mtmd: add detailed comments for resize_bicubic_pillow
This commit is contained in:
parent
2d918b3e21
commit
5dfcc5abb1
|
|
@ -4386,10 +4386,19 @@ private:
|
|||
|
||||
// Bicubic resize function using Pillow's ImagingResample algorithm
|
||||
// Adapted from https://github.com/python-pillow/Pillow/blob/main/src/libImaging/Resample.c
|
||||
//
|
||||
// Key Difference with resize_bicubic:
|
||||
// 1. Uses separable filtering: horizontal pass followed by vertical pass
|
||||
// 2. Pre-computes normalized filter coefficients for each output pixel
|
||||
// 3. Applies convolution using fixed-point integer arithmetic for performance
|
||||
static bool resize_bicubic_pillow(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
|
||||
// Fixed-point precision: 22 bits = 32 (int32_t) - 8 (uint8_t pixels) - 2 (headroom for accumulation)
|
||||
// This allows encoding fractional weights as integers: weight * 2^22
|
||||
const int PRECISION_BITS = 32 - 8 - 2;
|
||||
|
||||
// Bicubic filter function
|
||||
// Bicubic filter function with a = -0.5 (Note that GGML/PyTorch takes a = -0.75)
|
||||
// Returns filter weight for distance x from pixel center
|
||||
// Support: [-2, 2], meaning the filter influences pixels within 2 units of distance
|
||||
auto bicubic_filter = [](double x) -> double {
|
||||
constexpr double a = -0.5;
|
||||
if (x < 0.0) {
|
||||
|
|
@ -4401,9 +4410,10 @@ private:
|
|||
if (x < 2.0) {
|
||||
return (((x - 5) * x + 8) * x - 4) * a;
|
||||
}
|
||||
return 0.0;
|
||||
return 0.0; // Zero outside [-2, 2]
|
||||
};
|
||||
|
||||
// Filter support radius: bicubic extends 2 pixels in each direction
|
||||
constexpr double filter_support = 2.0;
|
||||
|
||||
// Clipping function for 8-bit values
|
||||
|
|
@ -4413,29 +4423,47 @@ private:
|
|||
return static_cast<uint8_t>(val);
|
||||
};
|
||||
|
||||
// Precompute coefficients
|
||||
auto precompute_coeffs = [&](int inSize, double in0, double in1, int outSize,
|
||||
std::vector<int> & bounds, std::vector<int32_t> & kk) -> int {
|
||||
// Precompute filter coefficients for ONE dimension (horizontal or vertical)
|
||||
//
|
||||
// Parameters:
|
||||
// inSize - Number of pixels in input dimension (e.g., src_width or src_height)
|
||||
// outSize - Number of pixels in output dimension (e.g., target_width or target_height)
|
||||
// bounds - [OUTPUT] Array of size outSize*2 storing input pixel ranges:
|
||||
// bounds[xx*2+0] = first input pixel index for output pixel xx (xmin)
|
||||
// bounds[xx*2+1] = number of input pixels for output pixel xx (xcnt)
|
||||
// weights - [OUTPUT] Array of size outSize*ksize storing fixed-point filter weights:
|
||||
// kk[xx*ksize + x] = weight for input pixel x contributing to output pixel xx
|
||||
//
|
||||
// Returns: kernel size (ksize) - number of input pixels that contribute to each output pixel
|
||||
auto precompute_weights = [&](int inSize, int outSize,
|
||||
std::vector<int> & bounds, std::vector<int32_t> & weights) -> int {
|
||||
double support, scale, filterscale;
|
||||
double center, ww, ss;
|
||||
int xx, x, ksize, xmin, xmax;
|
||||
int xx, x, ksize, xmin, xmax, xcnt;
|
||||
|
||||
filterscale = scale = (in1 - in0) / outSize;
|
||||
// Calculate scaling factor: ratio of input range to output size
|
||||
filterscale = scale = (double)inSize / outSize;
|
||||
