1]);
GGML_ASSERT(block_dim.x % warp_size == 0);
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
(const char *) Q->data,
@ -980,7 +988,7 @@ void launch_fattn(
KV_max.ptr,
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],
Q->ne[0], ne01, Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3], nb11, nb12, nb13,
nb21, nb22, nb23,
mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0, mask ? mask->ne[3] : 0,
@ -995,7 +1003,7 @@ void launch_fattn(
flash_attn_stream_k_fixup<DV, ncols1, ncols2>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], Q->ne[3], K->ne[1]);
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], Q->ne[3], K->ne[1], nbatch_fa);
}
} else if (parallel_blocks > 1) {
const dim3 block_dim_combine(DV, 1, 1);

File diff suppressed because it is too large Load Diff

View File

@ -501,6 +501,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
const half2 * const __restrict__ K_h2,
const half2 * const __restrict__ V_h2,
const half * const __restrict__ mask,
const uint3 ne01,
const float logit_softcap,
const float slope,
T_KQ * const KQ,
@ -512,7 +513,8 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
float * const KQ_sum,
T_acc * const VKQ,
const int k_VKQ_0,
const int k_VKQ_max) {
const int k_VKQ_max,
const int col_Q_0) {
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
@ -556,7 +558,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
// Apply logit softcap + mask, update KQ_max:
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
const int j = (jc0 + (threadIdx.y / np)*cpw)/ncols2;
const int j = fastmodulo(col_Q_0 + (jc0 + (threadIdx.y / np)*cpw)/ncols2, ne01);
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) {
@ -570,7 +572,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] += (ncols2 > 1 || mask) ?
slope*__half2float(mask[j*stride_mask + k_VKQ_0 + i_KQ]) : 0.0f;
KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] + FATTN_KQ_MAX_OFFSET);
}
}
@ -736,7 +738,7 @@ static __global__ void flash_attn_tile(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
@ -781,11 +783,11 @@ static __global__ void flash_attn_tile(
const int sequence = blockIdx.z / (ne02/ncols2);
const int head0 = blockIdx.z*ncols2 - sequence*ne02; // == blockIdx.z % (ne02/ncols2)
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb03*sequence + nb02* head0 + nb01*col_Q_0);
const float * Q_f = (const float *) (Q + nb03*sequence + nb02* head0);
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head0 / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb23*sequence + nb22*(head0 / gqa_ratio)); // K and V have same shape
const half * maskh = mask ? (const half *) (mask + nb33*(sequence % ne33) + nb31*col_Q_0) : nullptr;
const half * maskh = mask ? (const half *) (mask + nb33*(sequence % ne33)) : nullptr;
const int stride_K2 = nb11 / sizeof(half2);
const int stride_V2 = nb21 / sizeof(half2);
@ -842,11 +844,9 @@ static __global__ void flash_attn_tile(
for (int i0 = 0; i0 < DKQp; i0 += np*warp_size*cpy_ne_D) {
if (i0 + np*warp_size*cpy_ne_D <= DKQ || i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D < DKQ) {
float tmp_f[cpy_ne_D] = {0.0f};
if (ncols1 == 1 || col_Q_0 + j < ne01) {
ggml_cuda_memcpy_1<sizeof(tmp_f)>
(tmp_f, &Q_f[c*(nb02/sizeof(float)) + j*(nb01/sizeof(float))
(tmp_f, &Q_f[c*(nb02/sizeof(float)) + fastmodulo(col_Q_0 + j, ne01)*(nb01/sizeof(float))
+ i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D]);
}
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
@ -881,23 +881,23 @@ static __global__ void flash_attn_tile(
while (k_VKQ_0 < k_VKQ_max - nbatch_fa) {
constexpr bool oob_check = false;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
(Q_tmp, K_h2, V_h2, maskh, ne01, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max, col_Q_0);
k_VKQ_0 += gridDim.y*nbatch_fa;
}
if (k_VKQ_0 < k_VKQ_max) {
constexpr bool oob_check = true;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
(Q_tmp, K_h2, V_h2, maskh, ne01, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max, col_Q_0);
}
} else {
// Branch without out-of-bounds checks.
for (int k_VKQ_0 = blockIdx.y*nbatch_fa; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*nbatch_fa) {
constexpr bool oob_check = false;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
(Q_tmp, K_h2, V_h2, maskh, ne01, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max, col_Q_0);
}
}
@ -1010,13 +1010,13 @@ static __global__ void flash_attn_tile(
const int j = jc / ncols2;
const int c = jc % ncols2;
if (ncols1 > 1 && col_Q_0 + j >= ne01) {
if (ncols1 > 1 && col_Q_0 + j >= int(ne01.z)) {
return;
}
const float scale = gridDim.y == 1 ? 1.0f/KQ_sum[jc0] : 1.0f;
const int j_dst_unrolled = ((sequence*ne01 + col_Q_0 + j)*ne02 + head0 + c)*gridDim.y + blockIdx.y;
const int j_dst_unrolled = ((sequence*int(ne01.z) + col_Q_0 + j)*ne02 + head0 + c)*gridDim.y + blockIdx.y;
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_D = cpy_ne/2 < (DVp/2)/warp_size ? cpy_ne/2 : (DVp/2)/warp_size;

View File

@ -33,7 +33,7 @@ static __global__ void flash_attn_ext_vec(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
@ -150,7 +150,7 @@ static __global__ void flash_attn_ext_vec(
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
// Set memory to zero if out of bounds:
if (ncols > 1 && ic0 + j >= ne01) {
if (ncols > 1 && ic0 + j >= int(ne01.z)) {
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
@ -201,7 +201,7 @@ static __global__ void flash_attn_ext_vec(
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
float2 tmp[cpy_ne] = {{0.0f, 0.0f}};
if (ncols == 1 || ic0 + j < ne01) {
if (ncols == 1 || ic0 + j < int(ne01.z)) {
ggml_cuda_memcpy_1<cpy_nb>(tmp, &Q_j[i]);
ggml_cuda_memcpy_1<cpy_nb>(tmp + cpy_ne/2, &Q_j[i + cpy_ne/2]);
}
@ -222,7 +222,7 @@ static __global__ void flash_attn_ext_vec(
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
if (ncols == 1 || ic0 + j < ne01) {
if (ncols == 1 || ic0 + j < int(ne01.z)) {
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ], &Q_j[i]);
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ + cpy_ne/2], &Q_j[i + cpy_ne/2]);
}
@ -266,11 +266,11 @@ static __global__ void flash_attn_ext_vec(
sum = logit_softcap*tanhf(sum);
}
if (mask) {
if (mask && (ncols == 1 || ic0 + j < int(ne01.z))) {
sum += slope*__half2float(maskh[j*ne11 + i_KQ]);
}
KQ_max_new[j] = fmaxf(KQ_max_new[j], sum);
KQ_max_new[j] = fmaxf(KQ_max_new[j], sum + FATTN_KQ_MAX_OFFSET);
if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == uint32_t(i_KQ_0)) {
KQ_reg[j] = sum;
@ -412,7 +412,7 @@ static __global__ void flash_attn_ext_vec(
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 1 && ic0 + j_VKQ >= ne01) {
if (ncols > 1 && ic0 + j_VKQ >= int(ne01.z)) {
break;
}
@ -479,7 +479,7 @@ static __global__ void flash_attn_ext_vec(
if (gridDim.y == 1) {
dst_val /= KQ_sum[j_VKQ];
}
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + i0 + tid] = dst_val;
dst[(((sequence*int(ne01.z) + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + i0 + tid] = dst_val;
}
}
@ -489,8 +489,8 @@ static __global__ void flash_attn_ext_vec(
}
if (gridDim.y != 1 && tid < ncols && (ncols == 1 || ic0 + tid < ne01)) {
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(KQ_max[tid], KQ_sum[tid]);
if (gridDim.y != 1 && tid < ncols && (ncols == 1 || ic0 + tid < int(ne01.z))) {
dst_meta[((sequence*int(ne01.z) + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(KQ_max[tid], KQ_sum[tid]);
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,

View File

@ -38,14 +38,14 @@ static __global__ void flash_attn_ext_f16(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
#if defined(FLASH_ATTN_AVAILABLE) && (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN))
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
@ -149,7 +149,7 @@ static __global__ void flash_attn_ext_f16(
if (i0 + warp_size > D && i >= D) {
break;
}
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
KQ[j*D_padded + i] = ic0 + j < int(ne01.z) ? Q_f[j*stride_Q + i] * scale : 0.0f;
}
}
@ -218,8 +218,9 @@ static __global__ void flash_attn_ext_f16(
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/warp_size] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/warp_size]);
KQ_f_tmp[k0/warp_size] += mask && ic0 + j < int(ne01.z) ?
__half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/warp_size] + FATTN_KQ_MAX_OFFSET);
}
KQ_max_new = warp_reduce_max<warp_size>(KQ_max_new);
@ -270,7 +271,7 @@ static __global__ void flash_attn_ext_f16(
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/warp_size] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ2_tmp[k0/warp_size] += mask && ic0 + j < int(ne01.z) ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/warp_size]);
}
KQ_max_new = __half2half2(warp_reduce_max<warp_size>(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
@ -431,7 +432,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j_VKQ = j0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
if (ic0 + j_VKQ >= int(ne01.z)) {
return;
}
@ -442,7 +443,7 @@ static __global__ void flash_attn_ext_f16(
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
}
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
const int j_dst_unrolled = ((sequence*int(ne01.z) + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size) {
@ -481,7 +482,7 @@ static __global__ void flash_attn_ext_f16(
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
#endif // defined(FLASH_ATTN_AVAILABLE) && (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN))
}
constexpr int get_max_power_of_2(int x) {

View File

@ -2,9 +2,9 @@
#include "common.cuh"
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#if defined(GGML_USE_MUSA)
#define GGML_USE_WMMA_FATTN
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#endif // defined(GGML_USE_MUSA)
#if defined(GGML_HIP_ROCWMMA_FATTN)
#if defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)

View File

@ -12,13 +12,13 @@ static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_con
const ggml_tensor * Q = dst->src[0];
if constexpr (ncols2 <= 8) {
if (Q->ne[1] <= 8/ncols2) {
if (turing_mma_available(cc) && Q->ne[1] <= 8/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 8/ncols2, ncols2>(ctx, dst);
return;
}
}
if (Q->ne[1] <= 16/ncols2) {
if (turing_mma_available(cc) && Q->ne[1] <= 16/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 16/ncols2, ncols2>(ctx, dst);
return;
}
@ -41,7 +41,7 @@ static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2(ggml_backend_cuda_con
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
const bool use_gqa_opt = mask && max_bias == 0.0f;
const bool use_gqa_opt = mask && max_bias == 0.0f && K->ne[1] % FATTN_KQ_STRIDE == 0;
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
@ -275,8 +275,8 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
// For small batch sizes the vector kernel may be preferable over the kernels optimized for large batch sizes:
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % 64 == 0 && K->ne[1] % FATTN_KQ_STRIDE == 0;
// If Turing tensor cores available, use them:
if (turing_mma_available(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40 && Q->ne[0] != 72) {
// If Turing tensor cores are available, use them:
if (turing_mma_available(cc) && Q->ne[0] != 40 && Q->ne[0] != 72) {
if (can_use_vector_kernel) {
if (!ggml_is_quantized(K->type) && !ggml_is_quantized(V->type)) {
if (cc >= GGML_CUDA_CC_ADA_LOVELACE && Q->ne[1] == 1 && Q->ne[3] == 1 && !(gqa_ratio > 4 && K->ne[1] >= 8192)) {
@ -297,7 +297,21 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
return BEST_FATTN_KERNEL_VEC;
}
}
return BEST_FATTN_KERNEL_MMA_F16;
}
if (volta_mma_available(cc) && Q->ne[0] != 40 && Q->ne[0] != 72) {
int gqa_ratio_eff = 1;
const int ncols2_max = Q->ne[0] == 576 ? 16 : 8;
while (gqa_ratio % (2*gqa_ratio_eff) == 0 && gqa_ratio_eff < ncols2_max) {
gqa_ratio_eff *= 2;
}
if (can_use_vector_kernel && Q->ne[1] * gqa_ratio_eff <= 2) {
return BEST_FATTN_KERNEL_VEC;
}
if (Q->ne[1] * gqa_ratio_eff <= 16) {
return BEST_FATTN_KERNEL_TILE; // On Volta tensor cores are only faster for sufficiently large matrices.
}
return BEST_FATTN_KERNEL_MMA_F16;
}

View File

@ -54,6 +54,8 @@
#include "ggml-cuda/set-rows.cuh"
#include "ggml-cuda/pad_reflect_1d.cuh"
#include "ggml-cuda/solve_tri.cuh"
#include "ggml-cuda/tri.cuh"
#include "ggml-cuda/cumsum.cuh"
#include "ggml.h"
#include <algorithm>
@ -2701,6 +2703,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
case GGML_OP_CUMSUM:
ggml_cuda_op_cumsum(ctx, dst);
break;
case GGML_OP_TRI:
ggml_cuda_op_tri(ctx, dst);
break;
case GGML_OP_RWKV_WKV6:
ggml_cuda_op_rwkv_wkv6(ctx, dst);
break;
@ -3238,9 +3246,56 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
}
if (should_launch_concurrent_events) {
//Restore the original graph to enable fusion within the streams
cgraph->nodes = const_cast<ggml_tensor **>(stream_ctx.original_nodes.data());
cgraph->n_nodes = (int) stream_ctx.original_nodes.size();
// Restore original node order within each concurrent region to enable fusion within streams
std::unordered_map<const ggml_tensor *, int> node_to_idx;
node_to_idx.reserve(cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; ++i) {
node_to_idx[cgraph->nodes[i]] = i;
}
for (auto & [fork_node, event] : stream_ctx.concurrent_events) {
// Find positions of all nodes from this event in the current graph
std::vector<int> positions;
positions.reserve(event.original_order.size());
bool all_found = true;
for (const ggml_tensor * orig_node : event.original_order) {
auto it = node_to_idx.find(orig_node);
if (it != node_to_idx.end()) {
positions.push_back(it->second);
} else {
all_found = false;
break;
}
}
if (!all_found || positions.size() != event.original_order.size()) {
continue;
}
// Sort positions to get contiguous range
std::vector<int> sorted_positions = positions;
std::sort(sorted_positions.begin(), sorted_positions.end());
bool is_contiguous = true;
for (size_t i = 1; i < sorted_positions.size(); ++i) {
if (sorted_positions[i] != sorted_positions[i-1] + 1) {
is_contiguous = false;
break;
}
}
if (!is_contiguous) {
continue;
}
// Restore original order at the sorted positions
int start_pos = sorted_positions[0];
for (size_t i = 0; i < event.original_order.size(); ++i) {
cgraph->nodes[start_pos + i] = const_cast<ggml_tensor *>(event.original_order[i]);
}
}
}
for (int i = 0; i < cgraph->n_nodes; i++) {
@ -3274,7 +3329,6 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
GGML_LOG_DEBUG("Setting stream no to %d for node %s\n", cuda_ctx->curr_stream_no, node->name);
}
}
prev_i = i;
#ifdef GGML_CUDA_DEBUG
const int nodes_fused = i - prev_i - 1;
@ -3282,6 +3336,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
GGML_LOG_INFO("nodes_fused: %d\n", nodes_fused);
}
#endif
prev_i = i;
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
@ -3805,14 +3860,6 @@ static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph
// store {fork_idx, join_idx}
std::vector<std::pair<int, int>> concurrent_node_ranges;
// save the original nodes
std::vector<const ggml_tensor *> original_nodes;
original_nodes.reserve(cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; ++i) {
original_nodes.push_back(cgraph->nodes[i]);
}
cuda_ctx->stream_context().original_nodes = std::move(original_nodes);
for (const auto & [root_node, count] : fan_out) {
if (count >= min_fan_out && count <= max_fan_out) {
const int root_node_idx = node_indices[root_node];
@ -3917,6 +3964,13 @@ static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph
continue;
}
// Save the original order of nodes in this region before interleaving
// This is used later to restore grouping for fusion within streams
concurrent_event.original_order.reserve(total_branch_nodes);
for (int i = fork_node_idx + 1; i < join_node_idx; ++i) {
concurrent_event.original_order.push_back(cgraph->nodes[i]);
}
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> & concurrent_events = cuda_ctx->stream_context().concurrent_events;
GGML_ASSERT(concurrent_events.find(root_node) == concurrent_events.end());
concurrent_events.emplace(root_node, std::move(concurrent_event));
@ -4563,6 +4617,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
case GGML_OP_CUMSUM:
case GGML_OP_TRI:
return true;
case GGML_OP_SOLVE_TRI:
return op->src[0]->ne[0] <= 64 && op->src[1]->ne[0] <= 32;

