diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 0f614e4df3..d7141f01cf 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -1124,6 +1124,9 @@ class TextModel(ModelBase): if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8": # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01 res = "command-r" + if chkhsh == "d772b220ace2baec124bed8cfafce0ead7d6c38a4b65ef11261cf9d5d62246d1": + # ref: https://huggingface.co/CohereLabs/tiny-aya-base + res = "tiny_aya" if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea": # ref: https://huggingface.co/Qwen/Qwen1.5-7B res = "qwen2" @@ -7360,6 +7363,17 @@ class Cohere2Model(TextModel): self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads))) self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # Cohere2 runtime in llama.cpp expects no bias tensors; + # the actual weight only contains 0-value tensors as bias, we can skip them + if name.endswith(".bias"): + if torch.any(data_torch != 0): + raise ValueError(f"Bias tensor {name!r} is not zero.") + logger.debug(f"Skipping bias tensor {name!r} for Cohere2 conversion.") + return + + yield from super().modify_tensors(data_torch, name, bid) + @ModelBase.register("OlmoForCausalLM") @ModelBase.register("OLMoForCausalLM") diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index a683451508..8bd24dbe91 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -99,6 +99,7 @@ models = [ {"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, {"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, {"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, + {"name": "tiny_aya", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereLabs/tiny-aya-base", }, {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 62e137fb84..b35cb02ce4 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -422,6 +422,14 @@ struct llm_tokenizer_bpe : llm_tokenizer { "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }; break; + case LLAMA_VOCAB_PRE_TYPE_TINY_AYA: + regex_exprs = { + // original regex from tokenizer.json: "\\d{1,3}(?=(?:\\d{3})*\\b)" + "\\d{1,3}(?=(?:\\d{3})*\\b)", + // original regex from tokenizer.json: "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" + "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }; + break; case LLAMA_VOCAB_PRE_TYPE_KIMI_K2: regex_exprs = { // K2 trigger pattern - this will activate the custom K2 handler in unicode.cpp @@ -2005,10 +2013,14 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { tokenizer_pre == "megrez") { pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2; } else if ( - tokenizer_pre == "gpt-4o" || - tokenizer_pre == "llama4") { + tokenizer_pre == "gpt-4o" || + tokenizer_pre == "llama4") { pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O; clean_spaces = false; + } else if ( + tokenizer_pre == "tiny_aya") { + pre_type = LLAMA_VOCAB_PRE_TYPE_TINY_AYA; + clean_spaces = false; } else if ( tokenizer_pre == "superbpe") { pre_type = LLAMA_VOCAB_PRE_TYPE_SUPERBPE; diff --git a/src/llama-vocab.h b/src/llama-vocab.h index 718238fb86..1312a877ab 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -55,6 +55,7 @@ enum llama_vocab_pre_type { LLAMA_VOCAB_PRE_TYPE_YOUTU = 44, LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE = 45, LLAMA_VOCAB_PRE_TYPE_QWEN35 = 46, + LLAMA_VOCAB_PRE_TYPE_TINY_AYA = 47, }; struct LLM_KV; diff --git a/src/unicode.cpp b/src/unicode.cpp index b88d953bd2..1475b53b65 100644 --- a/src/unicode.cpp +++ b/src/unicode.cpp @@ -769,6 +769,12 @@ static std::vector unicode_regex_split_custom(const std::string & text, } else if (regex_expr == "\\p{AFMoE_digits}") { // AFMOE digit pattern - use custom implementation for proper splitting bpe_offsets = unicode_regex_split_custom_afmoe(text, offsets); + } else if (regex_expr == "\\d{1,3}(?=(?:\\d{3})*\\b)") { + // tiny_aya digit grouping pattern from tokenizer.json: + // {"type": "Split", "pattern": {"Regex": "\\d{1,3}(?=(?:\\d{3})*\\b)"}, "behavior": "Isolated"} + // Splits digits into groups of 3 from the right (e.g., 1234567 -> 1, 234, 567) + // TODO: Revisit this regex, incase there are any subtle tokenization differences with the original regex. + bpe_offsets = unicode_regex_split_custom_afmoe(text, offsets); } return bpe_offsets;