// For upsampling (scale < 1), keep filterscale = 1 to maintain filter sharpness
|
||||
// For downsampling (scale > 1), widen filter to prevent aliasing
|
||||
if (filterscale < 1.0) {
|
||||
filterscale = 1.0;
|
||||
}
|
||||
|
||||
support = filter_support * filterscale;
|
||||
ksize = static_cast<int>(std::ceil(support)) * 2 + 1;
|
||||
// Determine filter support radius and kernel size
|
||||
support = filter_support * filterscale; // Widen filter when downsampling
|
||||
ksize = static_cast<int>(std::ceil(support)) * 2 + 1; // Total pixels in kernel
|
||||
|
||||
std::vector<double> prekk(outSize * ksize);
|
||||
std::vector<double> pre_weights(outSize * ksize); // Temporary weights
|
||||
bounds.resize(outSize * 2);
|
||||
|
||||
// For each output pixel, compute its filter coefficients
|
||||
for (xx = 0; xx < outSize; xx++) {
|
||||
center = in0 + (xx + 0.5) * scale;
|
||||
ww = 0.0;
|
||||
ss = 1.0 / filterscale;
|
||||
// Calculate the center position in input space (pixel-center convention: +0.5)
|
||||
center = (xx + 0.5) * scale;
|
||||
ww = 0.0; // Sum of weights for normalization
|
||||
ss = 1.0 / filterscale; // Scale factor for filter function
|
||||
|
||||
// Determine the range of input pixels that contribute to this output pixel
|
||||
xmin = static_cast<int>(center - support + 0.5);
|
||||
if (xmin < 0) {
|
||||
xmin = 0;
|
||||
|
|
@ -4445,65 +4473,77 @@ private:
|
|||
if (xmax > inSize) {
|
||||
xmax = inSize;
|
||||
}
|
||||
xmax -= xmin;
|
||||
|
||||
xcnt = xmax - xmin;
|
||||
|
||||
double * k = &prekk[xx * ksize];
|
||||
for (x = 0; x < xmax; x++) {
|
||||
// Compute filter weights for each contributing input pixel
|
||||
for (x = 0; x < xcnt; x++) {
|
||||
// Distance from input pixel center to output pixel center in input space
|
||||
double w = bicubic_filter((x + xmin - center + 0.5) * ss);
|
||||
k[x] = w;
|
||||
ww += w;
|
||||
pre_weights[xx * ksize + x] = w;
|
||||
ww += w; // Accumulate for normalization
|
||||
}
|
||||
|
||||
for (x = 0; x < xmax; x++) {
|
||||
// Normalize weights to sum to 1.0 (preserves brightness)
|
||||
for (x = 0; x < xcnt; x++) {
|
||||
if (ww != 0.0) {
|
||||
k[x] /= ww;
|
||||
pre_weights[xx * ksize + x] /= ww;
|
||||
}
|
||||
}
|
||||
|
||||
// Zero-pad remaining kernel positions
|
||||
for (; x < ksize; x++) {
|
||||
k[x] = 0;
|
||||
pre_weights[xx * ksize + x] = 0;
|
||||
}
|
||||
|
||||
// Store input pixel range for this output pixel
|
||||
bounds[xx * 2 + 0] = xmin;
|
||||
bounds[xx * 2 + 1] = xmax;
|
||||
bounds[xx * 2 + 1] = xcnt;
|
||||
}
|
||||
|
||||
// Normalize coefficients to fixed-point
|
||||
kk.resize(outSize * ksize);
|
||||
// Convert floating-point coefficients to fixed-point integers
|
||||
// Formula: int32 = round(float * 2^PRECISION_BITS)
|
||||
weights.resize(outSize * ksize);
|
||||
for (int i = 0; i < outSize * ksize; i++) {
|
||||
if (prekk[i] < 0) {
|
||||
kk[i] = static_cast<int32_t>(-0.5 + prekk[i] * (1 << PRECISION_BITS));
|
||||
if (pre_weights[i] < 0) {
|
||||
weights[i] = static_cast<int32_t>(-0.5 + pre_weights[i] * (1 << PRECISION_BITS));
|
||||
} else {
|
||||
kk[i] = static_cast<int32_t>(0.5 + prekk[i] * (1 << PRECISION_BITS));
|
||||
weights[i] = static_cast<int32_t>(0.5 + pre_weights[i] * (1 << PRECISION_BITS));
|
||||
}
|
||||
}
|
||||
|
||||
return ksize;
|
||||
};
|