View File

@ -68,10 +68,31 @@ static __device__ __forceinline__ half2 ggml_cuda_movmatrix(const half2 x) {
namespace ggml_cuda_mma {
// Some architectures like Volta or CDNA3 perform multiple matrix multiplications per warp in parallel,
// effectively the warp is being split into subgroups of threads that each perform a single mma instruction.
// In those cases the data can be split in different ways across the warp.
enum data_layout {
// By default the data uses the I direction as its major dimension and the J direction as its minor dimension.
// For the A/C matrices this means I major == row major, J major == column major.
// For the B matrix this means I major == column major, J major == row major.
// MIRRORED == Each data value is held exactly once per thread subgroup.
DATA_LAYOUT_I_MAJOR = 0, // Always used for Turing, Ampere, Ada Lovelace, consumer Blackwell.
DATA_LAYOUT_I_MAJOR_MIRRORED = 10,
DATA_LAYOUT_J_MAJOR_MIRRORED = 20,
};
// Implemented mma combinations are:
// - (I_MAJOR, I_MAJOR) -> I_MAJOR
// - (I_MAJOR, I_MAJOR_MIRRORED) -> I_MAJOR
// - (I_MAJOR, J_MAJOR_MIRRORED) -> I_MAJOR
template <int I_, int J_, typename T, data_layout ds_=DATA_LAYOUT_I_MAJOR>
struct tile {};
template <int I_, int J_, typename T>
struct tile {
struct tile<I_, J_, T, DATA_LAYOUT_I_MAJOR> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR;
#if defined(AMD_MFMA_AVAILABLE)
static constexpr int ne = I * J / 64;
@ -131,9 +152,9 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 32 && J == 8) {
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (l & 2) | (threadIdx.x % 2);
return (((threadIdx.x % 16) / 4) * 8) + ((threadIdx.x / 16) * 4) + (l & 2) + (threadIdx.x % 2);
#else
return (l & 2) | (threadIdx.x & ~2);
return (l & 2) + (threadIdx.x & ~2);
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
} else {
NO_DEVICE_CODE;
@ -143,7 +164,7 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 32 && J == 8) {
return (threadIdx.x & 2) | (l & (4 + 1));
return (threadIdx.x & 2) + (l & (4 + 1));
} else {
NO_DEVICE_CODE;
return -1;
@ -152,6 +173,9 @@ namespace ggml_cuda_mma {
#elif defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
static constexpr int ne = I * J / 32;
#elif defined(RDNA3)
static constexpr int ne = (I == 16 && J == 16) ? I * J / 32 : I * J / 16;
#endif // defined(RDNA4)
T x[ne] = {0};
static constexpr __device__ bool supported() {
@ -161,7 +185,11 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 16) {
#if defined(RDNA4)
return 8 * (threadIdx.x / 16) + l;
#elif defined(RDNA3)
return 2 * l + (threadIdx.x / 16);
#endif // defined(RDNA4)
} else {
NO_DEVICE_CODE;
return -1;
@ -176,7 +204,6 @@ namespace ggml_cuda_mma {
return -1;
}
}
#endif
#else
static constexpr int ne = I * J / 32;
T x[ne] = {0};
@ -196,9 +223,9 @@ namespace ggml_cuda_mma {
} else if constexpr (I == 8 && J == 8) {
return threadIdx.x / 4;
} else if constexpr (I == 16 && J == 8) {
return ((l / 2) * 8) | (threadIdx.x / 4);
return ((l / 2) * 8) + (threadIdx.x / 4);
} else if constexpr (I == 16 && J == 16) {
return (((l / 2) % 2) * 8) | (threadIdx.x / 4);
return (((l / 2) % 2) * 8) + (threadIdx.x / 4);
} else if constexpr (I == 32 && J == 8) {
return tile<16, 8, T>::get_i(l); // Memory layout simply repeated with same pattern in i direction.
} else {
@ -211,11 +238,11 @@ namespace ggml_cuda_mma {
if constexpr (I == 8 && J == 4) {
return threadIdx.x % 4;
} else if constexpr (I == 8 && J == 8) {
return (l * 4) | (threadIdx.x % 4);
return (l * 4) + (threadIdx.x % 4);
} else if constexpr (I == 16 && J == 8) {
return ((threadIdx.x % 4) * 2) | (l % 2);
return ((threadIdx.x % 4) * 2) + (l % 2);
} else if constexpr (I == 16 && J == 16) {
return ((l / 4) * 8) | ((threadIdx.x % 4) * 2) | (l % 2);
return ((l / 4) * 8) + ((threadIdx.x % 4) * 2) + (l % 2);
} else if constexpr (I == 32 && J == 8) {
return tile<16, 8, T>::get_j(l); // Memory layout simply repeated with same pattern in i direction.
} else {
@ -227,26 +254,24 @@ namespace ggml_cuda_mma {
};
template <int I_, int J_>
struct tile<I_, J_, half2> {
struct tile<I_, J_, half2, DATA_LAYOUT_I_MAJOR> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR;
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
static constexpr int ne = I == 8 && J == 8 ? I * J / (WARP_SIZE/4) : I * J / WARP_SIZE;
static constexpr int ne = I * J / WARP_SIZE;
half2 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 8) return true;
if (I == 32 && J == 8) return true;
if (I == 32 && J == 4) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 8 && J == 8) {
return ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
} else if constexpr (I == 32 && J == 8) {
if constexpr (I == 32 && J == 4) {
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
return (((threadIdx.x % 16) / 4) * 8) + ((threadIdx.x / 16) * 4) + (threadIdx.x % 4);
#else
return threadIdx.x;
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
@ -257,7 +282,7 @@ namespace ggml_cuda_mma {
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr ((I == 8 || I == 32) && J == 8) {
if constexpr (I == 32 && J == 4) {
return l;
} else {
NO_DEVICE_CODE;
@ -265,6 +290,7 @@ namespace ggml_cuda_mma {
}
}
#elif defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
half2 x[ne] = {{0.0f, 0.0f}};
@ -307,11 +333,11 @@ namespace ggml_cuda_mma {
if constexpr (I == 8 && J == 8) {
return threadIdx.x / 4;
} else if constexpr (I == 16 && J == 4) {
return (l * 8) | (threadIdx.x / 4);
return (l * 8) + (threadIdx.x / 4);
} else if constexpr (I == 16 && J == 8) {
return ((l % 2) * 8) | (threadIdx.x / 4);
return ((l % 2) * 8) + (threadIdx.x / 4);
} else if constexpr (I == 32 && J == 8) {
return ((l / 4) * 16) | ((l % 2) * 8) | (threadIdx.x / 4);
return ((l / 4) * 16) + ((l % 2) * 8) + (threadIdx.x / 4);
} else {
NO_DEVICE_CODE;
return -1;
@ -320,13 +346,13 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 8) {
return (l * 4) | (threadIdx.x % 4);
return (l * 4) + (threadIdx.x % 4);
} else if constexpr (I == 16 && J == 4) {
return threadIdx.x % 4;
} else if constexpr (I == 16 && J == 8) {
return ((l / 2) * 4) | (threadIdx.x % 4);
return ((l / 2) * 4) + (threadIdx.x % 4);
} else if constexpr (I == 32 && J == 8) {
return ((l & 2) * 2) | (threadIdx.x % 4);
return ((l & 2) * 2) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
@ -336,14 +362,15 @@ namespace ggml_cuda_mma {
};
template <int I_, int J_>
struct tile<I_, J_, nv_bfloat162> {
struct tile<I_, J_, nv_bfloat162, DATA_LAYOUT_I_MAJOR> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR;
static constexpr int ne = I * J / WARP_SIZE;
#if defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
#if defined(AMD_WMMA_AVAILABLE)
static constexpr __device__ bool supported() {
if (I == 16 && J == 8) return true;
return false;
@ -367,9 +394,6 @@ namespace ggml_cuda_mma {
}
}
#else
static constexpr int ne = I * J / WARP_SIZE;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 8) return true;
if (I == 16 && J == 4) return true;
@ -381,9 +405,9 @@ namespace ggml_cuda_mma {
if constexpr (I == 8 && J == 8) {
return threadIdx.x / 4;
} else if constexpr (I == 16 && J == 4) {
return (l * 8) | (threadIdx.x / 4);
return (l * 8) + (threadIdx.x / 4);
} else if constexpr (I == 16 && J == 8) {
return ((l % 2) * 8) | (threadIdx.x / 4);
return ((l % 2) * 8) + (threadIdx.x / 4);
} else {
NO_DEVICE_CODE;
return -1;
@ -392,11 +416,11 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 8) {
return (l * 4) | (threadIdx.x % 4);
return (l * 4) + (threadIdx.x % 4);
} else if constexpr (I == 16 && J == 4) {
return threadIdx.x % 4;
} else if constexpr (I == 16 && J == 8) {
return ((l / 2) * 4) | (threadIdx.x % 4);
return ((l / 2) * 4) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
@ -405,6 +429,73 @@ namespace ggml_cuda_mma {
#endif // defined(AMD_WMMA_AVAILABLE)
};
template <int I_, int J_>
struct tile<I_, J_, half2, DATA_LAYOUT_I_MAJOR_MIRRORED> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR_MIRRORED;
static constexpr int ne = I * J / (WARP_SIZE/4);
half2 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 4) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int /*l*/) {
if constexpr (I == 8 && J == 4) {
return ((threadIdx.x / 16) * 4) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 4) {
return l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
};
template <int I_, int J_>
struct tile<I_, J_, half2, DATA_LAYOUT_J_MAJOR_MIRRORED> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_J_MAJOR_MIRRORED;
static constexpr int ne = I * J / (WARP_SIZE/4);
half2 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 4) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 8 && J == 4) {
return ((l / 2) * 4) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 4) {
return ((threadIdx.x / 16) * 2) + (l % 2);
} else {
NO_DEVICE_CODE;
return -1;
}
}
};
#if defined(TURING_MMA_AVAILABLE)
template <int I, int J>
static __device__ __forceinline__ tile<I, J/2, half2> get_half2(const tile<I, J, float> & tile_float) {
tile<I, J/2, half2> ret;
@ -422,9 +513,26 @@ namespace ggml_cuda_mma {
return ret;
}
#else // Volta
template <int I, int J>
static __device__ __forceinline__ tile<I, J/2, half2> get_half2(const tile<I, J, float> & tile_float) {
tile<I, J/2, half2> ret;
#pragma unroll
for (int l0 = 0; l0 < tile_float.ne; l0 += 4) {
ret.x[l0/2 + 0] = make_half2(tile_float.x[l0 + 0], tile_float.x[l0 + 1]);
ret.x[l0/2 + 1] = make_half2(tile_float.x[l0 + 2], tile_float.x[l0 + 3]);
template <int I, int J, typename T>
static __device__ __forceinline__ void load_generic(tile<I, J, T> & t, const T * __restrict__ xs0, const int stride) {
// On Volta FP16 and FP32 tiles have a different memory layout,
// for the conversion threads with an offset of 2 need to exchange half their values:
ret.x[l0/2 + (((threadIdx.x % 4) / 2) ^ 1)] = __shfl_xor_sync(
0xFFFFFFFF, ret.x[l0/2 + (((threadIdx.x % 4) / 2) ^ 1)], 2, WARP_SIZE);
}
return ret;
}
#endif // defined(TURING_MMA_AVAILABLE)
template <int I, int J, typename T, data_layout dl>
static __device__ __forceinline__ void load_generic(tile<I, J, T, dl> & t, const T * __restrict__ xs0, const int stride) {
#if defined(AMD_MFMA_AVAILABLE)
if constexpr (I == 64 && J == 2) { // Special tile size to load <16, 4> as <16, 8>
#pragma unroll
@ -443,17 +551,33 @@ namespace ggml_cuda_mma {
} else if constexpr (std::is_same_v<T, int>) {
if constexpr (I == 16 && J == 4) {
int64_t * xi = (int64_t *) t.x;
#if defined(RDNA4)
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
xi[0] = xs[0];
#elif defined(RDNA3)
static_assert(tile<I,J,T>::ne >= 4, "fragment too small");
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride);
xi[0] = xs[0];
xi[1] = xs[1];
#endif // defined(RDNA4)
} else if constexpr (I == 16 && J == 8) {
int64_t * xi = (int64_t *) t.x;
#if defined(RDNA4)
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I));
xi[0] = xs[0];
const int64_t * xs1 = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I) + 2);
xi[1] = xs1[0];
#elif defined(RDNA3)
static_assert(tile<I,J,T>::ne >= 8, "fragment too small");
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride);
// contiguous four 64-bit chunks per lane for the wider RDNA3 fragment
xi[0] = xs[0];
xi[1] = xs[1];
const int64_t * xs1 = xs + 2;
xi[2] = xs1[0];
xi[3] = xs1[1];
#endif // defined(RDNA4)
} else {
NO_DEVICE_CODE;
}
@ -511,18 +635,6 @@ namespace ggml_cuda_mma {
: "=r"(xi[0]), "=r"(xi[1]), "=r"(xi[2]), "=r"(xi[3])
: "l"(xs));
#else
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
GGML_UNUSED_VARS(t, xs0, stride);
NO_DEVICE_CODE;
#else
load_generic(t, xs0, stride);
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#endif // TURING_MMA_AVAILABLE
}
template <typename T>
static __device__ __forceinline__ void load_ldmatrix(
tile<32, 8, T> & t, const T * __restrict__ xs0, const int stride) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#if 1
// TODO: more generic handling
@ -533,9 +645,31 @@ namespace ggml_cuda_mma {
load_generic(t, xs0, stride);
#endif // 1
#else
tile<16, 8, T> * t16 = (tile<16, 8, T> *) &t;
load_ldmatrix(t16[0], xs0 + 0*stride, stride);
load_ldmatrix(t16[1], xs0 + 16*stride, stride);
load_generic(t, xs0, stride);
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void load_ldmatrix(
tile<8, 4, half2, DATA_LAYOUT_I_MAJOR_MIRRORED> & t, const half2 * __restrict__ xs0, const int stride) {
ggml_cuda_memcpy_1<4*sizeof(half2)>(t.x, xs0 + t.get_i(0)*stride);
}
static __device__ __forceinline__ void load_ldmatrix(
tile<8, 4, half2, DATA_LAYOUT_J_MAJOR_MIRRORED> & t, const half2 * __restrict__ xs0, const int stride) {
#pragma unroll
for (int l0 = 0; l0 < t.ne; l0 += 2) {
ggml_cuda_memcpy_1<2*sizeof(half2)>(t.x + l0, xs0 + t.get_i(l0)*stride + t.get_j(l0));
}
}
static __device__ __forceinline__ void load_ldmatrix(
tile<32, 4, half2> & t, const half2 * __restrict__ xs0, const int stride) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
ggml_cuda_memcpy_1<4*sizeof(half2)>(t.x, xs0 + t.get_i(0)*stride);
#else
GGML_UNUSED_VARS(t, xs0, stride);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
}
@ -747,12 +881,14 @@ namespace ggml_cuda_mma {
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[3]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#elif defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
using halfx8_t = __attribute__((ext_vector_type(8))) _Float16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const halfx8_t& a_frag = reinterpret_cast<const halfx8_t&>(A.x[0]);
const halfx8_t& b_frag = reinterpret_cast<const halfx8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12(a_frag, b_frag, acc_frag);
#endif // RDNA4
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
@ -762,12 +898,14 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ void mma(
tile<16, 16, float> & D, const tile<16, 8, nv_bfloat162> & A, const tile<16, 8, nv_bfloat162> & B) {
#if defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
using bf16x8_t = __attribute__((ext_vector_type(8))) __bf16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const bf16x8_t& a_frag = reinterpret_cast<const bf16x8_t&>(A.x[0]);
const bf16x8_t& b_frag = reinterpret_cast<const bf16x8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12(a_frag, b_frag, acc_frag);
#endif // RDNA4
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
@ -796,14 +934,14 @@ namespace ggml_cuda_mma {
#endif // defined(CDNA3)
#elif defined(AMD_WMMA_AVAILABLE)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
#if defined(RDNA4)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
@ -822,7 +960,30 @@ namespace ggml_cuda_mma {
acc[0],
true
);
#endif // defined(RDNA4)
#elif defined(RDNA3)
using int32x4_t = __attribute__((__vector_size__(4 * sizeof(int)))) int;
int32x4_t * a_vec = (int32x4_t *) A.x;
int32x4_t * b_vec = (int32x4_t *) B.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
true
);
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
true,
a_vec[1],
true,
b_vec[1],
acc[0],
true
);
#endif // RDNA4
#else
GGML_UNUSED_VARS(D, A, B);
@ -860,14 +1021,14 @@ namespace ggml_cuda_mma {
template <typename T1, typename T2, int J, int K>
static __device__ __forceinline__ void mma(
tile<32, J, T1> & D, const tile<32, K, T2> & A, const tile<J, K, T2> & B) {
tile<16, J, T1> * D16 = (tile<16, J, T1> *) &D;
tile<16, K, T2> * A16 = (tile<16, K, T2> *) &A;
tile <16, J, T1> * D16 = reinterpret_cast< tile<16, J, T1> *>(&D);
const tile<16, K, T2> * A16 = reinterpret_cast<const tile<16, K, T2> *>(&A);
mma(D16[0], A16[0], B);
mma(D16[1], A16[1], B);
}
static __device__ __forceinline__ void mma(
tile<32, 8, float> & D, const tile<32, 8, half2> & A, const tile<8, 8, half2> & B) {
tile<32, 8, float> & D, const tile<32, 4, half2> & A, const tile<8, 4, half2, DATA_LAYOUT_I_MAJOR_MIRRORED> & B) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
@ -880,32 +1041,42 @@ namespace ggml_cuda_mma {
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[2]), "r"(Bxi[3]));
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[4]), "r"(Axi[5]), "r"(Bxi[4]), "r"(Bxi[5]));
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[6]), "r"(Axi[7]), "r"(Bxi[6]), "r"(Bxi[7]));
#else
tile <16, 8, float> * D16 = reinterpret_cast<tile <16, 8, float> *>(&D);
const tile<16, 8, half2> * A16 = reinterpret_cast<const tile<16, 8, half2> *>(&A);
mma(D16[0], A16[0], B);
mma(D16[1], A16[1], B);
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
}
static __device__ __forceinline__ void mma(
tile<32, 4, half2> & D, const tile<32, 4, half2> & A, const tile<8, 4, half2, DATA_LAYOUT_J_MAJOR_MIRRORED> & B) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
asm("mma.sync.aligned.m8n8k4.row.row.f16.f16.f16.f16 "
"{%0, %1, %2, %3}, {%4, %5}, {%6, %7}, {%0, %1, %2, %3};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]), "r"(Bxi[1]));
asm("mma.sync.aligned.m8n8k4.row.row.f16.f16.f16.f16 "
"{%0, %1, %2, %3}, {%4, %5}, {%6, %7}, {%0, %1, %2, %3};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[2]), "r"(Bxi[3]));
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
}
static __device__ __forceinline__ void mma(
tile<16, 16, int> & D, const tile<16, 4, int> & A, const tile<16, 4, int> & B) {
#if defined(AMD_WMMA_AVAILABLE)
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
#if defined(RDNA4)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[0],
@ -914,12 +1085,25 @@ static __device__ __forceinline__ void mma(
acc[0],
false
);
#elif defined(RDNA3)
using int32x4_t = __attribute__((__vector_size__(4 * sizeof(int)))) int;
int32x4_t * a_vec = (int32x4_t *) A.x;
int32x4_t * b_vec = (int32x4_t *) B.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
false
);
#endif // RDNA4
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif
#endif // AMD_WMMA_AVAILABLE
}
}

View File

@ -37,23 +37,19 @@ static __global__ void mul_mat_f(
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;
constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
constexpr bool supported = I_16_supported || I_32_supported;
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
typedef tile<I_preferred, 8, T> tile_A;
#ifdef VOLTA_MMA_AVAILABLE
if constexpr (!std::is_same_v<T, half2>) {NO_DEVICE_CODE;} else {
typedef tile<32, 4, T, DATA_LAYOUT_I_MAJOR> tile_A;
typedef tile< 8, 4, T, DATA_LAYOUT_I_MAJOR_MIRRORED> tile_B;
typedef tile<32, 8, float, DATA_LAYOUT_I_MAJOR> tile_C;
#else
typedef tile<16, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C;
typedef tile<16, 8, float> tile_C;
#endif // VOLTA_MMA_AVAILABLE
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
if constexpr (!tile_A::supported() || !tile_B::supported() || !tile_C::supported()) {
NO_DEVICE_CODE;
return;
}
@ -248,6 +244,9 @@ static __global__ void mul_mat_f(
}
}
}
#ifdef VOLTA_MMA_AVAILABLE
}
#endif //VOLTA_MMA_AVAILABLE
#else
GGML_UNUSED_VARS(x, y, ids, dst,
ncols, ncols_dst_total, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
@ -278,27 +277,24 @@ static __global__ void mul_mat_f_ids(
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;
constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
constexpr bool supported = I_16_supported || I_32_supported;
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
typedef tile<I_preferred, 8, T> tile_A;
#ifdef VOLTA_MMA_AVAILABLE
if constexpr (!std::is_same_v<T, half2>) {NO_DEVICE_CODE;} else {
typedef tile<32, 4, T, DATA_LAYOUT_I_MAJOR> tile_A;
typedef tile< 8, 4, T, DATA_LAYOUT_I_MAJOR_MIRRORED> tile_B;
typedef tile<32, 8, float, DATA_LAYOUT_I_MAJOR> tile_C;
#else
typedef tile<16, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C;
typedef tile<16, 8, float> tile_C;
#endif // VOLTA_MMA_AVAILABLE
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
if constexpr (!tile_A::supported() || !tile_B::supported() || !tile_C::supported()) {
NO_DEVICE_CODE;
return;
}
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4;
constexpr int ntA = rows_per_block / tile_A::I;
@ -517,6 +513,9 @@ static __global__ void mul_mat_f_ids(
}
}
}
#ifdef VOLTA_MMA_AVAILABLE
}
#endif // VOLTA_MMA_AVAILABLE
#else
GGML_UNUSED_VARS(x, y, ids_src_compact, ids_dst_compact, expert_bounds, dst,
ncols, ncols_dst_total, nchannels_dst, stride_row, stride_col_y, stride_col_dst,

View File

@ -307,10 +307,9 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
}
if (amd_wmma_available(cc)) {
if (GGML_CUDA_CC_IS_RDNA4(cc)) {
return true;
}
}
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (!GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@ -1542,8 +1542,10 @@ static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
tile_C Cm;
if (k01 >= MMQ_TILE_NE_K * 3/4) {
tile_A A1;
A1.x[0] = 0x01010101;
A1.x[1] = 0x01010101;
#pragma unroll
for (int l = 0; l < tile_A::ne; ++l) {
A1.x[l] = 0x01010101;
}
mma(Cm, A1, B);
}

136
ggml/src/ggml-cuda/tri.cu Normal file
View File

@ -0,0 +1,136 @@
#include "common.cuh"
#include "convert.cuh"
#include "tri.cuh"
#include "ggml.h"
template<typename T, bool prefix_keep, int add_to_split>
static __global__ void tri_kernel(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3) {
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;
const int64_t i1 = blockIdx.x;
const int64_t split_point = i1 + add_to_split;
GGML_UNUSED_VARS(nb00, nb0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
const T * src_row = src + i1*nb01 + i2*nb02 + i3*nb03;
T * dst_row = dst + i1*nb1 + i2*nb2 + i3*nb3;
if constexpr (prefix_keep) {
for (int64_t i0 = threadIdx.x; i0 < split_point; i0 += blockDim.x) {
dst_row[i0] = src_row[i0];
}
for (int64_t i0 = threadIdx.x + split_point; i0 < ne00; i0 += blockDim.x) {
dst_row[i0] = ggml_cuda_cast<T, float>(0.0f);
}
} else {
for (int64_t i0 = threadIdx.x; i0 < split_point; i0 += blockDim.x) {
dst_row[i0] = ggml_cuda_cast<T, float>(0.0f);
}
for (int64_t i0 = threadIdx.x + split_point; i0 < ne00; i0 += blockDim.x) {
dst_row[i0] = src_row[i0];
}
}
}
template<typename T>
static void tri_cuda(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
const ggml_tri_type ttype,
cudaStream_t stream) {
dim3 block_dims(CUDA_TRI_BLOCK_SIZE, 1, 1);
dim3 grid_dims(ne01, ne02, ne03);
const size_t type_size = sizeof(T);
const int add_to_split = (ttype == GGML_TRI_TYPE_LOWER_DIAG || ttype == GGML_TRI_TYPE_UPPER) ? 1 : 0;
const bool prefix_keep = (ttype == GGML_TRI_TYPE_LOWER || ttype == GGML_TRI_TYPE_LOWER_DIAG);
if (prefix_keep) {
if (add_to_split == 0) {
tri_kernel<T, true, 0><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
} else { // only 0 and 1 supported
tri_kernel<T, true, 1><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
}
} else {
if (add_to_split == 0) {
tri_kernel<T, false, 0><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
} else {
tri_kernel<T, false, 1><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
}
}
}
void ggml_cuda_op_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
cudaStream_t stream = ctx.stream();
const ggml_tri_type ttype = static_cast<ggml_tri_type>(ggml_get_op_params_i32(dst, 0));
GGML_ASSERT(src0->type == dst->type);
switch(src0->type) {
case GGML_TYPE_F32:
{
tri_cuda(
(const float *)src0->data, (float *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
ttype, stream
);
} break;
case GGML_TYPE_F16:
{
tri_cuda(
(const half *)src0->data, (half *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
ttype, stream
);
} break;
case GGML_TYPE_BF16:
{
tri_cuda(
(const nv_bfloat16 *)src0->data, (nv_bfloat16 *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
ttype, stream
);
} break;
default:
GGML_ABORT("fatal error");
}
}

View File

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_TRI_BLOCK_SIZE 256
void ggml_cuda_op_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -81,6 +81,76 @@ static __global__ void upscale_f32_bilinear(const float * x, float * dst,
dst[index] = result;
}
// Similar to F.interpolate(..., mode="bilinear", align_corners=False, antialias=True)
// https://github.com/pytorch/pytorch/blob/8871ff29b743948d1225389d5b7068f37b22750b/aten/src/ATen/native/cpu/UpSampleKernel.cpp
static __global__ void upscale_f32_bilinear_antialias(const float * src0, float * dst,
const int nb00, const int nb01, const int nb02, const int nb03,
const int ne00_src, const int ne01_src,
const int ne10_dst, const int ne11_dst, const int ne12_dst, const int ne13_dst,
const float sf0, const float sf1, const float sf2, const float sf3,
const float pixel_offset) {
const int64_t index = threadIdx.x + blockIdx.x * blockDim.x;
const int64_t dst_total_elements = ne10_dst * ne11_dst * ne12_dst * ne13_dst;
if (index >= dst_total_elements) {
return;
}
const int i10_dst = index % ne10_dst;
const int i11_dst = (index / ne10_dst) % ne11_dst;
const int i12_dst = (index / (ne10_dst * ne11_dst)) % ne12_dst;
const int i13_dst = index / (ne10_dst * ne11_dst * ne12_dst);
const int i02_src = (int)(i12_dst / sf2);
const int i03_src = (int)(i13_dst / sf3);
const float y = ((float)i11_dst + pixel_offset) / sf1;
const float x = ((float)i10_dst + pixel_offset) / sf0;
// support and invscale, minimum 1 pixel for bilinear
const float support1 = max(1.0f / sf1, 1.0f);
const float invscale1 = 1.0f / support1;
const float support0 = max(1.0f / sf0, 1.0f);
const float invscale0 = 1.0f / support0;
// the range of source pixels that contribute
const int64_t x_min = max(int64_t(0), int64_t(x - support0 + pixel_offset));
const int64_t x_max = min(int64_t(ne00_src), int64_t(x + support0 + pixel_offset));
const int64_t y_min = max(int64_t(0), int64_t(y - support1 + pixel_offset));
const int64_t y_max = min(int64_t(ne01_src), int64_t(y + support1 + pixel_offset));
// bilinear filter with antialiasing
float val = 0.0f;
float total_weight = 0.0f;
auto triangle_filter = [](float x) -> float {
return max(1.0f - fabsf(x), 0.0f);
};
for (int64_t sy = y_min; sy < y_max; sy++) {
const float weight_y = triangle_filter((sy - y + pixel_offset) * invscale1);
for (int64_t sx = x_min; sx < x_max; sx++) {
const float weight_x = triangle_filter((sx - x + pixel_offset) * invscale0);
const float weight = weight_x * weight_y;
if (weight <= 0.0f) {
continue;
}
const float pixel = *(const float *)((const char *)src0 + sx*nb00 + sy*nb01 + i02_src*nb02 + i03_src*nb03);
val += pixel * weight;
total_weight += weight;
}
}
if (total_weight > 0.0f) {
val /= total_weight;
}
dst[index] = val;
}
namespace bicubic_interpolation {
// https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
__device__ const float a = -0.75f; // use alpha = -0.75 (same as PyTorch)
@ -161,12 +231,16 @@ static void upscale_f32_bilinear_cuda(const float * x, float * dst,
const int ne00_src, const int ne01_src,
const int ne10_dst, const int ne11_dst, const int ne12_dst, const int ne13_dst,
const float sf0, const float sf1, const float sf2, const float sf3,
const float pixel_offset, cudaStream_t stream) {
const float pixel_offset, bool antialias, cudaStream_t stream) {
const int64_t dst_size = ne10_dst * ne11_dst * ne12_dst * ne13_dst;
const int64_t num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
if (antialias) {
upscale_f32_bilinear_antialias<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne00_src, ne01_src, ne10_dst, ne11_dst, ne12_dst, ne13_dst, sf0, sf1, sf2, sf3, pixel_offset);
} else {
upscale_f32_bilinear<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne00_src, ne01_src, ne10_dst, ne11_dst, ne12_dst, ne13_dst, sf0, sf1, sf2, sf3, pixel_offset);
}
}
static void upscale_f32_bicubic_cuda(const float * x, float * dst,
const int nb00, const int nb01, const int nb02, const int nb03,
@ -207,9 +281,10 @@ void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
if (mode == GGML_SCALE_MODE_NEAREST) {
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
const bool antialias = (mode_flags & GGML_SCALE_FLAG_ANTIALIAS);
upscale_f32_bilinear_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
src0->ne[0], src0->ne[1], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
sf0, sf1, sf2, sf3, pixel_offset, stream);
sf0, sf1, sf2, sf3, pixel_offset, antialias, stream);
} else if (mode == GGML_SCALE_MODE_BICUBIC) {
upscale_f32_bicubic_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
src0->ne[0], src0->ne[1], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],

View File

@ -24,9 +24,6 @@ struct ggml_metal_command_buffer {
};
struct ggml_metal {
id<MTLDevice> device;
id<MTLCommandQueue> queue; // currently a pointer to the device queue, but might become separate queue [TAG_QUEUE_PER_BACKEND]
ggml_metal_device_t dev;
ggml_metal_library_t lib;
@ -91,15 +88,15 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
// init context
ggml_metal_t res = calloc(1, sizeof(struct ggml_metal));
res->device = ggml_metal_device_get_obj(dev);
id<MTLDevice> device = ggml_metal_device_get_obj(dev);
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[res->device name] UTF8String]);
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
// TODO: would it be better to have one queue for the backend and one queue for the device?
// the graph encoders and async ops would use the backend queue while the sync ops would use the device queue?
//res->queue = [device newCommandQueue]; [TAG_QUEUE_PER_BACKEND]
res->queue = ggml_metal_device_get_queue(dev);
if (res->queue == nil) {
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(dev);
if (queue == nil) {
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
return NULL;
}
@ -274,7 +271,8 @@ static struct ggml_metal_buffer_id ggml_metal_get_buffer_id(const struct ggml_te
void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
@autoreleasepool {
// wrap the source data into a Metal buffer
id<MTLBuffer> buf_src = [ctx->device newBufferWithBytes:data
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
id<MTLBuffer> buf_src = [device newBufferWithBytes:data
length:size
options:MTLResourceStorageModeShared];
@ -289,7 +287,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor,
// queue the copy operation into the queue of the Metal context
// this will be queued at the end, after any currently ongoing GPU operations
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBuffer];
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
[encoder copyFromBuffer:buf_src
@ -315,7 +314,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor,
void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
@autoreleasepool {
id<MTLBuffer> buf_dst = [ctx->device newBufferWithBytesNoCopy:data
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
id<MTLBuffer> buf_dst = [device newBufferWithBytesNoCopy:data
length:size
options:MTLResourceStorageModeShared
deallocator:nil];
@ -331,7 +331,8 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
// queue the copy operation into the queue of the Metal context
// this will be queued at the end, after any currently ongoing GPU operations
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBuffer];
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
[encoder copyFromBuffer:bid_src.metal
@ -362,6 +363,9 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
// number of threads in addition to the main thread
const int n_cb = ctx->n_cb;
// keep the memory wired
ggml_metal_device_rsets_keep_alive(ctx->dev);
// submit the ggml compute graph to the GPU by creating command buffers and encoding the ops in them
// the first n_nodes_0 are encoded and submitted for processing directly by the calling thread
// while these nodes are processing, we start n_cb threads to enqueue the rest of the nodes
@ -389,7 +393,8 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
if (!ctx->capture_started) {
// create capture scope
ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:ctx->device];
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:device];
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
descriptor.captureObject = ctx->capture_scope;
@ -406,10 +411,13 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
}
}
// short-hand
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
// the main thread commits the first few commands immediately
// cmd_buf[n_cb]
{
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
[cmd_buf retain];
if (ctx->cmd_bufs[n_cb].obj) {
@ -428,7 +436,7 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
// prepare the rest of the command buffers asynchronously (optional)
// cmd_buf[0.. n_cb)
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
[cmd_buf retain];
if (ctx->cmd_bufs[cb_idx].obj) {
@ -589,9 +597,11 @@ void ggml_metal_set_abort_callback(ggml_metal_t ctx, ggml_abort_callback abort_c
}
bool ggml_metal_supports_family(ggml_metal_t ctx, int family) {
GGML_ASSERT(ctx->device != nil);
GGML_ASSERT(ctx->dev != nil);
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
return [device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
}
void ggml_metal_capture_next_compute(ggml_metal_t ctx) {

File diff suppressed because it is too large Load Diff

View File

@ -35,20 +35,6 @@ typedef struct ggml_metal_pipeline * ggml_metal_pipeline_t;
ggml_metal_pipeline_t ggml_metal_pipeline_init(void);
void ggml_metal_pipeline_free(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_nsg(ggml_metal_pipeline_t pipeline, int nsg);
int ggml_metal_pipeline_get_nsg(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_nr0(ggml_metal_pipeline_t pipeline, int nr0);
int ggml_metal_pipeline_get_nr0(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_nr1(ggml_metal_pipeline_t pipeline, int nr1);
int ggml_metal_pipeline_get_nr1(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_smem(ggml_metal_pipeline_t pipeline, size_t smem);
size_t ggml_metal_pipeline_get_smem(ggml_metal_pipeline_t pipeline);
int ggml_metal_pipeline_max_theads_per_threadgroup(ggml_metal_pipeline_t pipeline);
// a collection of pipelines
typedef struct ggml_metal_pipelines * ggml_metal_pipelines_t;
@ -58,6 +44,19 @@ void ggml_metal_pipelines_free(ggml_metal_pipelines_t ppls);
void ggml_metal_pipelines_add(ggml_metal_pipelines_t ppls, const char * name, ggml_metal_pipeline_t pipeline);
ggml_metal_pipeline_t ggml_metal_pipelines_get(ggml_metal_pipelines_t ppls, const char * name);
struct ggml_metal_pipeline_with_params {
ggml_metal_pipeline_t pipeline;
int nsg;
int nr0;
int nr1;
size_t smem;
};
int ggml_metal_pipeline_max_theads_per_threadgroup(struct ggml_metal_pipeline_with_params pipeline);
//
// MTLCommandBuffer wrapper
//
@ -76,7 +75,7 @@ void ggml_metal_encoder_free(ggml_metal_encoder_t encoder);
void ggml_metal_encoder_debug_group_push(ggml_metal_encoder_t encoder, const char * name);
void ggml_metal_encoder_debug_group_pop (ggml_metal_encoder_t encoder);
void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, ggml_metal_pipeline_t pipeline);
void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, struct ggml_metal_pipeline_with_params pipeline);
void ggml_metal_encoder_set_bytes (ggml_metal_encoder_t encoder, void * data, size_t size, int idx);
void ggml_metal_encoder_set_buffer(ggml_metal_encoder_t encoder, struct ggml_metal_buffer_id buffer, int idx);
@ -100,66 +99,67 @@ ggml_metal_library_t ggml_metal_library_init_from_source(ggml_metal_device_t dev
void ggml_metal_library_free(ggml_metal_library_t lib);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline (ggml_metal_library_t lib, const char * name);
ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline (ggml_metal_library_t lib, const char * name);
struct ggml_metal_pipeline_with_params ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_base (ggml_metal_library_t lib, enum ggml_op op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cpy (ggml_metal_library_t lib, enum ggml_type tsrc, enum ggml_type tdst);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum_rows (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cumsum_blk (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cumsum_add (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_soft_max (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_conv (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id_map0 (ggml_metal_library_t lib, int ne02, int ne20);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argmax (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_arange (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_adamw (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_sgd (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_base (ggml_metal_library_t lib, enum ggml_op op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_cpy (ggml_metal_library_t lib, enum ggml_type tsrc, enum ggml_type tdst);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_sum (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_sum_rows (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_cumsum_blk (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_cumsum_add (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_tri (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_soft_max (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm_id_map0 (ggml_metal_library_t lib, int ne02, int ne20);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argmax (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_conv_transpose_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_conv_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_arange (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_adamw (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_sgd (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_pad(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_pad(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
bool has_mask,
int32_t ncpsg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_blk(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_blk(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
int32_t nqptg,
int32_t ncpsg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
bool has_mask,
@ -169,7 +169,7 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext(
bool has_kvpad,
int32_t nsg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_vec(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
bool has_mask,
@ -180,12 +180,22 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec(
int32_t nsg,
int32_t nwg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
int32_t dv,
int32_t nwg);
// MTLResidencySet wrapper
typedef void * ggml_metal_rset_t;
// a collection of residency sets (non-owning)
typedef struct ggml_metal_rsets * ggml_metal_rsets_t;
ggml_metal_rsets_t ggml_metal_rsets_init(void);
void ggml_metal_rsets_free(ggml_metal_rsets_t rsets);
//
// device
//
@ -219,6 +229,11 @@ void * ggml_metal_device_get_queue(ggml_metal_device_t dev); // id<MTLCommandQue
ggml_metal_library_t ggml_metal_device_get_library(ggml_metal_device_t dev);
void ggml_metal_device_rsets_add(ggml_metal_device_t dev, ggml_metal_rset_t rset);
void ggml_metal_device_rsets_rm (ggml_metal_device_t dev, ggml_metal_rset_t rset);
void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev);
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total);
bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op);

View File

@ -1,7 +1,6 @@
#import "ggml-metal-device.h"
#import "ggml-impl.h"
#import "ggml-threading.h"
#include <Foundation/Foundation.h>
@ -75,14 +74,6 @@ void ggml_metal_cv_set_bool(ggml_metal_cv_t cv, bool value, int32_t idx) {
struct ggml_metal_pipeline {
id<MTLComputePipelineState> obj;
// suggested dispatch sizes
int nsg;
int nr0;
int nr1;
size_t smem;
};
ggml_metal_pipeline_t ggml_metal_pipeline_init(void) {
@ -90,10 +81,6 @@ ggml_metal_pipeline_t ggml_metal_pipeline_init(void) {
*res = (struct ggml_metal_pipeline) {
/*.obj =*/ nil,
/*.nsg =*/ 0,
/*.nr0 =*/ 0,
/*.nr1 =*/ 0,
/*.smem =*/ 0,
};
return res;
@ -105,40 +92,8 @@ void ggml_metal_pipeline_free(ggml_metal_pipeline_t pipeline) {
free(pipeline);
}
void ggml_metal_pipeline_set_nsg(ggml_metal_pipeline_t pipeline, int nsg) {
pipeline->nsg = nsg;
}
int ggml_metal_pipeline_get_nsg(ggml_metal_pipeline_t pipeline) {
return pipeline->nsg;
}
void ggml_metal_pipeline_set_nr0(ggml_metal_pipeline_t pipeline, int nr0) {
pipeline->nr0 = nr0;
}
int ggml_metal_pipeline_get_nr0(ggml_metal_pipeline_t pipeline) {
return pipeline->nr0;
}
void ggml_metal_pipeline_set_nr1(ggml_metal_pipeline_t pipeline, int nr1) {
pipeline->nr1 = nr1;
}
int ggml_metal_pipeline_get_nr1(ggml_metal_pipeline_t pipeline) {
return pipeline->nr1;
}
void ggml_metal_pipeline_set_smem(ggml_metal_pipeline_t pipeline, size_t smem) {
pipeline->smem = smem;
}
size_t ggml_metal_pipeline_get_smem(ggml_metal_pipeline_t pipeline) {
return pipeline->smem;
}
int ggml_metal_pipeline_max_theads_per_threadgroup(ggml_metal_pipeline_t pipeline) {
return pipeline->obj.maxTotalThreadsPerThreadgroup;
int ggml_metal_pipeline_max_theads_per_threadgroup(struct ggml_metal_pipeline_with_params pipeline) {
return pipeline.pipeline->obj.maxTotalThreadsPerThreadgroup;
}
struct ggml_metal_library {
@ -146,6 +101,8 @@ struct ggml_metal_library {
id<MTLDevice> device;
ggml_metal_pipelines_t pipelines; // cache of compiled pipelines
NSLock * lock;
};
ggml_metal_library_t ggml_metal_library_init(ggml_metal_device_t dev) {
@ -299,6 +256,7 @@ ggml_metal_library_t ggml_metal_library_init(ggml_metal_device_t dev) {
res->obj = library;
res->device = device;
res->pipelines = ggml_metal_pipelines_init();
res->lock = [NSLock new];
return res;
}
@ -365,6 +323,7 @@ ggml_metal_library_t ggml_metal_library_init_from_source(ggml_metal_device_t dev
res->obj = library;
res->device = device;
res->pipelines = ggml_metal_pipelines_init();
res->lock = [NSLock new];
return res;
}
@ -380,25 +339,46 @@ void ggml_metal_library_free(ggml_metal_library_t lib) {
ggml_metal_pipelines_free(lib->pipelines);
[lib->lock release];
free(lib);
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline(ggml_metal_library_t lib, const char * name) {
return ggml_metal_pipelines_get(lib->pipelines, name);
}
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline(ggml_metal_library_t lib, const char * name) {
[lib->lock lock];
ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv) {
// note: the pipelines are cached in the library per device, so they are shared across all metal contexts
ggml_critical_section_start();
struct ggml_metal_pipeline_with_params res = {
/*.pipeline =*/ nil,
/*.nr0 =*/ 0,
/*.nr1 =*/ 0,
/*.nsg =*/ 0,
/*.smem =*/ 0,
};
ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
if (res) {
ggml_critical_section_end();
res.pipeline = ggml_metal_pipelines_get(lib->pipelines, name);
[lib->lock unlock];
return res;
}
res = ggml_metal_pipeline_init();
struct ggml_metal_pipeline_with_params ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv) {
struct ggml_metal_pipeline_with_params res = {
/*.pipeline =*/ nil,
/*.nr0 =*/ 0,
/*.nr1 =*/ 0,
/*.nsg =*/ 0,
/*.smem =*/ 0,
};
[lib->lock lock];
res.pipeline = ggml_metal_pipelines_get(lib->pipelines, name);
if (res.pipeline) {
[lib->lock unlock];
return res;
}
@autoreleasepool {
NSError * error = nil;
@ -414,36 +394,53 @@ ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t l
mtl_function = [lib->obj newFunctionWithName:base_func constantValues:cv->obj error:&error];
}
if (!mtl_function) {
ggml_critical_section_end();
[lib->lock unlock];
GGML_LOG_ERROR("%s: failed to compile pipeline: base = '%s', name = '%s'\n", __func__, base, name);
if (error) {
GGML_LOG_ERROR("%s: %s\n", __func__, [[error description] UTF8String]);
}
return nil;
return res;
}
res->obj = [lib->device newComputePipelineStateWithFunction:mtl_function error:&error];
id<MTLComputePipelineState> obj = [lib->device newComputePipelineStateWithFunction:mtl_function error:&error];
[mtl_function release];
GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, name, (void *) res->obj,
(int) res->obj.maxTotalThreadsPerThreadgroup,
(int) res->obj.threadExecutionWidth);
if (!obj) {
[lib->lock unlock];
if (res->obj.maxTotalThreadsPerThreadgroup == 0 || res->obj.threadExecutionWidth == 0) {
ggml_critical_section_end();
GGML_LOG_ERROR("%s: failed to create pipeline state: base = '%s', name = '%s'\n", __func__, base, name);
if (error) {
GGML_LOG_ERROR("%s: %s\n", __func__, [[error description] UTF8String]);
}
return res;
}
GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, name,
(void *) obj,
(int) obj.maxTotalThreadsPerThreadgroup,
(int) obj.threadExecutionWidth);
if (obj.maxTotalThreadsPerThreadgroup == 0 || obj.threadExecutionWidth == 0) {
[obj release];
[lib->lock unlock];
GGML_LOG_ERROR("%s: incompatible pipeline %s\n", __func__, name);
return nil;
return res;
}
ggml_metal_pipelines_add(lib->pipelines, name, res);
res.pipeline = ggml_metal_pipeline_init();
res.pipeline->obj = obj;
ggml_metal_pipelines_add(lib->pipelines, name, res.pipeline);
}
ggml_critical_section_end();
[lib->lock unlock];
return res;
}
@ -485,8 +482,8 @@ void ggml_metal_encoder_debug_group_pop (ggml_metal_encoder_t encoder) {
[encoder->obj popDebugGroup];
}
void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, ggml_metal_pipeline_t pipeline) {
[encoder->obj setComputePipelineState:pipeline->obj];
void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, struct ggml_metal_pipeline_with_params pipeline) {
[encoder->obj setComputePipelineState:pipeline.pipeline->obj];
}
void ggml_metal_encoder_set_bytes(ggml_metal_encoder_t encoder, void * data, size_t size, int idx) {
@ -521,11 +518,106 @@ struct ggml_metal_device {
// ref: https://github.com/ggml-org/llama.cpp/pull/15906
id<MTLCommandQueue> mtl_queue;
ggml_metal_rsets_t rsets;
ggml_metal_library_t library;
struct ggml_metal_device_props props;
};
//
// MTLResidenceSet wrapper
//
struct ggml_metal_rsets {
NSLock * lock;
NSMutableArray * data;
// number of seconds since the last graph computation
// keep the residency sets wired for that amount of time to avoid being collected by the OS
int keep_alive_s;
// background heartbeat thread to keep the residency sets alive
atomic_bool d_stop;
atomic_int d_loop;
dispatch_group_t d_group;
};
ggml_metal_rsets_t ggml_metal_rsets_init(void) {
ggml_metal_rsets_t res = calloc(1, sizeof(struct ggml_metal_rsets));
res->lock = [[NSLock alloc] init];
res->data = [[NSMutableArray alloc] init];
// by default keep the memory wired for 3 minutes
res->keep_alive_s = 3*60;
const char * GGML_METAL_RESIDENCY_KEEP_ALIVE_S = getenv("GGML_METAL_RESIDENCY_KEEP_ALIVE_S");
if (GGML_METAL_RESIDENCY_KEEP_ALIVE_S) {
res->keep_alive_s = atoi(GGML_METAL_RESIDENCY_KEEP_ALIVE_S);
}
if (res->keep_alive_s <= 0) {
res->keep_alive_s = 3*60;
}
GGML_LOG_INFO("%s: creating a residency set collection (keep_alive = %d s)\n", __func__, res->keep_alive_s);
atomic_store_explicit(&res->d_stop, false, memory_order_relaxed);
atomic_store_explicit(&res->d_loop, 2*res->keep_alive_s, memory_order_relaxed);
res->d_group = dispatch_group_create();
// start a background thread that periodically requests residency for all the currently active sets in the collection
// the requests stop after a certain amount of time (keep_alive_s) of inactivity
dispatch_queue_t d_queue = dispatch_get_global_queue(QOS_CLASS_DEFAULT, 0);
dispatch_group_async(res->d_group, d_queue, ^{
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
while (!atomic_load_explicit(&res->d_stop, memory_order_relaxed)) {
if (atomic_load_explicit(&res->d_loop, memory_order_relaxed) > 0) {
[res->lock lock];
for (int i = 0; i < (int) res->data.count; ++i) {
[res->data[i] requestResidency];
}
atomic_fetch_sub_explicit(&res->d_loop, 1, memory_order_relaxed);
[res->lock unlock];
}
// half a second
usleep(500 * 1000);
}
}
#endif
});
return res;
}
void ggml_metal_rsets_free(ggml_metal_rsets_t rsets) {
if (rsets == NULL) {
return;
}
// note: if you hit this assert, most likely you haven't deallocated all Metal resources before exiting
GGML_ASSERT([rsets->data count] == 0);
atomic_store_explicit(&rsets->d_stop, true, memory_order_relaxed);
dispatch_group_wait(rsets->d_group, DISPATCH_TIME_FOREVER);
dispatch_release(rsets->d_group);
[rsets->data release];
[rsets->lock release];
free(rsets);
}
ggml_metal_device_t ggml_metal_device_init(void) {
ggml_metal_device_t dev = calloc(1, sizeof(struct ggml_metal_device));
@ -611,8 +703,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
GGML_LOG_WARN("%s: - the tensor API is not supported in this environment - disabling\n", __func__);
dev->props.has_tensor = false;
} else {
ggml_metal_pipeline_t ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
if (!ppl) {
struct ggml_metal_pipeline_with_params ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
if (!ppl.pipeline) {
GGML_LOG_WARN("%s: - the tensor API is not supported in this environment - disabling\n", __func__);
dev->props.has_tensor = false;
}
@ -661,8 +753,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
GGML_LOG_WARN("%s: - the tensor API does not support bfloat - disabling bfloat support\n", __func__);
dev->props.has_bfloat = false;
} else {
ggml_metal_pipeline_t ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
if (!ppl) {
struct ggml_metal_pipeline_with_params ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
if (!ppl.pipeline) {
GGML_LOG_WARN("%s: - the tensor API does not support bfloat - disabling bfloat support\n", __func__);
dev->props.has_bfloat = false;
}
@ -694,7 +786,11 @@ ggml_metal_device_t ggml_metal_device_init(void) {
GGML_LOG_ERROR("%s: error: failed to create library\n", __func__);
}
// --------------------------------------------------
if (dev->props.use_residency_sets) {
dev->rsets = ggml_metal_rsets_init();
} else {
dev->rsets = nil;
}
// print MTL GPU family:
GGML_LOG_INFO("%s: GPU name: %s\n", __func__, dev->props.name);
@ -747,6 +843,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
void ggml_metal_device_free(ggml_metal_device_t dev) {
assert(dev != NULL);
ggml_metal_rsets_free(dev->rsets);
ggml_metal_library_free(dev->library);
dev->library = NULL;
@ -775,6 +873,42 @@ ggml_metal_library_t ggml_metal_device_get_library(ggml_metal_device_t dev) {
return dev->library;
}
void ggml_metal_device_rsets_add(ggml_metal_device_t dev, ggml_metal_rset_t rset) {
if (rset == nil) {
return;
}
GGML_ASSERT(dev->rsets);
[dev->rsets->lock lock];
[dev->rsets->data addObject:rset];
[dev->rsets->lock unlock];
}
void ggml_metal_device_rsets_rm(ggml_metal_device_t dev, ggml_metal_rset_t rset) {
if (rset == nil) {
return;
}
GGML_ASSERT(dev->rsets);
[dev->rsets->lock lock];
[dev->rsets->data removeObject:rset];
[dev->rsets->lock unlock];
}
void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev) {
if (dev->rsets == NULL) {
return;
}
atomic_store_explicit(&dev->rsets->d_loop, 2*dev->rsets->keep_alive_s, memory_order_relaxed);
}
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total) {
if (@available(macOS 10.12, iOS 16.0, *)) {
*total = dev->mtl_device.recommendedMaxWorkingSetSize;
@ -820,6 +954,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_EXPM1:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
@ -852,6 +988,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_ACC:
case GGML_OP_REPEAT:
case GGML_OP_SCALE:
case GGML_OP_FILL:
case GGML_OP_CONV_TRANSPOSE_1D:
return true;
case GGML_OP_CONV_TRANSPOSE_2D:
@ -869,6 +1006,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SUM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
case GGML_OP_TRI:
return ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_SUM_ROWS:
case GGML_OP_CUMSUM:
case GGML_OP_MEAN:
@ -894,7 +1033,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_POOL_1D:
return false;
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST && !(op->op_params[0] & GGML_SCALE_FLAG_ANTIALIAS);
case GGML_OP_POOL_2D:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_PAD:
@ -912,6 +1051,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
// for new head sizes, add checks here
if (op->src[0]->ne[0] != 32 &&
op->src[0]->ne[0] != 40 &&
op->src[0]->ne[0] != 48 &&
op->src[0]->ne[0] != 64 &&
op->src[0]->ne[0] != 72 &&
op->src[0]->ne[0] != 80 &&
@ -1062,9 +1202,8 @@ struct ggml_metal_buffer {
// note: cannot use explicity "id<MTLResidencySet>" here because it is not available on certain OSes
id rset;
// pointers to global device objects
id<MTLDevice> device;
id<MTLCommandQueue> queue;
// pointers to global device
ggml_metal_device_t dev;
};
static void ggml_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
@ -1107,7 +1246,7 @@ static bool ggml_metal_buffer_rset_init(ggml_metal_buffer_t buf) {
desc.initialCapacity = buf->n_buffers;
NSError * error;
buf->rset = [buf->device newResidencySetWithDescriptor:desc error:&error];
buf->rset = [buf->dev->mtl_device newResidencySetWithDescriptor:desc error:&error];
if (error) {
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
[desc release];
@ -1168,6 +1307,8 @@ static void * ggml_metal_host_malloc(size_t n) {
ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size, bool shared) {
ggml_metal_buffer_t res = calloc(1, sizeof(struct ggml_metal_buffer));
res->dev = dev;
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
@ -1192,9 +1333,6 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
res->owned = true;
res->device = ggml_metal_device_get_obj(dev);
res->queue = ggml_metal_device_get_queue(dev);
res->n_buffers = 1;
if (res->all_data != NULL) {
@ -1203,12 +1341,12 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
if (size_aligned > 0) {
if (props_dev->use_shared_buffers && shared) {
res->buffers[0].metal = [res->device newBufferWithBytesNoCopy:res->all_data
res->buffers[0].metal = [res->dev->mtl_device newBufferWithBytesNoCopy:res->all_data
length:size_aligned
options:MTLResourceStorageModeShared
deallocator:nil];
} else {
res->buffers[0].metal = [res->device newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate];
res->buffers[0].metal = [res->dev->mtl_device newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate];
}
}
@ -1229,6 +1367,8 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
return NULL;
}
ggml_metal_device_rsets_add(dev, res->rset);
//ggml_metal_log_allocated_size(device, size_aligned);
return res;
@ -1237,6 +1377,8 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, size_t size, size_t max_tensor_size) {
ggml_metal_buffer_t res = calloc(1, sizeof(struct ggml_metal_buffer));
res->dev = dev;
res->all_data = ptr;
res->all_size = size;
@ -1259,9 +1401,6 @@ ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, s
size_aligned += (size_page - (size_aligned % size_page));
}
res->device = ggml_metal_device_get_obj(dev);
res->queue = ggml_metal_device_get_queue(dev);
const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
// the buffer fits into the max buffer size allowed by the device
@ -1271,7 +1410,7 @@ ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, s
res->buffers[res->n_buffers].metal = nil;
if (size_aligned > 0) {
res->buffers[res->n_buffers].metal = [res->device newBufferWithBytesNoCopy:ptr length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
res->buffers[res->n_buffers].metal = [res->dev->mtl_device newBufferWithBytesNoCopy:ptr length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (res->buffers[res->n_buffers].metal == nil) {
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
@ -1280,7 +1419,7 @@ ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, s
}
}
ggml_metal_log_allocated_size(res->device, size_aligned);
ggml_metal_log_allocated_size(res->dev->mtl_device, size_aligned);
++res->n_buffers;
} else {
@ -1298,7 +1437,7 @@ ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, s
res->buffers[res->n_buffers].metal = nil;
if (size_step_aligned > 0) {
res->buffers[res->n_buffers].metal = [res->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) ptr + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
res->buffers[res->n_buffers].metal = [res->dev->mtl_device newBufferWithBytesNoCopy:(void *) ((uint8_t *) ptr + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (res->buffers[res->n_buffers].metal == nil) {
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
@ -1307,7 +1446,7 @@ ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, s
}
}
ggml_metal_log_allocated_size(res->device, size_step_aligned);
ggml_metal_log_allocated_size(res->dev->mtl_device, size_step_aligned);
if (i + size_step < size) {
GGML_LOG_INFO("\n");
@ -1325,10 +1464,14 @@ ggml_metal_buffer_t ggml_metal_buffer_map(ggml_metal_device_t dev, void * ptr, s
return NULL;
}
ggml_metal_device_rsets_add(dev, res->rset);
return res;
}
void ggml_metal_buffer_free(ggml_metal_buffer_t buf) {
ggml_metal_device_rsets_rm(buf->dev, buf->rset);
for (int i = 0; i < buf->n_buffers; i++) {
[buf->buffers[i].metal release];
}
@ -1365,8 +1508,7 @@ void ggml_metal_buffer_memset_tensor(ggml_metal_buffer_t buf, struct ggml_tensor
struct ggml_metal_buffer_id bid_dst = ggml_metal_buffer_get_id(buf, tensor);
bid_dst.offs += offset;
id<MTLCommandQueue> queue = buf->queue;
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [buf->dev->mtl_queue commandBufferWithUnretainedReferences];
{
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
@ -1392,7 +1534,7 @@ void ggml_metal_buffer_set_tensor(ggml_metal_buffer_t buf, struct ggml_tensor *
@autoreleasepool {
// src
void * data_ptr = (void *)(uintptr_t) data; // "const cast" the src data
id<MTLBuffer> buf_src = [buf->device newBufferWithBytesNoCopy:data_ptr
id<MTLBuffer> buf_src = [buf->dev->mtl_device newBufferWithBytesNoCopy:data_ptr
length:size
options:MTLResourceStorageModeShared
deallocator:nil];
@ -1407,8 +1549,7 @@ void ggml_metal_buffer_set_tensor(ggml_metal_buffer_t buf, struct ggml_tensor *
// this is alternative to waitUntilCompleted, which should be faster, but don't seem to make much difference
dispatch_semaphore_t completion_semaphore = dispatch_semaphore_create(0);
id<MTLCommandQueue> queue = buf->queue;
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [buf->dev->mtl_queue commandBufferWithUnretainedReferences];
{
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
@ -1450,15 +1591,14 @@ void ggml_metal_buffer_get_tensor(ggml_metal_buffer_t buf, const struct ggml_ten
bid_src.offs += offset;
// dst
id<MTLBuffer> buf_dst = [buf->device newBufferWithBytesNoCopy:data
id<MTLBuffer> buf_dst = [buf->dev->mtl_device newBufferWithBytesNoCopy:data
length:size
options:MTLResourceStorageModeShared
deallocator:nil];
GGML_ASSERT(buf_dst);
id<MTLCommandQueue> queue = buf->queue;
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [buf->dev->mtl_queue commandBufferWithUnretainedReferences];
{
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
@ -1484,8 +1624,7 @@ void ggml_metal_buffer_clear(ggml_metal_buffer_t buf, uint8_t value) {
}
@autoreleasepool {
id<MTLCommandQueue> queue = buf->queue;
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [buf->dev->mtl_queue commandBufferWithUnretainedReferences];
{
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];

View File

@ -182,6 +182,10 @@ typedef struct {
float bias;
} ggml_metal_kargs_scale;
typedef struct {
float val;
} ggml_metal_kargs_fill;
typedef struct {
float min;
float max;
@ -831,6 +835,25 @@ typedef struct {
float slope;
} ggml_metal_kargs_leaky_relu;
typedef struct {
int32_t ne00;
int32_t ne01;
int32_t ne02;
int32_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne0;
int32_t ne1;
int32_t ne2;
int32_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_tri;
typedef struct {
int32_t ne00;
int32_t ne01;

View File

@ -286,6 +286,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_scale(ctx, idx);
} break;
case GGML_OP_FILL:
{
n_fuse = ggml_metal_op_fill(ctx, idx);
} break;
case GGML_OP_CLAMP:
{
n_fuse = ggml_metal_op_clamp(ctx, idx);
@ -414,6 +418,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_leaky_relu(ctx, idx);
} break;
case GGML_OP_TRI:
{
n_fuse = ggml_metal_op_tri(ctx, idx);
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
n_fuse = ggml_metal_op_flash_attn_ext(ctx, idx);
@ -524,7 +532,7 @@ int ggml_metal_op_concat(ggml_metal_op_t ctx, int idx) {
/*.dim =*/ dim,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_base(lib, GGML_OP_CONCAT);
auto pipeline = ggml_metal_library_get_pipeline_base(lib, GGML_OP_CONCAT);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -550,7 +558,7 @@ int ggml_metal_op_repeat(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_repeat(lib, op->type);
auto pipeline = ggml_metal_library_get_pipeline_repeat(lib, op->type);
ggml_metal_kargs_repeat args = {
/*.ne00 =*/ ne00,
@ -616,7 +624,7 @@ int ggml_metal_op_acc(ggml_metal_op_t ctx, int idx) {
// TODO: make a simpler cpy_bytes kernel
//const id<MTLComputePipelineState> pipeline = ctx->pipelines[GGML_METAL_PIPELINE_TYPE_CPY_F32_F32].obj;
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
auto pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
ggml_metal_kargs_cpy args = {
/*.nk0 =*/ ne00,
@ -679,7 +687,7 @@ int ggml_metal_op_acc(ggml_metal_op_t ctx, int idx) {
/*.o1 =*/ { 0 },
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_bin(lib, GGML_OP_ADD, 1, false);
auto pipeline = ggml_metal_library_get_pipeline_bin(lib, GGML_OP_ADD, 1, false);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -721,7 +729,42 @@ int ggml_metal_op_scale(ggml_metal_op_t ctx, int idx) {
n /= 4;
}
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
return 1;
}
int ggml_metal_op_fill(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
const float val = ggml_get_op_params_f32(op, 0);
ggml_metal_kargs_fill args = {
/*.val =*/ val
};
int64_t n = ggml_nelements(op);
if (n % 4 == 0) {
n /= 4;
}
auto pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -760,7 +803,7 @@ int ggml_metal_op_clamp(ggml_metal_op_t ctx, int idx) {
n /= 4;
}
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -789,7 +832,7 @@ int ggml_metal_op_unary(ggml_metal_op_t ctx, int idx) {
n /= 4;
}
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 0);
@ -817,7 +860,7 @@ int ggml_metal_op_glu(ggml_metal_op_t ctx, int idx) {
GGML_ASSERT(ggml_are_same_shape(op->src[0], op->src[1]));
}
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_glu(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_glu(lib, op);
const int32_t swp = ggml_get_op_params_i32(op, 1);
const float alpha = ggml_get_op_params_f32(op, 2);
@ -870,7 +913,7 @@ int ggml_metal_op_sum(ggml_metal_op_t ctx, int idx) {
/*.np =*/ n,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_sum(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_sum(lib, op);
int nth = 32; // SIMD width
@ -925,7 +968,7 @@ int ggml_metal_op_sum_rows(ggml_metal_op_t ctx, int idx) {
/*.nb3 =*/ nb3,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_sum_rows(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_sum_rows(lib, op);
int nth = 32; // SIMD width
@ -936,7 +979,7 @@ int ggml_metal_op_sum_rows(ggml_metal_op_t ctx, int idx) {
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
nth = std::min(nth, ne00);
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -963,7 +1006,7 @@ int ggml_metal_op_cumsum(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline_blk = ggml_metal_library_get_pipeline_cumsum_blk(lib, op);
auto pipeline_blk = ggml_metal_library_get_pipeline_cumsum_blk(lib, op);
int nth = 1;
while (nth < ne00 && 2*nth <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline_blk)) {
@ -1060,7 +1103,7 @@ int ggml_metal_op_cumsum(ggml_metal_op_t ctx, int idx) {
ggml_metal_op_concurrency_reset(ctx);
{
ggml_metal_pipeline_t pipeline_add = ggml_metal_library_get_pipeline_cumsum_add(lib, op);
auto pipeline_add = ggml_metal_library_get_pipeline_cumsum_add(lib, op);
ggml_metal_kargs_cumsum_add args = {
/*.ne00 =*/ ne00,
@ -1106,7 +1149,7 @@ int ggml_metal_op_get_rows(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_get_rows(lib, op->src[0]->type);
auto pipeline = ggml_metal_library_get_pipeline_get_rows(lib, op->src[0]->type);
ggml_metal_kargs_get_rows args = {
/*.ne00t =*/ ggml_is_quantized(op->src[0]->type) ? ne00/16 : ne00,
@ -1151,7 +1194,7 @@ int ggml_metal_op_set_rows(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_set_rows(lib, op->src[1]->type, op->type);
auto pipeline = ggml_metal_library_get_pipeline_set_rows(lib, op->src[1]->type, op->type);
const int32_t nk0 = ne0/ggml_blck_size(op->type);
@ -1252,7 +1295,7 @@ int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) {
/*.n_head_log2 =*/ n_head_log2,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_soft_max(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_soft_max(lib, op);
int nth = 32; // SIMD width
@ -1266,7 +1309,7 @@ int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) {
}
}
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
@ -1322,7 +1365,7 @@ int ggml_metal_op_ssm_conv(ggml_metal_op_t ctx, int idx) {
/*.nb2 =*/ nb2,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_ssm_conv(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_ssm_conv(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
@ -1409,11 +1452,11 @@ int ggml_metal_op_ssm_scan(ggml_metal_op_t ctx, int idx) {
/*.nb0 =*/ nb0,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_ssm_scan(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_ssm_scan(lib, op);
GGML_ASSERT(d_state <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
const size_t sms = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -1426,7 +1469,7 @@ int ggml_metal_op_ssm_scan(ggml_metal_op_t ctx, int idx) {
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[6]), 7);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 8);
ggml_metal_encoder_set_threadgroup_memory_size(enc, sms, 0);
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, d_inner, n_head, n_seqs, d_state, 1, 1);
@ -1449,7 +1492,7 @@ int ggml_metal_op_rwkv(ggml_metal_op_t ctx, int idx) {
const int64_t C = op->ne[0];
const int64_t H = op->src[0]->ne[1];
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_rwkv(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_rwkv(lib, op);
int ida = 0;
@ -1485,7 +1528,7 @@ int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
auto pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
GGML_ASSERT(ne00 % ggml_blck_size(op->src[0]->type) == 0);
@ -1592,7 +1635,7 @@ int ggml_metal_op_pool_2d(ggml_metal_op_t ctx, int idx) {
/* .np = */ np
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_pool_2d(lib, op, op_pool);
auto pipeline = ggml_metal_library_get_pipeline_pool_2d(lib, op, op_pool);
const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), (int) np);
const int ntg = (np + nth - 1) / nth;
@ -1701,7 +1744,7 @@ int ggml_metal_op_mul_mat(ggml_metal_op_t ctx, int idx) {
GGML_ABORT("unsupported ne11");
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mv_ext(lib, op->src[0]->type, op->src[1]->type, nsg, nxpsg, r1ptg);
auto pipeline = ggml_metal_library_get_pipeline_mul_mv_ext(lib, op->src[0]->type, op->src[1]->type, nsg, nxpsg, r1ptg);
ggml_metal_kargs_mul_mv_ext args = {
/*.ne00 =*/ ne00,
@ -1748,7 +1791,7 @@ int ggml_metal_op_mul_mat(ggml_metal_op_t ctx, int idx) {
// default: break;
//}
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mm(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_mul_mm(lib, op);
ggml_metal_kargs_mul_mm args = {
/*.ne00 =*/ ne00,
@ -1773,18 +1816,18 @@ int ggml_metal_op_mul_mat(ggml_metal_op_t ctx, int idx) {
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, ((ne11 + 31)/32), ((ne01 + 63)/64), ne12*ne13, 128, 1, 1);
} else {
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mv(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_mul_mv(lib, op);
const int nr0 = ggml_metal_pipeline_get_nr0(pipeline);
const int nr1 = ggml_metal_pipeline_get_nr1(pipeline);
const int nsg = ggml_metal_pipeline_get_nsg(pipeline);
const int nr0 = pipeline.nr0;
const int nr1 = pipeline.nr1;
const int nsg = pipeline.nsg;
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_kargs_mul_mv args = {
/*.ne00 =*/ ne00,
@ -1915,9 +1958,9 @@ int ggml_metal_op_mul_mat_id(ggml_metal_op_t ctx, int idx) {
nb21,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mm_id_map0(lib, ne02, ne20);
auto pipeline = ggml_metal_library_get_pipeline_mul_mm_id_map0(lib, ne02, ne20);
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
GGML_ASSERT(ne02 <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
@ -1938,7 +1981,7 @@ int ggml_metal_op_mul_mat_id(ggml_metal_op_t ctx, int idx) {
ggml_metal_op_concurrency_reset(ctx);
{
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mm_id(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_mul_mm_id(lib, op);
ggml_metal_kargs_mul_mm_id args = {
/*.ne00 =*/ ne00,
@ -1967,20 +2010,20 @@ int ggml_metal_op_mul_mat_id(ggml_metal_op_t ctx, int idx) {
ggml_metal_encoder_set_buffer (enc, bid_ids, 4);
ggml_metal_encoder_set_buffer (enc, bid_dst, 5);
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, (ne21 + 31)/32, (ne01 + 63)/64, ne02, 128, 1, 1);
}
} else {
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_mul_mv_id(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_mul_mv_id(lib, op);
const int nr0 = ggml_metal_pipeline_get_nr0(pipeline);
const int nr1 = ggml_metal_pipeline_get_nr1(pipeline);
const int nsg = ggml_metal_pipeline_get_nsg(pipeline);
const int nr0 = pipeline.nr0;
const int nr1 = pipeline.nr1;
const int nsg = pipeline.nsg;
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_kargs_mul_mv_id args = {
/*.nei0 =*/ ne20,
@ -2064,7 +2107,7 @@ int ggml_metal_op_add_id(ggml_metal_op_t ctx, int idx) {
/*.nb21 =*/ nb21,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_base(lib, GGML_OP_ADD_ID);
auto pipeline = ggml_metal_library_get_pipeline_base(lib, GGML_OP_ADD_ID);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -2308,7 +2351,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
/*.nb33 =*/nb33,
};
ggml_metal_pipeline_t pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_pad(lib, op, has_mask, ncpsg);
auto pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_pad(lib, op, has_mask, ncpsg);
ggml_metal_encoder_set_pipeline(enc, pipeline0);
ggml_metal_encoder_set_bytes (enc, &args0, sizeof(args0), 0);
@ -2339,7 +2382,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
/*.nb33 =*/ nb33,
};
ggml_metal_pipeline_t pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_blk(lib, op, nqptg, ncpsg);
auto pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_blk(lib, op, nqptg, ncpsg);
ggml_metal_encoder_set_pipeline(enc, pipeline0);
ggml_metal_encoder_set_bytes (enc, &args0, sizeof(args0), 0);
@ -2424,7 +2467,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
/*.logit_softcap =*/ logit_softcap,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_flash_attn_ext(lib, op, has_mask, has_sinks, has_bias, has_scap, has_kvpad, nsg);
auto pipeline = ggml_metal_library_get_pipeline_flash_attn_ext(lib, op, has_mask, has_sinks, has_bias, has_scap, has_kvpad, nsg);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -2476,7 +2519,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
/*.nb33 =*/nb33,
};
ggml_metal_pipeline_t pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_pad(lib, op, has_mask, ncpsg);
auto pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_pad(lib, op, has_mask, ncpsg);
ggml_metal_encoder_set_pipeline(enc, pipeline0);
ggml_metal_encoder_set_bytes (enc, &args0, sizeof(args0), 0);
@ -2578,7 +2621,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
/*.logit_softcap =*/ logit_softcap,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_flash_attn_ext_vec(lib, op, has_mask, has_sinks, has_bias, has_scap, has_kvpad, nsg, nwg);
auto pipeline = ggml_metal_library_get_pipeline_flash_attn_ext_vec(lib, op, has_mask, has_sinks, has_bias, has_scap, has_kvpad, nsg, nwg);
GGML_ASSERT(nsg*32 <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
@ -2630,7 +2673,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
nrows,
};
ggml_metal_pipeline_t pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(lib, op, ne20, nwg);
auto pipeline0 = ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(lib, op, ne20, nwg);
ggml_metal_encoder_set_pipeline(enc, pipeline0);
ggml_metal_encoder_set_bytes (enc, &args0, sizeof(args0), 0);
@ -2762,7 +2805,7 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
// the offsets of src1 and all fused buffers are relative to the start of the src1 buffer
bid_src1.offs = 0;
ggml_metal_pipeline_t pipeline = nullptr;
struct ggml_metal_pipeline_with_params pipeline;
if (ggml_nelements(op->src[1]) == ne10 && ggml_is_contiguous(op->src[1]) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(op->src[0]));
@ -2835,7 +2878,7 @@ int ggml_metal_op_l2_norm(ggml_metal_op_t ctx, int idx) {
/*.eps =*/ eps,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_l2_norm(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_l2_norm(lib, op);
while (nth < ne00/4 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
nth *= 2;
@ -2844,7 +2887,7 @@ int ggml_metal_op_l2_norm(ggml_metal_op_t ctx, int idx) {
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
nth = std::min(nth, ne00/4);
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
const int64_t nrows = ggml_nrows(op->src[0]);
@ -2887,7 +2930,7 @@ int ggml_metal_op_group_norm(ggml_metal_op_t ctx, int idx) {
/*.eps =*/ eps,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_group_norm(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_group_norm(lib, op);
int nth = 32; // SIMD width
//while (nth < ne00/4 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
@ -2897,7 +2940,7 @@ int ggml_metal_op_group_norm(ggml_metal_op_t ctx, int idx) {
//nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
//nth = std::min(nth, ne00/4);
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -3022,7 +3065,7 @@ int ggml_metal_op_norm(ggml_metal_op_t ctx, int idx) {
}
}
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_norm(lib, op, n_fuse);
auto pipeline = ggml_metal_library_get_pipeline_norm(lib, op, n_fuse);
int nth = 32; // SIMD width
@ -3033,7 +3076,7 @@ int ggml_metal_op_norm(ggml_metal_op_t ctx, int idx) {
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
nth = std::min(nth, args.ne00_t);
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -3127,7 +3170,7 @@ int ggml_metal_op_rope(ggml_metal_op_t ctx, int idx) {
/* src2 =*/ op->src[2] != nullptr,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_rope(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_rope(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -3199,7 +3242,7 @@ int ggml_metal_op_im2col(ggml_metal_op_t ctx, int idx) {
/*.KHW =*/ KH * KW,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_im2col(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_im2col(lib, op);
GGML_ASSERT(KH*KW <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
@ -3270,7 +3313,7 @@ int ggml_metal_op_conv_2d(ggml_metal_op_t ctx, int idx) {
/*.d1 =*/ d1,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_conv_2d(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_conv_2d(lib, op);
int nth = ggml_metal_pipeline_max_theads_per_threadgroup(pipeline);
nth = std::min(nth, 256);
@ -3325,7 +3368,7 @@ int ggml_metal_op_conv_transpose_1d(ggml_metal_op_t ctx, int idx) {
/*.nb1 =*/ nb1,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_conv_transpose_1d(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_conv_transpose_1d(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -3377,7 +3420,7 @@ int ggml_metal_op_conv_transpose_2d(ggml_metal_op_t ctx, int idx) {
/*.nb2 =*/ nb2,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_conv_transpose_2d(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_conv_transpose_2d(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -3433,7 +3476,7 @@ int ggml_metal_op_upscale(ggml_metal_op_t ctx, int idx) {
/*.sf3 =*/ sf3
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_upscale(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_upscale(lib, op);
const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne0);
@ -3477,7 +3520,7 @@ int ggml_metal_op_pad(ggml_metal_op_t ctx, int idx) {
/*.nb3 =*/ nb3
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_pad(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_pad(lib, op);
const int nth = std::min(1024, ne0);
@ -3523,7 +3566,7 @@ int ggml_metal_op_pad_reflect_1d(ggml_metal_op_t ctx, int idx) {
/*.p1 =*/ ((const int32_t *)(op->op_params))[1]
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_pad_reflect_1d(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_pad_reflect_1d(lib, op);
const int nth = std::min(1024, ne0);
@ -3560,7 +3603,7 @@ int ggml_metal_op_arange(ggml_metal_op_t ctx, int idx) {
const int nth = std::min(1024, ne0);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_arange(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_arange(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -3591,7 +3634,7 @@ int ggml_metal_op_timestep_embedding(ggml_metal_op_t ctx, int idx) {
/*.max_period =*/ max_period,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_timestep_embedding(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_timestep_embedding(lib, op);
const int nth = std::max(1, std::min(1024, dim/2));
@ -3621,7 +3664,7 @@ int ggml_metal_op_argmax(ggml_metal_op_t ctx, int idx) {
/*.nb01 = */ nb01,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_argmax(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_argmax(lib, op);
const int64_t nrows = ggml_nrows(op->src[0]);
@ -3630,7 +3673,7 @@ int ggml_metal_op_argmax(ggml_metal_op_t ctx, int idx) {
nth *= 2;
}
const size_t smem = ggml_metal_pipeline_get_smem(pipeline);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -3657,7 +3700,7 @@ int ggml_metal_op_argsort(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_argsort(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_argsort(lib, op);
// bitonic sort requires the number of elements to be power of 2
int nth = 1;
@ -3706,7 +3749,7 @@ int ggml_metal_op_argsort(ggml_metal_op_t ctx, int idx) {
ggml_metal_encoder_dispatch_threadgroups(enc, npr*ne01, ne02, ne03, nth, 1, 1);
ggml_metal_pipeline_t pipeline_merge = ggml_metal_library_get_pipeline_argsort_merge(lib, op);
auto pipeline_merge = ggml_metal_library_get_pipeline_argsort_merge(lib, op);
int len = nth;
@ -3764,7 +3807,7 @@ int ggml_metal_op_top_k(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_top_k(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_top_k(lib, op);
// bitonic sort requires the number of elements to be power of 2
int nth = 1;
@ -3818,7 +3861,7 @@ int ggml_metal_op_top_k(ggml_metal_op_t ctx, int idx) {
ggml_metal_encoder_dispatch_threadgroups(enc, npr*ne01, ne02, ne03, nth, 1, 1);
ggml_metal_pipeline_t pipeline_merge = ggml_metal_library_get_pipeline_top_k_merge(lib, op);
auto pipeline_merge = ggml_metal_library_get_pipeline_top_k_merge(lib, op);
int len = args.top_k;
@ -3881,7 +3924,7 @@ int ggml_metal_op_leaky_relu(ggml_metal_op_t ctx, int idx) {
/*.slope =*/ slope
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_unary(lib, op);
int64_t n = ggml_nelements(op);
@ -3899,6 +3942,57 @@ int ggml_metal_op_leaky_relu(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_tri(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_kargs_tri args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
};
auto pipeline = ggml_metal_library_get_pipeline_tri(lib, op);
int nth = 32; // SIMD width
while (nth < ne00 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
nth *= 2;
}
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
nth = std::min(nth, ne00);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
return 1;
}
int ggml_metal_op_opt_step_adamw(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
@ -3910,7 +4004,7 @@ int ggml_metal_op_opt_step_adamw(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_opt_step_adamw(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_opt_step_adamw(lib, op);
const int64_t np = ggml_nelements(op->src[0]);
ggml_metal_kargs_opt_step_adamw args = {
@ -3946,7 +4040,7 @@ int ggml_metal_op_opt_step_sgd(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_opt_step_sgd(lib, op);
auto pipeline = ggml_metal_library_get_pipeline_opt_step_sgd(lib, op);
const int64_t np = ggml_nelements(op->src[0]);
ggml_metal_kargs_opt_step_sgd args = {

View File

@ -47,6 +47,7 @@ int ggml_metal_op_concat (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_repeat (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_acc (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_scale (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_fill (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_clamp (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_unary (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_glu (ggml_metal_op_t ctx, int idx);
@ -83,6 +84,7 @@ int ggml_metal_op_argmax (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_argsort (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_top_k (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_leaky_relu (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_tri (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_opt_step_adamw (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_opt_step_sgd (ggml_metal_op_t ctx, int idx);

View File

@ -1249,6 +1249,22 @@ kernel void kernel_scale_f32_4(
dst[tpig] = src0[tpig] * args.scale + args.bias;
}
kernel void kernel_fill_f32(
constant ggml_metal_kargs_fill & args,
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = args.val;
}
kernel void kernel_fill_f32_4(
constant ggml_metal_kargs_fill & args,
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = args.val;
}
kernel void kernel_clamp_f32(
constant ggml_metal_kargs_clamp & args,
device const float * src0,
@ -1595,6 +1611,36 @@ kernel void kernel_exp_f32_4(
dst[tpig] = exp(src0[tpig]);
}
kernel void kernel_softplus_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = select(log(1.0f + exp(x)), x, x > 20.0f);
}
kernel void kernel_softplus_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = select(log(1.0f + exp(x)), x, x > 20.0f);
}
kernel void kernel_expm1_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = exp(src0[tpig]) - 1.0f;
}
kernel void kernel_expm1_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = exp(src0[tpig]) - 1.0f;
}
kernel void kernel_reglu_f32(
constant ggml_metal_kargs_glu & args,
device const char * src0,
@ -1943,6 +1989,75 @@ typedef decltype(kernel_cumsum_add<float>) kernel_cumsum_add_t;
template [[host_name("kernel_cumsum_add_f32")]] kernel kernel_cumsum_add_t kernel_cumsum_add<float>;
template<uint32_t ttype>
bool _ggml_vec_tri_cmp(const int i, const int r);
template<>
bool _ggml_vec_tri_cmp</* GGML_TRI_TYPE_LOWER */ 3>(const int i, const int r) {
return i < r;
}
template<>
bool _ggml_vec_tri_cmp</* GGML_TRI_TYPE_LOWER_DIAG */ 2>(const int i, const int r) {
return i <= r;
}
template<>
bool _ggml_vec_tri_cmp</* GGML_TRI_TYPE_UPPER */ 1>(const int i, const int r) {
return i > r;
}
template<>
bool _ggml_vec_tri_cmp</* GGML_TRI_TYPE_UPPER_DIAG */ 0>(const int i, const int r) {
return i >= r;
}
template<typename T, int ttype>
kernel void kernel_tri(
constant ggml_metal_kargs_tri & args,
device const char * src0,
device const char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i3 = tgpig.z;
const int i2 = tgpig.y;
const int i1 = tgpig.x;
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
return;
}
device const T * src_row = (device const T *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device T * dst_row = (device T *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
// Each thread is a single element of the row if ne00 < max threads per
// threadgroup, so this will loop once for each index that this thread is
// responsible for
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
// Use the comparison as a mask for branchless
dst_row[i0] = static_cast<T>(_ggml_vec_tri_cmp<ttype>(i0, i1)) * src_row[i0];
}
}
typedef decltype(kernel_tri<float, 0>) kernel_tri_t;
template [[host_name("kernel_tri_f32_0")]] kernel kernel_tri_t kernel_tri<float, 0>;
template [[host_name("kernel_tri_f32_1")]] kernel kernel_tri_t kernel_tri<float, 1>;
template [[host_name("kernel_tri_f32_2")]] kernel kernel_tri_t kernel_tri<float, 2>;
template [[host_name("kernel_tri_f32_3")]] kernel kernel_tri_t kernel_tri<float, 3>;
template [[host_name("kernel_tri_f16_0")]] kernel kernel_tri_t kernel_tri<half, 0>;
template [[host_name("kernel_tri_f16_1")]] kernel kernel_tri_t kernel_tri<half, 1>;
template [[host_name("kernel_tri_f16_2")]] kernel kernel_tri_t kernel_tri<half, 2>;
template [[host_name("kernel_tri_f16_3")]] kernel kernel_tri_t kernel_tri<half, 3>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_tri_bf16_0")]] kernel kernel_tri_t kernel_tri<bfloat, 0>;
template [[host_name("kernel_tri_bf16_1")]] kernel kernel_tri_t kernel_tri<bfloat, 1>;
template [[host_name("kernel_tri_bf16_2")]] kernel kernel_tri_t kernel_tri<bfloat, 2>;
template [[host_name("kernel_tri_bf16_3")]] kernel kernel_tri_t kernel_tri<bfloat, 3>;
#endif
template<typename T>
kernel void kernel_soft_max(
constant ggml_metal_kargs_soft_max & args,
@ -5757,6 +5872,7 @@ typedef decltype(kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, hal
template [[host_name("kernel_flash_attn_ext_f32_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 32, 32>;
template [[host_name("kernel_flash_attn_ext_f32_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 40, 40>;
template [[host_name("kernel_flash_attn_ext_f32_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 48, 48>;
template [[host_name("kernel_flash_attn_ext_f32_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 64, 64>;
template [[host_name("kernel_flash_attn_ext_f32_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 72, 72>;
template [[host_name("kernel_flash_attn_ext_f32_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 80, 80>;
@ -5770,6 +5886,7 @@ template [[host_name("kernel_flash_attn_ext_f32_dk576_dv512")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_f16_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 32, 32>;
template [[host_name("kernel_flash_attn_ext_f16_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 40, 40>;
template [[host_name("kernel_flash_attn_ext_f16_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 48, 48>;
template [[host_name("kernel_flash_attn_ext_f16_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_f16_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 72, 72>;
template [[host_name("kernel_flash_attn_ext_f16_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 80, 80>;
@ -5784,6 +5901,7 @@ template [[host_name("kernel_flash_attn_ext_f16_dk576_dv512")]] kernel flash_at
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 32, 32>;
template [[host_name("kernel_flash_attn_ext_bf16_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 40, 40>;
template [[host_name("kernel_flash_attn_ext_bf16_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 48, 48>;
template [[host_name("kernel_flash_attn_ext_bf16_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 72, 72>;
template [[host_name("kernel_flash_attn_ext_bf16_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
@ -5798,6 +5916,7 @@ template [[host_name("kernel_flash_attn_ext_bf16_dk576_dv512")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_0_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 48, 48>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 72, 72>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 80, 80>;
@ -5811,6 +5930,7 @@ template [[host_name("kernel_flash_attn_ext_q4_0_dk576_dv512")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_1_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 48, 48>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 72, 72>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 80, 80>;
@ -5824,6 +5944,7 @@ template [[host_name("kernel_flash_attn_ext_q4_1_dk576_dv512")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_0_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 48, 48>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 72, 72>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 80, 80>;
@ -5837,6 +5958,7 @@ template [[host_name("kernel_flash_attn_ext_q5_0_dk576_dv512")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_1_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 48, 48>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 72, 72>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 80, 80>;
@ -5850,6 +5972,7 @@ template [[host_name("kernel_flash_attn_ext_q5_1_dk576_dv512")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q8_0_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk48_dv48" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 48, 48>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk72_dv72" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 72, 72>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 80, 80>;

View File

@ -3086,8 +3086,9 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_UPSCALE: {
ggml_scale_mode mode = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & 0xFF);
const bool antialias = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & GGML_SCALE_FLAG_ANTIALIAS);
return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
(mode == GGML_SCALE_MODE_NEAREST || mode == GGML_SCALE_MODE_BILINEAR);
(mode == GGML_SCALE_MODE_NEAREST || mode == GGML_SCALE_MODE_BILINEAR) && !antialias;
}
case GGML_OP_CONV_2D:
return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||

View File

@ -128,6 +128,7 @@ struct rpc_msg_device_count_rsp {
struct rpc_msg_get_alloc_size_req {
uint32_t device;
rpc_tensor tensor;
rpc_tensor srcs[GGML_MAX_SRC];
};
struct rpc_msg_get_alloc_size_rsp {
@ -572,6 +573,11 @@ static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
rpc_tensor result;
if (!tensor) {
memset(&result, 0, sizeof(result));
return result;
}
result.id = reinterpret_cast<uint64_t>(tensor);
result.type = tensor->type;
if (tensor->buffer) {
@ -753,23 +759,41 @@ static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
}
static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
// should we query the remote server for the actual size
bool rpc_get = false;
// See comments in init_tensor.
if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
rpc_get |= ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr);
// ops that require additional memory for fleeting data on certain backends
// ref: https://github.com/ggml-org/llama.cpp/pull/15966
rpc_get |= tensor->op == GGML_OP_FLASH_ATTN_EXT;
rpc_get |= tensor->op == GGML_OP_MUL_MAT_ID;
if (rpc_get) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
auto sock = get_socket(buft_ctx->endpoint);
rpc_msg_get_alloc_size_req request;
request.device = buft_ctx->device;
request.tensor = serialize_tensor(tensor);
rpc_msg_get_alloc_size_req request = {
/*.device =*/ buft_ctx->device,
/*.tensor =*/ serialize_tensor(tensor),
/*.srcs =*/ {},
};
// .get_alloc_size could be a function of the tensor's srcs, so we must serialize them as well
for (int i = 0; i < GGML_MAX_SRC; i++) {
request.srcs[i] = serialize_tensor(tensor->src[i]);
}
// TODO: cache the alloc responses to avoid extra RPC calls?
rpc_msg_get_alloc_size_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
RPC_STATUS_ASSERT(status);
return response.alloc_size;
} else {
return ggml_nbytes(tensor);
}
return ggml_nbytes(tensor);
}
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
@ -1017,7 +1041,7 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
}
ggml_backend_buffer_type_t buft;
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_size =*/ ggml_tensor_overhead()*(1 + GGML_MAX_SRC),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
@ -1025,12 +1049,18 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
ggml_context_ptr ctx_ptr { ggml_init(params) };
GGML_ASSERT(ctx_ptr != nullptr);
ggml_context * ctx = ctx_ptr.get();
ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
if (tensor == nullptr) {
GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
return false;
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (request.srcs[i].id != 0) {
tensor->src[i] = deserialize_tensor(ctx, &request.srcs[i]);
}
}
LOG_DBG("[%s] device: %d, buffer: %p, data: %p\n", __func__, dev_id, (void*)tensor->buffer, tensor->data);
if (tensor->buffer == nullptr) {
//No buffer allocated.

View File

@ -1787,6 +1787,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
const sycl::range<3> block_dims(1, 1, nth);
const sycl::range<3> block_nums(1, nrows, 1);
const size_t shared_mem = ncols_pad * sizeof(int);
GGML_ASSERT(shared_mem<=ggml_sycl_info().devices[device].smpbo);
if (order == GGML_SORT_ORDER_ASC) {
stream->submit([&](sycl::handler &cgh) {
@ -4348,6 +4349,9 @@ static ggml_backend_buffer_t ggml_backend_sycl_device_buffer_from_host_ptr(ggml_
}
static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_sycl_device_context *sycl_ctx =
(ggml_backend_sycl_device_context *)dev->context;
int device = sycl_ctx->device;
switch (op->op) {
case GGML_OP_CONV_TRANSPOSE_1D:
{
@ -4597,12 +4601,14 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_IM2COL:
return true;
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST && !(op->op_params[0] & GGML_SCALE_FLAG_ANTIALIAS);
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGSORT:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_ARGSORT:
return op->src[0]->ne[0] * sizeof(int) <=
ggml_sycl_info().devices[device].smpbo;
case GGML_OP_POOL_2D:
case GGML_OP_ACC:
return true;

View File

@ -353,10 +353,17 @@ enum vk_conv_shapes {
CONV_SHAPE_COUNT,
};
uint32_t conv_shapes_wg_denoms[][3] = {
{ 128, 128, 1 },
{ 64, 32, 1 },
{ 32, 256, 1 },
struct vk_conv_block_size {
uint32_t K;
uint32_t NPQ;
uint32_t CRS;
};
vk_conv_block_size vk_conv_block_sizes[CONV_SHAPE_COUNT] = {
// K NPQ CRS
{ 128, 128, 16 }, // CONV_SHAPE_128x128
{ 64, 32, 32 }, // CONV_SHAPE_64x32
{ 32, 256, 16 }, // CONV_SHAPE_32x256
};
enum dmmv_wg_sizes {
@ -519,6 +526,7 @@ struct vk_device_struct {
bool fp16;
bool bf16;
bool pipeline_robustness;
bool memory_priority;
vk::Device device;
uint32_t vendor_id;
vk::DriverId driver_id;
@ -1227,6 +1235,7 @@ struct vk_op_topk_push_constants {
uint32_t orig_ncols;
uint32_t ncols_input;
uint32_t ncols_output;
uint32_t k;
uint32_t nrows;
uint32_t first_pass;
uint32_t last_pass;
@ -1342,20 +1351,11 @@ struct vk_op_conv2d_push_constants {
uint32_t Cin;
uint32_t N;
uint32_t KW;
uint32_t KH;
uint32_t W;
uint32_t H;
uint32_t OW;
uint32_t OH;
uint32_t s0;
uint32_t s1;
uint32_t p0;
uint32_t p1;
uint32_t d0;
uint32_t d1;
uint32_t nb01;
uint32_t nb02;
uint32_t nb03;
@ -1379,48 +1379,6 @@ template <> void init_pushconst_fastdiv(vk_op_conv2d_push_constants &p) {
init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
}
struct vk_op_conv_transpose_2d_push_constants {
uint32_t Cout;
uint32_t Cin;
uint32_t N;
uint32_t KW;
uint32_t KH;
uint32_t W;
uint32_t H;
uint32_t OW;
uint32_t OH;
uint32_t s0;
uint32_t s1;
uint32_t p0;
uint32_t p1;
uint32_t d0;
uint32_t d1;
uint32_t nb01;
uint32_t nb02;
uint32_t nb03;
uint32_t nb11;
uint32_t nb12;
uint32_t nb13;
uint32_t nb1;
uint32_t nb2;
uint32_t nb3;
// init_fastdiv_values constants for dividing by OW, OW*OH
uint32_t OWmp; uint32_t OWL;
uint32_t OWOHmp; uint32_t OWOHL;
};
template <> void init_pushconst_fastdiv(vk_op_conv_transpose_2d_push_constants &p) {
// Compute magic values to divide by OW, OW*OH
init_fastdiv_values(p.OW, p.OWmp, p.OWL);
init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
}
struct vk_op_conv2d_dw_push_constants {
uint32_t ne;
uint32_t batches;
@ -1673,6 +1631,14 @@ class vk_perf_logger {
timings[name.str()].push_back(time);
return;
}
if (node->op == GGML_OP_TOP_K) {
std::stringstream name;
name << ggml_op_name(node->op) <<
" K=" << node->ne[0] <<
" (" << node->src[0]->ne[0] << "," << node->src[0]->ne[1] << "," << node->src[0]->ne[2] << "," << node->src[0]->ne[3] << ")";
timings[name.str()].push_back(time);
return;
}
timings[ggml_op_name(node->op)].push_back(time);
}
private:
@ -2360,7 +2326,13 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std
vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties();
const vk::MemoryAllocateFlagsInfo mem_flags_info { mem_flags };
const vk::MemoryPriorityAllocateInfoEXT mem_priority_info { 1.0f };
vk::MemoryAllocateFlagsInfo mem_flags_info { mem_flags };
if (device->memory_priority) {
mem_flags_info.setPNext(&mem_priority_info);
}
for (auto it = req_flags_list.begin(); it != req_flags_list.end(); it++) {
const auto & req_flags = *it;
@ -3565,7 +3537,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
SHADER_REDUCTION_MODE_SHMEM;
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32", arr_dmmv_f32_f32_f32_len[reduc], arr_dmmv_f32_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32", arr_dmmv_f32_f32_f32_len[reduc], arr_dmmv_f32_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {wg_size_subgroup, 1, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32", arr_dmmv_f16_f32_f32_len[reduc], arr_dmmv_f16_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32", arr_dmmv_bf16_f32_f32_len[reduc], arr_dmmv_bf16_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32", arr_dmmv_q4_0_f32_f32_len[reduc], arr_dmmv_q4_0_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
@ -3589,7 +3561,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32", arr_dmmv_iq4_nl_f32_f32_len[reduc16], arr_dmmv_iq4_nl_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f32_f32", arr_dmmv_mxfp4_f32_f32_len[reduc16], arr_dmmv_mxfp4_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32", arr_dmmv_f32_f16_f32_len[reduc], arr_dmmv_f32_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32", arr_dmmv_f32_f16_f32_len[reduc], arr_dmmv_f32_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {wg_size_subgroup, 1, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32", arr_dmmv_f16_f16_f32_len[reduc], arr_dmmv_f16_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32", arr_dmmv_bf16_f16_f32_len[reduc], arr_dmmv_bf16_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32", arr_dmmv_q4_0_f16_f32_len[reduc], arr_dmmv_q4_0_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
@ -3635,7 +3607,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
}
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", arr_dmmv_id_f32_f32_f32_len[reduc], arr_dmmv_id_f32_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {wg_size_subgroup, 2}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", arr_dmmv_id_f32_f32_f32_len[reduc], arr_dmmv_id_f32_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {wg_size_subgroup, 1}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", arr_dmmv_id_f16_f32_f32_len[reduc], arr_dmmv_id_f16_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {wg_size_subgroup, 2}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", arr_dmmv_id_bf16_f32_f32_len[reduc], arr_dmmv_id_bf16_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {wg_size_subgroup, 2}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", arr_dmmv_id_q4_0_f32_f32_len[reduc], arr_dmmv_id_q4_0_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq}, 1, true, use_subgroups, force_subgroup_size);
@ -4041,7 +4013,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
uint32_t nary_shmem = 2 * sizeof(int) * BLOCK_SIZE +
sizeof(int) * device->subgroup_size +
2 * sizeof(int) +
(BLOCK_SIZE / device->subgroup_size) * sizeof(int);
2 * (BLOCK_SIZE / device->subgroup_size) * sizeof(int);
if (device->subgroup_arithmetic && device->subgroup_require_full_support && device->subgroup_shuffle && device->subgroup_ballot &&
nary_shmem <= device->properties.limits.maxComputeSharedMemorySize) {
ggml_vk_create_pipeline2(device, device->pipeline_topk_f32[i], "topk_f32_"+std::to_string(i), topk_nary_search_f32_len, topk_nary_search_f32_data, "main", 2, sizeof(vk_op_topk_push_constants), {BLOCK_SIZE, 1, 1}, {BLOCK_SIZE, device->subgroup_size, device->subgroup_size_log2}, 1, true, true, device->subgroup_size);
@ -4061,10 +4033,16 @@ static void ggml_vk_load_shaders(vk_device& device) {
for (auto &s : device->pipeline_solve_tri_f32) {
const vk_solve_tri_pipeline_state &state = s.first;
// Max number of rows to load at a time, limited by shared memory
const uint32_t batch_N = device->properties.limits.maxComputeSharedMemorySize / ((state.N + state.K) * sizeof(float));
// Need at least K invocations, and prefer a minimum of 128 to spread out loading shared memory
const uint32_t block_size = std::max(128u, 1u << (uint32_t)ceilf(log2f(float(state.K))));
ggml_vk_create_pipeline(
device, s.second, "solve_tri_f32",
solve_tri_f32_len, solve_tri_f32_data, "main", 3,
sizeof(vk_op_binary_push_constants), {1, 1, 1}, { 0, state.N, state.K }, 1, true);
sizeof(vk_op_binary_push_constants), {1, 1, 1}, { 0, state.N, state.K, batch_N, block_size }, 1, true);
}
#define IM2COL(bda) \
@ -4110,12 +4088,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
// conv2d, conv_transpose_2d
for (uint32_t s = 0; s < CONV_SHAPE_COUNT; ++s) {
uint32_t conv2d_WG_SIZE = 256;
uint32_t conv2d_BS_K = 128;
uint32_t conv2d_BS_CRS = 16;
uint32_t use_collectives = 0; // Enables subgroup ops for preventing the re-calculation of indices.
uint32_t conv2d_BS_NPQ = 128;
uint32_t conv2d_TS_K = 8;
uint32_t conv2d_TS_K = (s == CONV_SHAPE_64x32) ? 4 : 8;
uint32_t conv2d_SHMEM_PAD = 4;
vk_conv_block_size conv2d_BS = vk_conv_block_sizes[s];
bool conv2d_UNROLL = true;
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
@ -4129,29 +4105,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
conv2d_UNROLL = false;
} else if (device->vendor_id == VK_VENDOR_ID_AMD) {
conv2d_SHMEM_PAD = device->architecture == vk_device_architecture::AMD_GCN ? 1 : 4;
}
switch (s) {
default:
case CONV_SHAPE_128x128:
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_128x128][0];
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_128x128][1];
conv2d_BS_CRS = 16;
if (device->vendor_id == VK_VENDOR_ID_AMD && device->architecture != vk_device_architecture::AMD_GCN) {
if (s == CONV_SHAPE_128x128 && device->architecture != vk_device_architecture::AMD_GCN) {
conv2d_UNROLL = false;
}
break;
case CONV_SHAPE_64x32:
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_64x32][0];
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_64x32][1];
conv2d_BS_CRS = 32;
conv2d_TS_K = 4;
break;
case CONV_SHAPE_32x256:
conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_32x256][0];
conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_32x256][1];
conv2d_BS_CRS = 16;
break;
}
// Use collectives on pre-Turing NVIDIA GPUs and GCN AMD cards, which had slower integer math.
@ -4165,22 +4121,22 @@ static void ggml_vk_load_shaders(vk_device& device) {
allow_collectives_nv &&
allow_collectives_amd) {
use_collectives = 1;
conv2d_BS_CRS = std::min(
conv2d_BS.CRS = std::min(
device->subgroup_size,
conv2d_BS_CRS); // CRS block size should be capped at subgroup size for correctness when shuffle is used.
conv2d_BS.CRS); // CRS block size should be capped at subgroup size for correctness when shuffle is used.
}
uint32_t conv2d_shmem_req =
(conv2d_BS_K * (conv2d_BS_CRS + conv2d_SHMEM_PAD) + conv2d_BS_CRS * (conv2d_BS_NPQ + conv2d_SHMEM_PAD)) * sizeof(float);
(conv2d_BS.K * (conv2d_BS.CRS + conv2d_SHMEM_PAD) + conv2d_BS.CRS * (conv2d_BS.NPQ + conv2d_SHMEM_PAD)) * sizeof(float);
if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) {
conv2d_BS_CRS = 8;
conv2d_BS.CRS = 8;
if (use_collectives) {
conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS);
conv2d_BS.CRS = std::min(device->subgroup_size, conv2d_BS.CRS);
}
}
std::array<uint32_t, 3> wg_denoms = { conv2d_BS_K, conv2d_BS_NPQ, 1 };
std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
std::array<uint32_t, 3> wg_denoms = { conv2d_BS.K, 1, 1 };
std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS.K, conv2d_BS.CRS, conv2d_BS.NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
#define CREATE_CONV(name, type_suffix, spv_suffix) \
for (auto &c : device->pipeline_##name##type_suffix[s]) { \
@ -4197,15 +4153,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline( \
device, c.second, #name #type_suffix, \
name##type_suffix##spv_suffix##_len, name##type_suffix##spv_suffix##_data, "main", 3, \
sizeof(vk_op_##name##_push_constants), wg_denoms, spec_constants_cpy, 1, true, use_collectives); \
sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants_cpy, 1, true, use_collectives); \
}
#define CREATE_CONVS(spv_suffix) \
CREATE_CONV(conv2d, _f32, spv_suffix) \
CREATE_CONV(conv2d, _f16_f32, spv_suffix) \
if (device->properties.limits.maxPushConstantsSize >= sizeof(vk_op_conv_transpose_2d_push_constants)) { \
CREATE_CONV(conv_transpose_2d, _f32, spv_suffix) \
CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix) \
}
CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix)
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
if (device->coopmat2) {
CREATE_CONVS(_cm2)
@ -4226,9 +4180,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0}, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0}, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1}, 1, true, true, device->subgroup_size);
}
for (auto &c : compiles) {
@ -4331,6 +4285,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
#endif
} else if (strcmp("VK_KHR_pipeline_executable_properties", properties.extensionName) == 0) {
pipeline_executable_properties_support = true;
} else if (strcmp("VK_EXT_memory_priority", properties.extensionName) == 0 &&
getenv("GGML_VK_ENABLE_MEMORY_PRIORITY")) {
device->memory_priority = true;
}
}
@ -4522,6 +4479,16 @@ static vk_device ggml_vk_get_device(size_t idx) {
device_extensions.push_back("VK_EXT_pipeline_robustness");
}
VkPhysicalDeviceMemoryPriorityFeaturesEXT memory_priority_features;
memory_priority_features.pNext = nullptr;
memory_priority_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT;
memory_priority_features.memoryPriority = VK_FALSE;
if (device->memory_priority) {
last_struct->pNext = (VkBaseOutStructure *)&memory_priority_features;
last_struct = (VkBaseOutStructure *)&memory_priority_features;
device_extensions.push_back("VK_EXT_memory_priority");
}
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT subgroup_size_control_features;
subgroup_size_control_features.pNext = nullptr;
subgroup_size_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT;
@ -5101,7 +5068,7 @@ static void ggml_vk_print_gpu_info(size_t idx) {
}
}
static bool ggml_vk_instance_validation_ext_available();
static bool ggml_vk_instance_layer_settings_available();
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
static bool ggml_vk_instance_debug_utils_ext_available(const std::vector<vk::ExtensionProperties> & instance_extensions);
static bool ggml_vk_device_is_supported(const vk::PhysicalDevice & vkdev);
@ -5130,19 +5097,19 @@ static void ggml_vk_instance_init() {
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, api_version };
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
const bool validation_ext = ggml_vk_instance_validation_ext_available();
const bool layer_settings = ggml_vk_instance_layer_settings_available();
#ifdef __APPLE__
const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions);
#endif
const bool debug_utils_ext = ggml_vk_instance_debug_utils_ext_available(instance_extensions) && getenv("GGML_VK_DEBUG_MARKERS") != nullptr;
std::vector<const char*> layers;
if (validation_ext) {
if (layer_settings) {
layers.push_back("VK_LAYER_KHRONOS_validation");
}
std::vector<const char*> extensions;
if (validation_ext) {
extensions.push_back("VK_EXT_validation_features");
if (layer_settings) {
extensions.push_back("VK_EXT_layer_settings");
}
#ifdef __APPLE__
if (portability_enumeration_ext) {
@ -5152,26 +5119,24 @@ static void ggml_vk_instance_init() {
if (debug_utils_ext) {
extensions.push_back("VK_EXT_debug_utils");
}
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions);
VkBool32 enable_best_practice = layer_settings;
std::vector<vk::LayerSettingEXT> settings = {
{
"VK_LAYER_KHRONOS_validation",
"validate_best_practices",
vk::LayerSettingTypeEXT::eBool32,
1,
&enable_best_practice
},
};
vk::LayerSettingsCreateInfoEXT layer_setting_info(settings);
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions, &layer_setting_info);
#ifdef __APPLE__
if (portability_enumeration_ext) {
instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR;
}
#endif
std::vector<vk::ValidationFeatureEnableEXT> features_enable;
vk::ValidationFeaturesEXT validation_features;
if (validation_ext) {
features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
validation_features = {
features_enable,
{},
};
validation_features.setPNext(nullptr);
instance_create_info.setPNext(&validation_features);
GGML_LOG_DEBUG("ggml_vulkan: Validation layers enabled\n");
}
vk_instance.instance = vk::createInstance(instance_create_info);
vk_instance_initialized = true;
@ -6919,6 +6884,10 @@ static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_
// Quantization overhead is not worth it for small k
switch (device->vendor_id) {
case VK_VENDOR_ID_NVIDIA:
if (src0_type == GGML_TYPE_Q2_K) {
return true;
}
if (k <= 4096) {
return false;
}
@ -8251,59 +8220,23 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
}
}
static std::array<uint32_t, 3> ggml_vk_get_conv_elements(const ggml_tensor *dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
// src0 - kernel: [KW, KH, Cin, Cout]
// src1 - input: [W, H, Cin, N]
// dst - result: [OW, OH, Cout, N]
// Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
static vk_conv_shapes ggml_vk_conv_select_shape(ggml_backend_vk_context * ctx, uint32_t K, uint32_t NPQ) {
auto n_tiles = [&](vk_conv_shapes s) {
return CEIL_DIV(K, vk_conv_block_sizes[s].K)
* CEIL_DIV(NPQ, vk_conv_block_sizes[s].NPQ);
};
// parallelize in {OW/BS_K, OH/BS_NPQ, 1}
int64_t W = src1->ne[0];
int64_t H = src1->ne[1];
int64_t KW = src0->ne[0];
int64_t KH = src0->ne[1];
int64_t Cout = src0->ne[3];
int64_t N = src1->ne[3];
int64_t OH = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
int64_t NPQ = N * OW * OH;
// Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
return elements;
// We can't query number of shader cores on Intel, use 32 as a placeholder
// so small convolutions will still choose a smaller tile.
const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
if (K > 64 && n_tiles(CONV_SHAPE_128x128) >= shader_core_count * 2) {
return CONV_SHAPE_128x128;
} else if (K <= 32 && n_tiles(CONV_SHAPE_32x256) >= shader_core_count * 2) {
return CONV_SHAPE_32x256;
} else {
return CONV_SHAPE_64x32;
}
static std::array<uint32_t, 3> ggml_vk_get_conv_transpose_2d_elements(const ggml_tensor *dst) {
const ggml_tensor *src0 = dst->src[0];
const ggml_tensor *src1 = dst->src[1];
// src0 - kernel: [KW, KH, Cout, Cin]
// src1 - input: [W, H, Cin, N]
// dst - result: [OW, OH, Cout, N]
auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
return (ins - 1) * s - 2 * p + (ks - 1) * d + 1;
};
// parallelize in {OW/BS_K, OH/BS_NPQ, 1}
int64_t W = src1->ne[0];
int64_t H = src1->ne[1];
int64_t KW = src0->ne[0];
int64_t KH = src0->ne[1];
int64_t Cout = src0->ne[2];
int64_t N = src1->ne[3];
int64_t OH = calc_conv_output_size(H, KH, dst->op_params[0], 0, 1);
int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], 0, 1);
int64_t NPQ = N * OW * OH;
// Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
return elements;
}
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * dst, ggml_op op) {
@ -8766,39 +8699,20 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return nullptr;
case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D:
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
std::array<uint32_t, 3> elements{};
if (op == GGML_OP_CONV_2D) elements = ggml_vk_get_conv_elements(dst);
else if (op == GGML_OP_CONV_TRANSPOSE_2D) elements = ggml_vk_get_conv_transpose_2d_elements(dst);
vk_conv_shapes shape;
uint32_t tiles[CONV_SHAPE_COUNT];
for (uint32_t i = 0; i < CONV_SHAPE_COUNT; ++i) {
tiles[i] = CEIL_DIV(elements[0], conv_shapes_wg_denoms[i][0]) * CEIL_DIV(elements[1], conv_shapes_wg_denoms[i][1]);
}
// We can't query number of shader cores on Intel, use 32 as a placeholder
// so small convolutions will still choose a smaller tile.
const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
if (elements[0] > 64 && tiles[CONV_SHAPE_128x128] >= shader_core_count * 2) {
shape = CONV_SHAPE_128x128;
} else if (elements[0] <= 32 && tiles[CONV_SHAPE_32x256] >= shader_core_count * 2) {
shape = CONV_SHAPE_32x256;
} else {
shape = CONV_SHAPE_64x32;
}
uint32_t KW = static_cast<uint32_t>(src0->ne[0]);
uint32_t KH = static_cast<uint32_t>(src0->ne[1]);
uint32_t s0 = static_cast<uint32_t>(dst->op_params[0]);
uint32_t s1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[1]) : static_cast<uint32_t>(dst->op_params[0]);
uint32_t p0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[2]) : 0;
uint32_t p1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[3]) : 0;
uint32_t d0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[4]) : 1;
uint32_t d1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[5]) : 1;
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
uint32_t K = dst->ne[2]; // Cout
uint32_t NPQ = dst->ne[3] * dst->ne[1] * dst->ne[0]; // N * OH * OW
vk_conv_shapes shape = ggml_vk_conv_select_shape(ctx, K, NPQ);
bool transpose = dst->op == GGML_OP_CONV_TRANSPOSE_2D;
uint32_t KW = (uint32_t)src0->ne[0];
uint32_t KH = (uint32_t)src0->ne[1];
uint32_t s0 = (uint32_t)(ggml_get_op_params_i32(dst, 0));
uint32_t s1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 1) : s0;
uint32_t p0 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 2) : 0;
uint32_t p1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 3) : 0;
uint32_t d0 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 4) : 1;
uint32_t d1 = !transpose ? (uint32_t)ggml_get_op_params_i32(dst, 5) : 1;
vk_conv2d_pipeline_state conv2d_pipeline_state(s0, s1, p0, p1, d0, d1, KW, KH);
std::map<vk_conv2d_pipeline_state, vk_pipeline> *pipelines = nullptr;
@ -9117,13 +9031,21 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
elements = { N * OC * OH * OW, 1, 1};
} break;
case GGML_OP_CONV_2D:
{
elements = ggml_vk_get_conv_elements(dst);
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
elements = ggml_vk_get_conv_transpose_2d_elements(dst);
} break;
if constexpr (std::is_same_v<PC, vk_op_conv2d_push_constants>) {
const uint32_t NPQ = pc.N * pc.OH * pc.OW;
const vk_conv_shapes shape = ggml_vk_conv_select_shape(ctx, pc.Cout, NPQ);
const uint32_t NPQ_blocks = CEIL_DIV(NPQ, vk_conv_block_sizes[shape].NPQ);
elements = { pc.Cout, NPQ_blocks, 1 };
if (elements[1] > 512) {
elements[2] = CEIL_DIV(elements[1], 512);
elements[1] = 512;
}
} else {
GGML_ABORT("invalid push constant type for CONV_2D");
}
break;
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_DIV:
@ -10345,17 +10267,8 @@ static void ggml_vk_topk(ggml_backend_vk_context * ctx, vk_context& subctx, cons
uint32_t nrows = ggml_nrows(src0);
uint32_t k = dst->ne[0];
vk_op_topk_push_constants pc { ncols, ncols, k, nrows, 0, 0 };
vk_op_topk_push_constants pc { ncols, ncols, ncols, k, nrows, 0, 0 };
// Reserve space for ivec2 per element, double buffered
const size_t dbl_buf_size = size_t{ncols} * nrows * 2 * sizeof(int);
const size_t x_sz = dbl_buf_size * 2;
uint32_t dbl_buf_index = 0;
if (ctx->prealloc_size_x < x_sz) {
ctx->prealloc_size_x = x_sz;
ggml_vk_preallocate_buffers(ctx, subctx);
}
if (ctx->prealloc_x_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
@ -10370,8 +10283,9 @@ static void ggml_vk_topk(ggml_backend_vk_context * ctx, vk_context& subctx, cons
// largest elements. Repeat until we have the top K elements.
// Need to do at least one iteration to write out the results.
bool done_one_iter = false;
uint32_t dbl_buf_index = 0;
size_t dbl_buf_size;
while (num_elements > k || !done_one_iter) {
done_one_iter = true;
// Prefer going as small as num_topk_pipelines - 3 for perf reasons.
// But if K is larger, then we need a larger workgroup
@ -10411,6 +10325,21 @@ static void ggml_vk_topk(ggml_backend_vk_context * ctx, vk_context& subctx, cons
// Number of elements remaining after this pass
uint32_t num_dst_elements = (num_elements / pipeline->wg_denoms[0]) * k + std::min(k, num_elements % pipeline->wg_denoms[0]);
pc2.ncols_output = num_dst_elements;
if (!done_one_iter) {
// Reserve space for ivec2 per element, double buffered
// K per workgroup per row
dbl_buf_size = num_dst_elements * nrows * 2 * sizeof(int);
dbl_buf_size = ROUNDUP_POW2(dbl_buf_size, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
const size_t x_sz = dbl_buf_size * 2;
if (ctx->prealloc_size_x < x_sz) {
ctx->prealloc_size_x = x_sz;
ggml_vk_preallocate_buffers(ctx, subctx);
}
}
vk_subbuffer src_buf;
vk_subbuffer dst_buf;
@ -10436,6 +10365,7 @@ static void ggml_vk_topk(ggml_backend_vk_context * ctx, vk_context& subctx, cons
if (num_elements > k) {
ggml_vk_sync_buffers(ctx, subctx);
}
done_one_iter = true;
}
ctx->prealloc_x_need_sync = true;
}
@ -10666,30 +10596,24 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float));
bool transpose = dst->op == GGML_OP_CONV_TRANSPOSE_2D;
vk_op_conv2d_push_constants p{};
p.Cout = static_cast<uint32_t>(ne03);
p.Cin = static_cast<uint32_t>(ne02);
p.Cout = static_cast<uint32_t>(!transpose ? ne03 : ne02);
p.Cin = static_cast<uint32_t>(!transpose ? ne02 : ne03);
p.N = static_cast<uint32_t>(ne13);
GGML_ASSERT(p.Cout == ne2);
GGML_ASSERT(p.Cin == ne12);
p.KW = static_cast<uint32_t>(ne00);
p.KH = static_cast<uint32_t>(ne01);
p.W = static_cast<uint32_t>(ne10);
p.H = static_cast<uint32_t>(ne11);
p.OW = static_cast<uint32_t>(ne0);
p.OH = static_cast<uint32_t>(ne1);
p.s0 = static_cast<uint32_t>(dst->op_params[0]);
p.s1 = static_cast<uint32_t>(dst->op_params[1]);
p.p0 = static_cast<uint32_t>(dst->op_params[2]);
p.p1 = static_cast<uint32_t>(dst->op_params[3]);
p.d0 = static_cast<uint32_t>(dst->op_params[4]);
p.d1 = static_cast<uint32_t>(dst->op_params[5]);
p.nb01 = static_cast<uint32_t>(nb01 / nb00);
p.nb02 = static_cast<uint32_t>(nb02 / nb00);
p.nb03 = static_cast<uint32_t>(nb03 / nb00);
@ -10702,59 +10626,7 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
p.nb2 = static_cast<uint32_t>(nb2 / nb0);
p.nb3 = static_cast<uint32_t>(nb3 / nb0);
GGML_ASSERT(ne03 == ne2);
GGML_ASSERT(ne02 == ne12);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_2D, std::move(p));
}
static void ggml_vk_conv_transpose_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float));
vk_op_conv_transpose_2d_push_constants p{};
p.Cout = static_cast<uint32_t>(ne02);
p.Cin = static_cast<uint32_t>(ne03);
p.N = static_cast<uint32_t>(ne13);
p.KW = static_cast<uint32_t>(ne00);
p.KH = static_cast<uint32_t>(ne01);
p.W = static_cast<uint32_t>(ne10);
p.H = static_cast<uint32_t>(ne11);
p.OW = static_cast<uint32_t>(ne0);
p.OH = static_cast<uint32_t>(ne1);
p.s0 = static_cast<uint32_t>(dst->op_params[0]);
p.s1 = static_cast<uint32_t>(dst->op_params[0]);
p.p0 = 0;
p.p1 = 0;
p.d0 = 1;
p.d1 = 1;
p.nb01 = static_cast<uint32_t>(nb01 / nb00);
p.nb02 = static_cast<uint32_t>(nb02 / nb00);
p.nb03 = static_cast<uint32_t>(nb03 / nb00);
p.nb11 = static_cast<uint32_t>(nb11 / nb10);
p.nb12 = static_cast<uint32_t>(nb12 / nb10);
p.nb13 = static_cast<uint32_t>(nb13 / nb10);
p.nb1 = static_cast<uint32_t>(nb1 / nb0);
p.nb2 = static_cast<uint32_t>(nb2 / nb0);
p.nb3 = static_cast<uint32_t>(nb3 / nb0);
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne12);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_TRANSPOSE_2D, std::move(p));
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, dst->op, std::move(p));
}
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -12125,11 +11997,8 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break;
case GGML_OP_CONV_2D:
ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node);
break;
case GGML_OP_CONV_TRANSPOSE_2D:
ggml_vk_conv_transpose_2d(ctx, compute_ctx, src0, src1, node);
ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node);
break;
case GGML_OP_CONV_2D_DW:
@ -14113,6 +13982,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
return true;
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && !(op->op_params[0] & GGML_SCALE_FLAG_ANTIALIAS);
case GGML_OP_ACC:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_CONCAT:
@ -14161,10 +14031,12 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
const uint32_t N = op->src[0]->ne[0];
const uint32_t K = op->src[1]->ne[0];
// K dimension limited to workgroup size
if (K > 128) {
if (K > 1u << device->max_workgroup_size_log2) {
return false;
}
if (N * N * sizeof(float) + N * K * sizeof(float) > device->properties.limits.maxComputeSharedMemorySize) {
const uint32_t batch_N = device->properties.limits.maxComputeSharedMemorySize / ((N + K) * sizeof(float));
if (batch_N == 0) {
return false;
}
return true;
@ -14237,13 +14109,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D:
{
// Op is disabled for Apple because it segfaults at pipeline create time on MoltenVK
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
if (op->op == GGML_OP_CONV_TRANSPOSE_2D &&
device->properties.limits.maxPushConstantsSize < sizeof(vk_op_conv_transpose_2d_push_constants)) {
return false;
}
// Channel-contiguous format is not supported yet.
return ((op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
op->src[1]->type == GGML_TYPE_F32 &&
@ -14368,21 +14233,21 @@ ggml_backend_reg_t ggml_backend_vk_reg() {
}
// Extension availability
static bool ggml_vk_instance_validation_ext_available() {
static bool ggml_vk_instance_layer_settings_available() {
#ifdef GGML_VULKAN_VALIDATE
// Check if validation layer provides the extension
const std::string layer_name = "VK_LAYER_KHRONOS_validation";
for (const auto& layer : vk::enumerateInstanceLayerProperties()) {
if (layer_name == layer.layerName.data()) {
for (const auto& ext : vk::enumerateInstanceExtensionProperties(layer_name)) {
if (strcmp("VK_EXT_validation_features", ext.extensionName.data()) == 0) {
if (strcmp("VK_EXT_layer_settings", ext.extensionName.data()) == 0) {
return true;
}
}
}
}
std::cerr << "ggml_vulkan: WARNING: Validation layer or layer extension VK_EXT_validation_features not found." << std::endl;
std::cerr << "ggml_vulkan: WARNING: Validation layer or layer extension VK_EXT_layer_settings not found." << std::endl;
#endif
return false;
}

View File

@ -32,22 +32,12 @@ layout(push_constant) uniform parameter {
uint32_t Cin;
uint32_t N;
// Tensor spatial sizes: kernel, input, output
uint32_t KW;
uint32_t KH;
// Tensor spatial sizes: input, output
uint32_t W;
uint32_t H;
uint32_t OW;
uint32_t OH;
// Parameters: stride, padding, dilation - 0=y, 1=x
uint32_t s0;
uint32_t s1;
uint32_t p0;
uint32_t p1;
uint32_t d0;
uint32_t d1;
// Strides in elements
uint32_t nb01;
uint32_t nb02;
@ -77,13 +67,14 @@ layout(constant_id = 3) const uint BS_NPQ = 128;
layout(constant_id = 4) const uint TS_K = 8;
layout(constant_id = 5) const uint use_collectives = 1;
layout(constant_id = 6) const uint SHMEM_PAD = 4;
// Stride, padding, dilation
layout(constant_id = 7) const uint s0 = 1;
layout(constant_id = 8) const uint s1 = 1;
layout(constant_id = 9) const uint p0 = 0;
layout(constant_id = 10) const uint p1 = 0;
layout(constant_id = 11) const uint d0 = 1;
layout(constant_id = 12) const uint d1 = 1;
// Kernel spatial sizes
layout(constant_id = 13) const uint KW = 1;
layout(constant_id = 14) const uint KH = 1;
@ -138,7 +129,7 @@ P,Q=OH,OW
*/
uint32_t B_idx_K = gl_WorkGroupID.x;
uint32_t B_idx_NPQ = gl_WorkGroupID.y;
uint32_t B_idx_NPQ = gl_WorkGroupID.y + gl_WorkGroupID.z * 512;
uint32_t T_y = tid / NT_NPQ;
uint32_t T_x = tid % NT_NPQ;
@ -178,6 +169,10 @@ ACC_TYPE perElemOpStore(const in uint32_t r, const in uint32_t c, const in ACC_T
#endif
void main() {
if (B_idx_NPQ * BS_NPQ >= NPQ) {
return;
}
#ifdef COOPMAT2
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator> matC;
matC = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator>(0.0);

View File

@ -131,8 +131,12 @@ void main() {
rms_norm(num_blocks);
} else if (num_blocks > 16) {
rms_norm(32);
} else if (num_blocks > 8) {
} else if (num_blocks > 12) {
rms_norm(16);
} else if (num_blocks > 10) {
rms_norm(12);
} else if (num_blocks > 8) {
rms_norm(10);
} else if (num_blocks > 4) {
rms_norm(8);
} else if (num_blocks == 4) {

View File

@ -5,8 +5,9 @@
layout (constant_id = 1) const uint N = 64;
layout (constant_id = 2) const uint K = 32;
layout (constant_id = 3) const uint BATCH_N = 32;
layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x_id = 4, local_size_y = 1, local_size_z = 1) in;
uint a_base, b_base, x_base;
@ -22,8 +23,8 @@ void store_x(uint r, uint c, FLOAT_TYPE v) {
data_d[x_base + r * p.nb21 + c * p.nb20] = D_TYPE(v);
}
shared FLOAT_TYPE shA[N * N];
shared FLOAT_TYPE shB[N * K];
shared FLOAT_TYPE shA[BATCH_N * N];
shared FLOAT_TYPE shB[BATCH_N * K];
void main() {
const uint batch = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
@ -39,34 +40,42 @@ void main() {
b_base = get_boffset() + i2 * p.nb12 + i3 * p.nb13;
x_base = get_doffset() + i2 * p.nb22 + i3 * p.nb23;
// Load the A matrix into shA
[[unroll]] for (uint i = 0; i < N * N; i += gl_WorkGroupSize.x) {
FLOAT_TYPE X[N];
// Loop over batches of rows
[[unroll]] for (uint row_base = 0; row_base < N; row_base += BATCH_N) {
const uint cur_N = min(BATCH_N, N - row_base);
// Load the A matrix batch into shA
[[unroll]] for (uint i = 0; i < cur_N * N; i += gl_WorkGroupSize.x) {
uint idx = i + tid;
if (((N * N) % gl_WorkGroupSize.x == 0) || idx < N * N) {
shA[idx] = get_a(idx / N, idx % N);
if (((cur_N * N) % gl_WorkGroupSize.x == 0) || idx < cur_N * N) {
shA[idx] = get_a(row_base + idx / N, idx % N);
}
}
// Load the B matrix into shB
[[unroll]] for (uint i = 0; i < N * K; i += gl_WorkGroupSize.x) {
// Load the B matrix batch into shB
[[unroll]] for (uint i = 0; i < cur_N * K; i += gl_WorkGroupSize.x) {
uint idx = i + tid;
if (((N * K) % gl_WorkGroupSize.x == 0) || idx < N * K) {
shB[idx] = get_b(idx / K, idx % K);
if (((cur_N * K) % gl_WorkGroupSize.x == 0) || idx < cur_N * K) {
shB[idx] = get_b(row_base + idx / K, idx % K);
}
}
barrier();
FLOAT_TYPE X[N];
// Each thread solves one column
if (tid < K) {
[[unroll]] for (int r = 0; r < N; ++r) {
FLOAT_TYPE b = shB[r * K + tid];
[[unroll]] for (uint row_offset = 0; row_offset < cur_N; ++row_offset) {
uint r = row_base + row_offset;
FLOAT_TYPE b = shB[row_offset * K + tid];
// Compute x[r,c] = (b[r,c] - sum(a[r,c]*x[c])) / a[r,r]
[[unroll]] for (int c = 0; c < r; ++c) {
b -= shA[r * N + c] * X[c];
b -= shA[row_offset * N + c] * X[c];
}
FLOAT_TYPE x = b / shA[r * N + r];
FLOAT_TYPE x = b / shA[row_offset * N + r];
X[r] = x;
store_x(r, tid, x);
}
}
barrier();
}
}

View File

@ -19,6 +19,7 @@ layout (push_constant) uniform parameter {
uint orig_ncols;
uint ncols_input;
uint ncols_output;
uint k;
uint nrows;
uint first_pass;
uint last_pass;
@ -36,7 +37,7 @@ void topk(bool needs_bounds_check, const uint row) {
const uint row_offset = row * p.ncols_input;
dst_row[col] = ivec2(gl_GlobalInvocationID.x, floatBitsToInt(data_a[row_offset + gl_GlobalInvocationID.x]));
} else {
const uint row_offset = row * p.orig_ncols;
const uint row_offset = row * p.ncols_input;
dst_row[col] = data_s[row_offset + gl_GlobalInvocationID.x];
}
} else {
@ -44,7 +45,7 @@ void topk(bool needs_bounds_check, const uint row) {
}
barrier();
if (p.ncols_output == 1) {
if (p.k == 1) {
// Fast path for single output - just do a max reduction
[[unroll]] for (int s = BLOCK_SIZE / 2; s >= 1; s /= 2) {
if (col < s) {
@ -84,16 +85,20 @@ void topk(bool needs_bounds_check, const uint row) {
}
}
if (col < p.ncols_output && gl_GlobalInvocationID.x < p.orig_ncols) {
if (col < p.k) {
if (p.last_pass != 0) {
const uint row_offset = row * p.ncols_output;
if (gl_GlobalInvocationID.x < p.ncols_input) {
const uint row_offset = row * p.k;
data_d[row_offset + col] = dst_row[col].x;
}
} else {
const uint row_offset = row * p.orig_ncols + gl_WorkGroupID.x * p.ncols_output;
if (gl_WorkGroupID.x * p.k + col < p.ncols_output) {
const uint row_offset = row * p.ncols_output + gl_WorkGroupID.x * p.k;
data_t[row_offset + col] = dst_row[col];
}
}
}
}
void main() {
// Fast path for fully occupied workgroups

View File

@ -75,7 +75,7 @@ void softmax_warp_inplace(inout float vals[experts_per_thread], const uint limit
}
void main() {
const uint row = gl_WorkGroupID.x * gl_WorkGroupSize.y + gl_LocalInvocationID.y;
const uint row = gl_WorkGroupID.x * gl_WorkGroupSize.y + gl_SubgroupID;
if (row >= n_rows) {
return;
}
@ -83,17 +83,18 @@ void main() {
const uint logits_offset = n_experts * row;
const uint weights_offset = n_expert_used * row;
const uint ids_offset = n_experts * row;
const uint lane = gl_SubgroupInvocationID;
float wt[experts_per_thread];
[[unroll]]
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
const uint expert = i + gl_LocalInvocationID.x;
const uint expert = i + lane;
wt[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[logits_offset + expert] : -INFINITY;
}
if (!late_softmax) {
softmax_warp_inplace(wt, n_experts, gl_LocalInvocationID.x, false);
softmax_warp_inplace(wt, n_experts, lane, false);
}
// at this point, each thread holds a portion of softmax,
@ -111,11 +112,11 @@ void main() {
for (int k = 0; k < n_expert_used; k++) {
float max_val = wt[0];
uint max_expert = gl_LocalInvocationID.x;
uint max_expert = lane;
[[unroll]]
for (int i = 1; i < experts_per_thread; i++) {
const uint expert = gl_LocalInvocationID.x + i * WARP_SIZE;
const uint expert = lane + i * WARP_SIZE;
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && wt[i] > max_val) {
max_val = wt[i];
max_expert = expert;
@ -132,11 +133,11 @@ void main() {
}
}
if ((k & (WARP_SIZE - 1)) == gl_LocalInvocationID.x) {
if ((k & (WARP_SIZE - 1)) == lane) {
output_weights[k / WARP_SIZE] = max_val;
}
if ((max_expert & (WARP_SIZE - 1)) == gl_LocalInvocationID.x) {
if ((max_expert & (WARP_SIZE - 1)) == lane) {
wt[max_expert / WARP_SIZE] = -INFINITY;
ids[ids_offset + k] = max_expert;
@ -158,12 +159,12 @@ void main() {
}
if (late_softmax) {
softmax_warp_inplace(output_weights, n_expert_used, gl_LocalInvocationID.x, true);
softmax_warp_inplace(output_weights, n_expert_used, lane, true);
}
[[unroll]]
for (uint i = 0; i < experts_per_thread; ++i) {
uint idx = i * WARP_SIZE + gl_LocalInvocationID.x;
uint idx = i * WARP_SIZE + lane;
if (idx < n_expert_used) {
weights[weights_offset + idx] = output_weights[i];
}

View File

@ -25,6 +25,7 @@ layout (push_constant) uniform parameter {
uint orig_ncols;
uint ncols_input;
uint ncols_output;
uint k;
uint nrows;
uint first_pass;
uint last_pass;
@ -37,6 +38,7 @@ shared int counts[SUBGROUP_SIZE];
shared int sh_min_idx;
shared uint sh_total;
shared uint offset_partials[BLOCK_SIZE / SUBGROUP_SIZE];
shared uint eq_min_partials[BLOCK_SIZE / SUBGROUP_SIZE];
// Map float values to uint such that comparisons still work.
// Positive values set the high bit, negative values are inverted.
@ -60,7 +62,7 @@ void topk(const uint row) {
const uint row_offset = row * p.ncols_input;
dst_row[tid] = ivec2(gl_GlobalInvocationID.x, floatBitsToInt(data_a[row_offset + gl_GlobalInvocationID.x]));
} else {
const uint row_offset = row * p.orig_ncols;
const uint row_offset = row * p.ncols_input;
dst_row[tid] = data_s[row_offset + gl_GlobalInvocationID.x];
}
} else {
@ -68,7 +70,7 @@ void topk(const uint row) {
}
barrier();
if (p.ncols_output == 1) {
if (p.k == 1) {
// Fast path for single output - just do a max reduction
[[unroll]] for (int s = BLOCK_SIZE / 2; s >= 1; s /= 2) {
if (tid < s) {
@ -98,7 +100,7 @@ void topk(const uint row) {
uint range_max = 0xFF800000;
// How many are above the current range, and how many we need to find.
uint total = 0;
uint limit = min(p.ncols_output, p.ncols_input - gl_WorkGroupID.x * BLOCK_SIZE);
uint limit = min(p.k, p.ncols_input - gl_WorkGroupID.x * BLOCK_SIZE);
while (mask != 0) {
barrier();
@ -139,7 +141,7 @@ void topk(const uint row) {
range_max = range_min + ((min_idx + 1) << shift);
range_min = range_min + (min_idx << shift);
if (total == p.ncols_output) {
if (total == p.k) {
break;
}
total -= counts[min_idx];
@ -155,6 +157,11 @@ void topk(const uint row) {
// We need to compact these values to the start of the dst_row array.
// Have each subgroup count how many items it'll store, so other
// subgroups can compute their base offset.
// Values strictly greater than range_min must be stored. For values equal
// to range_min, there can be ties and it's possible we'll need to store
// an arbitrary subset of them.
// If total == p.k, have a fast path where we don't need to handle ties.
if (total == p.k) {
bool top = f2ui(intBitsToFloat(v.y)) >= range_min;
uvec4 b = subgroupBallot(top);
uint bit_count = subgroupBallotBitCount(b);
@ -175,20 +182,60 @@ void topk(const uint row) {
// TODO: Copy directly to the output?
dst_row[out_idx + bit_count_ex] = v;
}
} else {
bool top = f2ui(intBitsToFloat(v.y)) > range_min;
bool eq_min = f2ui(intBitsToFloat(v.y)) == range_min;
uvec4 b_top = subgroupBallot(top);
uvec4 b_eq_min = subgroupBallot(eq_min);
uint bit_count_top = subgroupBallotBitCount(b_top);
uint bit_count_eq_min = subgroupBallotBitCount(b_eq_min);
if ((tid % SUBGROUP_SIZE) == 0) {
offset_partials[tid / SUBGROUP_SIZE] = bit_count_top;
eq_min_partials[tid / SUBGROUP_SIZE] = bit_count_eq_min;
}
barrier();
uint out_idx = 0;
uint eq_min_base = 0;
uint eq_min_idx = 0;
[[unroll]] for (int i = 0; i < BLOCK_SIZE / SUBGROUP_SIZE; ++i) {
if (i < tid / SUBGROUP_SIZE) {
out_idx += offset_partials[i];
eq_min_idx += eq_min_partials[i];
}
eq_min_base += offset_partials[i];
}
// range_min values are stored at the end
eq_min_idx += eq_min_base;
uint bit_count_ex_top = subgroupBallotExclusiveBitCount(b_top);
uint bit_count_ex_eq_min = subgroupBallotExclusiveBitCount(b_eq_min);
if (top) {
// TODO: Copy directly to the output?
dst_row[out_idx + bit_count_ex_top] = v;
}
if (eq_min && eq_min_idx + bit_count_ex_eq_min < p.k) {
dst_row[eq_min_idx + bit_count_ex_eq_min] = v;
}
}
barrier();
}
if (tid < p.ncols_output && gl_GlobalInvocationID.x < p.orig_ncols) {
if (tid < p.k) {
if (p.last_pass != 0) {
const uint row_offset = row * p.ncols_output;
if (gl_GlobalInvocationID.x < p.ncols_input) {
const uint row_offset = row * p.k;
data_d[row_offset + tid] = dst_row[tid].x;
}
} else {
const uint row_offset = row * p.orig_ncols + gl_WorkGroupID.x * p.ncols_output;
if (gl_WorkGroupID.x * p.k + tid < p.ncols_output) {
const uint row_offset = row * p.ncols_output + gl_WorkGroupID.x * p.k;
data_t[row_offset + tid] = dst_row[tid];
}
}
}
}
void main() {
uint row = gl_WorkGroupID.y;

View File

@ -39,8 +39,23 @@ add_dependencies(ggml-webgpu generate_shaders)
if(EMSCRIPTEN)
set(EMDAWNWEBGPU_DIR "" CACHE PATH "Path to emdawnwebgpu_pkg")
if(NOT EMDAWNWEBGPU_DIR)
# default built-in port
target_compile_options(ggml-webgpu PRIVATE "--use-port=emdawnwebgpu")
target_link_options(ggml-webgpu INTERFACE "--use-port=emdawnwebgpu")
else()
# custom port
target_compile_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
target_link_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
target_link_options(ggml-webgpu INTERFACE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
endif()
if (GGML_WEBGPU_JSPI)
target_compile_options(ggml-webgpu PRIVATE "-fwasm-exceptions")
target_link_options(ggml-webgpu INTERFACE "-sJSPI" "-fwasm-exceptions")
else()
target_compile_options(ggml-webgpu PRIVATE "-fexceptions")
target_link_options(ggml-webgpu INTERFACE "-sASYNCIFY" "-exceptions")
endif()
else()
find_package(Dawn REQUIRED)
set(DawnWebGPU_TARGET dawn::webgpu_dawn)
@ -48,6 +63,9 @@ endif()
if (GGML_WEBGPU_DEBUG)
target_compile_definitions(ggml-webgpu PRIVATE GGML_WEBGPU_DEBUG=1)
if(EMSCRIPTEN)
target_link_options(ggml-webgpu INTERFACE "-sASSERTIONS=2")
endif()
endif()
if (GGML_WEBGPU_CPU_PROFILE)

File diff suppressed because it is too large Load Diff

View File

@ -19,6 +19,15 @@ def parse_decls(decls_text):
return decls
def replace_repl_placeholders(variant, template_map):
for repl, code in variant["REPLS"].items():
for key, val in template_map.items():
# Match "key" and avoid matching subsequences using by using \b
code = re.sub(rf'\b{re.escape(str(key))}\b', str(val), code)
variant["REPLS"][repl] = code
return variant
def replace_placeholders(shader_text, replacements):
for key, val in replacements.items():
# Match {{KEY}} literally, where KEY is escaped
@ -71,6 +80,10 @@ def generate_variants(fname, input_dir, output_dir, outfile):
decls_map = parse_decls(extract_block(text, "DECLS"))
except ValueError:
decls_map = {}
try:
templates_map = ast.literal_eval(extract_block(text, "REPL_TEMPLATES"))
except ValueError:
templates_map = {}
for fname in sorted(os.listdir(input_dir)):
if fname.endswith(".tmpl"):
@ -90,9 +103,11 @@ def generate_variants(fname, input_dir, output_dir, outfile):
if key not in decls_map:
raise ValueError(f"DECLS key '{key}' not found.")
decls_code += decls_map[key] + "\n\n"
final_shader = re.sub(r'\bDECLS\b', decls_code, shader_template)
if "REPLS" in variant:
variant = replace_repl_placeholders(variant, templates_map)
final_shader = replace_placeholders(final_shader, variant["REPLS"])
# second run to expand placeholders in repl_template
final_shader = replace_placeholders(final_shader, variant["REPLS"])
final_shader = expand_includes(final_shader, input_dir)

View File

@ -0,0 +1,461 @@
#define(REPL_TEMPLATES)
{
"XIELU_FUNC": "{{MUTATE}}[dst_i] = select(((exp(min(src[src_i], {{TYPE}}(params.eps))) - 1.0) - src[src_i]) * {{TYPE}}(params.alpha_n) + {{TYPE}}(params.beta) * src[src_i], {{TYPE}}(params.alpha_p) * src[src_i] * src[src_i] + {{TYPE}}(params.beta) * src[src_i], src[src_i] > 0.0);",
"ABS_FUNC": "{{MUTATE}}[dst_i] = abs(src[src_i]);",
"SGN_FUNC": "{{MUTATE}}[dst_i] = select({{TYPE}}(select(0.0, -1.0, src[src_i] < 0.0)), {{TYPE}}(1.0), src[src_i] > 0.0);",
"NEG_FUNC": "{{MUTATE}}[dst_i] = -src[src_i];",
"STEP_FUNC": "{{MUTATE}}[dst_i] = {{TYPE}}(select(0.0, 1.0, src[src_i] > 0.0));",
"TANH_FUNC": "{{MUTATE}}[dst_i] = tanh(clamp(src[src_i], -9.010913, 9.010913)); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
"RELU_FUNC": "{{MUTATE}}[dst_i] = select(0.0, src[src_i], src[src_i] > 0.0);",
"ELU_FUNC": "{{MUTATE}}[dst_i] = select(exp(src[src_i]) - 1.0, src[src_i], src[src_i] > 0.0);",
"HARDSIGMOID_FUNC": "{{MUTATE}}[dst_i] = min(1.0, max(0.0, (src[src_i] + 3.0) / 6.0));",
"SIGMOID_FUNC": "{{MUTATE}}[dst_i] = 1.0 / (1.0 + exp(-src[src_i]));",
"SILU_FUNC": "{{MUTATE}}[dst_i] = src[src_i] / (1.0 + exp(-src[src_i]));",
"EXP_FUNC": "{{MUTATE}}[dst_i] = exp(src[src_i]);",
"HARDSWISH_FUNC": "{{MUTATE}}[dst_i] = src[src_i] * min(1.0, max(0.0, (src[src_i] + 3.0) / 6.0));",
"GELU_FUNC": "{{MUTATE}}[dst_i] = 0.5 * src[src_i] * (1.0 + tanh(clamp(sqrt(2.0 / 3.14159265) * (src[src_i] + 0.044715 * pow(src[src_i], 3.0)), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
"GELU_QUICK_FUNC": "{{MUTATE}}[dst_i] = src[src_i] * 0.5 * (1.0 + tanh(clamp(0.79788456 * (src[src_i] + 0.044715 * src[src_i] * src[src_i] * src[src_i]), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
"GELU_ERF_FUNC": "{{MUTATE}}[dst_i] = 0.5 * src[src_i] * (1.0 + tanh(clamp(0.79788456 * (src[src_i] + 0.044715 * src[src_i] * src[src_i] * src[src_i]), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458"
}
#end(REPL_TEMPLATES)
#define(VARIANTS)
[
{
"SHADER_NAME": "abs_f32",
"REPLS": { "TYPE": "f32", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "abs_f16",
"REPLS": { "TYPE": "f16", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "abs_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "abs_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sgn_f32",
"REPLS": { "TYPE": "f32", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sgn_f16",
"REPLS": { "TYPE": "f16", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sgn_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sgn_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "neg_f32",
"REPLS": { "TYPE": "f32", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "neg_f16",
"REPLS": { "TYPE": "f16", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "neg_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "neg_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "step_f32",
"REPLS": { "TYPE": "f32", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "step_f16",
"REPLS": { "TYPE": "f16", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "step_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "step_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "tanh_f32",
"REPLS": { "TYPE": "f32", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "tanh_f16",
"REPLS": { "TYPE": "f16", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "tanh_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "tanh_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "elu_f32",
"REPLS": { "TYPE": "f32", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "elu_f16",
"REPLS": { "TYPE": "f16", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "elu_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "elu_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "relu_f32",
"REPLS": { "TYPE": "f32", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "relu_f16",
"REPLS": { "TYPE": "f16", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "relu_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "relu_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sigmoid_f32",
"REPLS": { "TYPE": "f32", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sigmoid_f16",
"REPLS": { "TYPE": "f16", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sigmoid_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sigmoid_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "silu_f32",
"REPLS": { "TYPE": "f32", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "silu_f16",
"REPLS": { "TYPE": "f16", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "silu_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "silu_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "exp_f32",
"REPLS": { "TYPE": "f32", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "exp_f16",
"REPLS": { "TYPE": "f16", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "exp_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "exp_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "hardsigmoid_f32",
"REPLS": { "TYPE": "f32", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "hardsigmoid_f16",
"REPLS": { "TYPE": "f16", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "hardsigmoid_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "hardsigmoid_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "hardswish_f32",
"REPLS": { "TYPE": "f32", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "hardswish_f16",
"REPLS": { "TYPE": "f16", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "hardswish_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "hardswish_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "gelu_f32",
"REPLS": { "TYPE": "f32", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "gelu_f16",
"REPLS": { "TYPE": "f16", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "gelu_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "gelu_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "gelu_quick_f32",
"REPLS": { "TYPE": "f32", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "gelu_quick_f16",
"REPLS": { "TYPE": "f16", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "gelu_quick_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "gelu_quick_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "xielu_f32",
"REPLS": { "TYPE": "f32", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "xielu_f16",
"REPLS": { "TYPE": "f16", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "xielu_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "xielu_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "gelu_erf_f32",
"REPLS": { "TYPE": "f32", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "gelu_erf_f16",
"REPLS": { "TYPE": "f16", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "gelu_erf_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "gelu_erf_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
}
]
#end(VARIANTS)
#define(DECLS)
#decl(INPLACE)
@group(0) @binding(1)
var<uniform> params: Params;
#enddecl(INPLACE)
#decl(NOT_INPLACE)
@group(0) @binding(1)
var<storage, read_write> dst: array<{{TYPE}}>;
@group(0) @binding(2)
var<uniform> params: Params;
#enddecl(NOT_INPLACE)
#end(DECLS)
#define(SHADER)
enable f16;
fn update(dst_i: u32, src_i: u32) {
{{FUNC}}
}
@group(0) @binding(0)
var<storage, read_write> src: array<{{TYPE}}>;
DECLS
struct Params {
ne: u32, // total number of elements
offset_src: u32, // in elements
offset_dst: u32, // in elements
// Strides (in elements) may be permuted
stride_src0: u32,
stride_src1: u32,
stride_src2: u32,
stride_src3: u32,
stride_dst0: u32,
stride_dst1: u32,
stride_dst2: u32,
stride_dst3: u32,
// Logical shapes
src_ne0: u32,
src_ne1: u32,
src_ne2: u32,
dst_ne0: u32,
dst_ne1: u32,
dst_ne2: u32,
{{EXT_PARAMS}}
};
override wg_size: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x >= params.ne) {
return;
}
var i = gid.x;
let i3 = i / (params.src_ne2 * params.src_ne1 * params.src_ne0);
i = i % (params.src_ne2 * params.src_ne1 * params.src_ne0);
let i2 = i / (params.src_ne1 * params.src_ne0);
i = i % (params.src_ne1 * params.src_ne0);
let i1 = i / params.src_ne0;
let i0 = i % params.src_ne0;
var j = gid.x;
let j3 = j / (params.dst_ne2 * params.dst_ne1 * params.dst_ne0);
j = j % (params.dst_ne2 * params.dst_ne1 * params.dst_ne0);
let j2 = j / (params.dst_ne1 * params.dst_ne0);
j = j % (params.dst_ne1 * params.dst_ne0);
let j1 = j / params.dst_ne0;
let j0 = j % params.dst_ne0;
let src_idx = i0 * params.stride_src0 + i1 * params.stride_src1 +
i2 * params.stride_src2 + i3 * params.stride_src3;
let dst_idx = j0 * params.stride_dst0 + j1 * params.stride_dst1 +
j2 * params.stride_dst2 + j3 * params.stride_dst3;
update(params.offset_dst + dst_idx, params.offset_src + src_idx);
}
#end(SHADER)

View File

@ -4891,6 +4891,8 @@ static struct ggml_tensor * ggml_interpolate_impl(
int64_t ne3,
uint32_t mode) {
GGML_ASSERT((mode & 0xFF) < GGML_SCALE_MODE_COUNT);
// TODO: implement antialias for modes other than bilinear
GGML_ASSERT(!(mode & GGML_SCALE_FLAG_ANTIALIAS) || (mode & 0xFF) == GGML_SCALE_MODE_BILINEAR);
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);

View File

@ -1169,7 +1169,7 @@ void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const vo
struct gguf_writer_base {
size_t written_bytes {0u};
~gguf_writer_base(void) {}
~gguf_writer_base(void) = default;
// we bet on devirtualization
virtual void write(int8_t val) = 0;

View File

@ -175,6 +175,7 @@ class Keys:
VALUE_LENGTH_MLA = "{arch}.attention.value_length_mla"
SHARED_KV_LAYERS = "{arch}.attention.shared_kv_layers"
SLIDING_WINDOW_PATTERN = "{arch}.attention.sliding_window_pattern"
TEMPERATURE_SCALE = "{arch}.attention.temperature_scale"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
@ -444,6 +445,7 @@ class MODEL_ARCH(IntEnum):
MINIMAXM2 = auto()
RND1 = auto()
PANGU_EMBED = auto()
MISTRAL3 = auto()
class VISION_PROJECTOR_TYPE(IntEnum):
@ -817,6 +819,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.COGVLM: "cogvlm",
MODEL_ARCH.RND1: "rnd1",
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
MODEL_ARCH.MISTRAL3: "mistral3",
}
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@ -3071,6 +3074,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MISTRAL3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
# TODO
}

Some files were not shown because too many files have changed in this diff Show More