||||
|
||||
// Horizontal resampling
|
||||
// Horizontal resampling pass
|
||||
// Resizes width from imIn.nx to imOut.nx, preserving height
|
||||
auto resample_horizontal = [&](const clip_image_u8 & imIn, clip_image_u8 & imOut,
|
||||
int ksize, const std::vector<int> & bounds, const std::vector<int32_t> & kk) {
|
||||
int ksize, const std::vector<int> & bounds, const std::vector<int32_t> & weights) {
|
||||
imOut.ny = imIn.ny;
|
||||
imOut.buf.resize(3 * imOut.nx * imOut.ny);
|
||||
|
||||
// Process each row independently
|
||||
for (int yy = 0; yy < imOut.ny; yy++) {
|
||||
// For each output pixel in this row
|
||||
for (int xx = 0; xx < imOut.nx; xx++) {
|
||||
int xmin = bounds[xx * 2 + 0];
|
||||
int xmax = bounds[xx * 2 + 1];
|
||||
const int32_t * k = &kk[xx * ksize];
|
||||
// Get the range of input pixels and filter coefficients
|
||||
int xmin = bounds[xx * 2 + 0]; // First input pixel index
|
||||
int xcnt = bounds[xx * 2 + 1]; // Number of input pixels
|
||||
|
||||
// Initialize accumulators for RGB channels with rounding bias (0.5 in fixed-point)
|
||||
int32_t ss0 = 1 << (PRECISION_BITS - 1);
|
||||
int32_t ss1 = 1 << (PRECISION_BITS - 1);
|
||||
int32_t ss2 = 1 << (PRECISION_BITS - 1);
|
||||
|
||||
for (int x = 0; x < xmax; x++) {
|
||||
// Convolve: sum weighted input pixels
|
||||
for (int x = 0; x < xcnt; x++) {
|
||||
int src_idx = ((yy * imIn.nx) + (x + xmin)) * 3;
|
||||
ss0 += static_cast<uint8_t>(imIn.buf[src_idx + 0]) * k[x];
|
||||
ss1 += static_cast<uint8_t>(imIn.buf[src_idx + 1]) * k[x];
|
||||
ss2 += static_cast<uint8_t>(imIn.buf[src_idx + 2]) * k[x];
|
||||
ss0 += static_cast<uint8_t>(imIn.buf[src_idx + 0]) * weights[xx * ksize + x]; // R channel
|
||||
ss1 += static_cast<uint8_t>(imIn.buf[src_idx + 1]) * weights[xx * ksize + x]; // G channel
|
||||
ss2 += static_cast<uint8_t>(imIn.buf[src_idx + 2]) * weights[xx * ksize + x]; // B channel
|
||||
}
|
||||
|
||||
// Convert back from fixed-point (divide by 2^PRECISION_BITS) and clamp to [0,255]
|
||||
int dst_idx = (yy * imOut.nx + xx) * 3;
|
||||
imOut.buf[dst_idx + 0] = clip8(ss0 >> PRECISION_BITS);
|
||||
imOut.buf[dst_idx + 1] = clip8(ss1 >> PRECISION_BITS);
|
||||
|
|
@ -4512,29 +4552,35 @@ private:
|
|||
}
|
||||
};
|
||||
|
||||
// Vertical resampling
|
||||
// Vertical resampling pass
|
||||
// Resizes height from imIn.ny to imOut.ny, preserving width
|
||||
auto resample_vertical = [&](const clip_image_u8 & imIn, clip_image_u8 & imOut,
|
||||
int ksize, const std::vector<int> & bounds, const std::vector<int32_t> & kk) {
|
||||
int ksize, const std::vector<int> & bounds, const std::vector<int32_t> & weight) {
|
||||
imOut.nx = imIn.nx;
|
||||
imOut.buf.resize(3 * imOut.nx * imOut.ny);
|
||||
|
||||
// For each output row
|
||||
for (int yy = 0; yy < imOut.ny; yy++) {
|
||||
int ymin = bounds[yy * 2 + 0];
|
||||
int ymax = bounds[yy * 2 + 1];
|
||||
const int32_t * k = &kk[yy * ksize];
|
||||
// Get the range of input rows and filter coefficients
|
||||
int ymin = bounds[yy * 2 + 0]; // First input row index
|
||||
int ycnt = bounds[yy * 2 + 1]; // Number of input rows
|
||||
|
||||
// Process each column in this output row
|
||||
for (int xx = 0; xx < imOut.nx; xx++) {
|
||||
// Initialize accumulators for RGB channels with rounding bias
|
||||
int32_t ss0 = 1 << (PRECISION_BITS - 1);
|
||||
int32_t ss1 = 1 << (PRECISION_BITS - 1);
|
||||
int32_t ss2 = 1 << (PRECISION_BITS - 1);
|
||||
|
||||
for (int y = 0; y < ymax; y++) {
|
||||
// Convolve: sum weighted input pixels vertically
|
||||
for (int y = 0; y < ycnt; y++) {
|
||||
int src_idx = ((y + ymin) * imIn.nx + xx) * 3;
|
||||
ss0 += static_cast<uint8_t>(imIn.buf[src_idx + 0]) * k[y];
|
||||
ss1 += static_cast<uint8_t>(imIn.buf[src_idx + 1]) * k[y];
|
||||
ss2 += static_cast<uint8_t>(imIn.buf[src_idx + 2]) * k[y];
|
||||
ss0 += static_cast<uint8_t>(imIn.buf[src_idx + 0]) * weight[yy * ksize + y]; // R channel
|
||||
ss1 += static_cast<uint8_t>(imIn.buf[src_idx + 1]) * weight[yy * ksize + y]; // G channel
|
||||
ss2 += static_cast<uint8_t>(imIn.buf[src_idx + 2]) * weight[yy * ksize + y]; // B channel
|
||||
}
|
||||
|
||||
// Convert back from fixed-point and clamp to [0,255]
|
||||
int dst_idx = (yy * imOut.nx + xx) * 3;
|
||||
imOut.buf[dst_idx + 0] = clip8(ss0 >> PRECISION_BITS);
|
||||
imOut.buf[dst_idx + 1] = clip8(ss1 >> PRECISION_BITS);
|
||||
|
|
@ -4543,7 +4589,7 @@ private:
|
|||
}
|
||||
};
|
||||
|
||||
// Main resampling logic
|
||||
// Main resampling logic using separable two-pass approach
|
||||
const int src_width = img.nx;
|
||||
const int src_height = img.ny;
|
||||
|
||||
|
|
@ -4553,17 +4599,17 @@ private:
|
|||
bool need_horizontal = (target_width != src_width);
|
||||
bool need_vertical = (target_height != src_height);
|
||||
|
||||
// Precompute coefficients for both passes
|
||||
// Precompute filter coefficients for both dimensions
|
||||
std::vector<int> bounds_horiz, bounds_vert;
|
||||
std::vector<int32_t> kk_horiz, kk_vert;
|
||||
std::vector<int32_t> weights_horiz, weights_vert;
|
||||
int ksize_horiz = 0, ksize_vert = 0;
|
||||
|
||||
if (need_horizontal) {
|
||||
ksize_horiz = precompute_coeffs(src_width, 0.0, src_width, target_width, bounds_horiz, kk_horiz);
|
||||
ksize_horiz = precompute_weights(src_width, target_width, bounds_horiz, weights_horiz);
|
||||
}
|
||||
|
||||
if (need_vertical) {
|
||||
ksize_vert = precompute_coeffs(src_height, 0.0, src_height, target_height, bounds_vert, kk_vert);
|
||||
ksize_vert = precompute_weights(src_height, target_height, bounds_vert, weights_vert);
|
||||
}
|
||||
|
||||
// Perform two-pass resampling
|
||||
|
|
@ -4571,16 +4617,16 @@ private:
|
|||
// Both horizontal and vertical
|
||||
clip_image_u8 temp;
|
||||
temp.nx = target_width;
|
||||
resample_horizontal(img, temp, ksize_horiz, bounds_horiz, kk_horiz);
|
||||
resample_vertical(temp, dst, ksize_vert, bounds_vert, kk_vert);
|
||||
resample_horizontal(img, temp, ksize_horiz, bounds_horiz, weights_horiz);
|
||||
resample_vertical(temp, dst, ksize_vert, bounds_vert, weights_vert);
|
||||
} else if (need_horizontal) {
|
||||
// Only horizontal
|
||||
resample_horizontal(img, dst, ksize_horiz, bounds_horiz, kk_horiz);
|
||||
resample_horizontal(img, dst, ksize_horiz, bounds_horiz, weights_horiz);
|
||||
} else if (need_vertical) {
|
||||
// Only vertical
|
||||
resample_vertical(img, dst, ksize_vert, bounds_vert, kk_vert);
|
||||
resample_vertical(img, dst, ksize_vert, bounds_vert, weights_vert);
|
||||
} else {
|
||||
// No resampling needed
|
||||
// No resizing needed - direct copy
|
||||
dst.buf = img.buf;
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue