diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 151608d56b..3f861f2a6a 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -136,11 +136,19 @@ class ModelBase: self.remote_hf_model_id = remote_hf_model_id self.sentence_transformers_dense_modules = sentence_transformers_dense_modules self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams + self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {} self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id) self.metadata_override = metadata_override self.model_name = model_name self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py + # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters + if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters: + if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None: + self.rope_parameters["rope_theta"] = rope_theta + if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None: + self.rope_parameters["rope_type"] = rope_type + # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type if self.ftype == gguf.LlamaFileType.GUESSED: # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie. @@ -795,7 +803,7 @@ class TextModel(ModelBase): def set_gguf_parameters(self): self.gguf_writer.add_block_count(self.block_count) - if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None: + if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None: self.gguf_writer.add_context_length(n_ctx) logger.info(f"gguf: context length = {n_ctx}") @@ -815,7 +823,42 @@ class TextModel(ModelBase): self.gguf_writer.add_head_count_kv(n_head_kv) logger.info(f"gguf: key-value head count = {n_head_kv}") - if (rope_theta := self.hparams.get("rope_theta")) is not None: + rope_params = self.rope_parameters.get("full_attention", self.rope_parameters) + if (rope_type := rope_params.get("rope_type")) is not None: + rope_factor = rope_params.get("factor") + rope_gguf_type = gguf.RopeScalingType.NONE + if rope_type == "linear" and rope_factor is not None: + rope_gguf_type = gguf.RopeScalingType.LINEAR + self.gguf_writer.add_rope_scaling_type(rope_gguf_type) + self.gguf_writer.add_rope_scaling_factor(rope_factor) + elif rope_type == "yarn" and rope_factor is not None: + rope_gguf_type = gguf.RopeScalingType.YARN + self.gguf_writer.add_rope_scaling_type(rope_gguf_type) + self.gguf_writer.add_rope_scaling_factor(rope_factor) + self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"]) + if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None: + self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor) + if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None: + self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor) + if (yarn_beta_fast := rope_params.get("beta_fast")) is not None: + self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast) + if (yarn_beta_slow := rope_params.get("beta_slow")) is not None: + self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow) + # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"]) + elif rope_type == "su" or rope_type == "longrope": + rope_gguf_type = gguf.RopeScalingType.LONGROPE + self.gguf_writer.add_rope_scaling_type(rope_gguf_type) + elif rope_type == "dynamic": + # HunYuan, handled in model class + pass + elif rope_type.lower() == "llama3": + # Handled in generate_extra_tensors + pass + else: + logger.warning(f"Unknown RoPE type: {rope_type}") + logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}") + + if (rope_theta := rope_params.get("rope_theta")) is not None: self.gguf_writer.add_rope_freq_base(rope_theta) logger.info(f"gguf: rope theta = {rope_theta}") if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None: @@ -1966,34 +2009,10 @@ class BaichuanModel(TextModel): self._set_vocab_sentencepiece() def set_gguf_parameters(self): - head_count = self.hparams["num_attention_heads"] - head_count_kv = self.hparams.get("num_key_value_heads", head_count) - - ctx_length = 0 - if "max_sequence_length" in self.hparams: - ctx_length = self.hparams["max_sequence_length"] - elif "max_position_embeddings" in self.hparams: - ctx_length = self.hparams["max_position_embeddings"] - elif "model_max_length" in self.hparams: - ctx_length = self.hparams["model_max_length"] - else: - raise ValueError("gguf: can not find ctx length parameter.") + super().set_gguf_parameters() self.gguf_writer.add_tensor_data_layout("Meta AI original pth") - self.gguf_writer.add_context_length(ctx_length) - self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) - self.gguf_writer.add_block_count(self.block_count) - self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) - self.gguf_writer.add_head_count(head_count) - self.gguf_writer.add_head_count_kv(head_count_kv) - self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) - self.gguf_writer.add_file_type(self.ftype) - - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: head_count = self.hparams["num_attention_heads"] @@ -2089,34 +2108,10 @@ class XverseModel(TextModel): special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): - head_count = self.hparams["num_attention_heads"] - head_count_kv = self.hparams.get("num_key_value_heads", head_count) - - ctx_length = 0 - if "max_sequence_length" in self.hparams: - ctx_length = self.hparams["max_sequence_length"] - elif "max_position_embeddings" in self.hparams: - ctx_length = self.hparams["max_position_embeddings"] - elif "model_max_length" in self.hparams: - ctx_length = self.hparams["model_max_length"] - else: - raise ValueError("gguf: can not find ctx length parameter.") + super().set_gguf_parameters() self.gguf_writer.add_tensor_data_layout("Meta AI original pth") - self.gguf_writer.add_context_length(ctx_length) - self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) - self.gguf_writer.add_block_count(self.block_count) - self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) - self.gguf_writer.add_head_count(head_count) - self.gguf_writer.add_head_count_kv(head_count_kv) - self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) - self.gguf_writer.add_file_type(self.ftype) - - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused @@ -2430,11 +2425,6 @@ class LlamaModel(TextModel): rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - @staticmethod def permute(weights: Tensor, n_head: int, n_head_kv: int | None): if n_head_kv is not None and n_head != n_head_kv: @@ -2518,16 +2508,16 @@ class LlamaModel(TextModel): return [(self.map_tensor_name(name), data_torch)] def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: - if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): - if rope_scaling.get("rope_type", '').lower() == "llama3": - base = self.hparams.get("rope_theta", 10000.0) + if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters): + if rope_params.get("rope_type", '').lower() == "llama3": + base = rope_params.get("rope_theta", 10000.0) if (dim := self.hparams.get("head_dim")) is None: dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) - factor = rope_scaling.get("factor", 8.0) - low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) - high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + factor = rope_params.get("factor", 8.0) + low_freq_factor = rope_params.get("low_freq_factor", 1.0) + high_freq_factor = rope_params.get("high_freq_factor", 4.0) old_context_len = self.hparams.get("original_max_position_embeddings", 8192) low_freq_wavelen = old_context_len / low_freq_factor @@ -2564,11 +2554,6 @@ class ArceeModel(LlamaModel): def set_gguf_parameters(self): super().set_gguf_parameters() self._try_set_pooling_type() - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) @ModelBase.register("AfmoeForCausalLM") @@ -2851,17 +2836,11 @@ class Mistral3Model(LlamaModel): def set_gguf_parameters(self): super().set_gguf_parameters() - rope_params = self.hparams.get("rope_parameters") + rope_params = self.rope_parameters if self.hparams.get("model_type") == "ministral3": - assert rope_params is not None, "ministral3 must have 'rope_parameters' config" + assert rope_params, "ministral3 must have 'rope_parameters' config" assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'" - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_params["factor"]) - self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"]) - self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"]) self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"]) - self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"]) self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None): @@ -2958,7 +2937,7 @@ class DeciModel(TextModel): assert self.block_count == len(self._num_kv_heads) assert self.block_count == len(self._num_heads) assert self.block_count == len(self._ffn_dims) - if (rope_theta := self.hparams.get("rope_theta")) is not None: + if (rope_theta := self.rope_parameters.get("rope_theta")) is not None: self.gguf_writer.add_rope_freq_base(rope_theta) self.gguf_writer.add_head_count_kv(self._num_kv_heads) self.gguf_writer.add_head_count(self._num_heads) @@ -2983,11 +2962,6 @@ class DeciModel(TextModel): rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - @staticmethod def permute(weights: Tensor, n_head: int, n_head_kv: int | None): if n_head_kv is not None and n_head != n_head_kv: @@ -3016,16 +2990,16 @@ class DeciModel(TextModel): return [(self.map_tensor_name(name), data_torch)] def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: - if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): - if rope_scaling.get("rope_type", '').lower() == "llama3": - base = self.hparams.get("rope_theta", 10000.0) + if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters): + if rope_params.get("rope_type", '').lower() == "llama3": + base = rope_params.get("rope_theta", 10000.0) if (dim := self.hparams.get("head_dim")) is None: dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) - factor = rope_scaling.get("factor", 8.0) - low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) - high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + factor = rope_params.get("factor", 8.0) + low_freq_factor = rope_params.get("low_freq_factor", 1.0) + high_freq_factor = rope_params.get("high_freq_factor", 4.0) old_context_len = self.hparams.get("original_max_position_embeddings", 8192) low_freq_wavelen = old_context_len / low_freq_factor @@ -3279,10 +3253,6 @@ class MiniCPMModel(TextModel): logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"] self.gguf_writer.add_logit_scale(logit_scale) logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}") - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope": - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE) - logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}") def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] @@ -3402,17 +3372,6 @@ class QwenModel(TextModel): def set_vocab(self): self._set_vocab_qwen() - def set_gguf_parameters(self): - self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) - self.gguf_writer.add_block_count(self.block_count) - self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) - self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) - self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) - self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) - self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) - self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) - self.gguf_writer.add_file_type(self.ftype) - @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration") class Qwen2Model(TextModel): @@ -3427,11 +3386,6 @@ class Qwen2Model(TextModel): def set_gguf_parameters(self): super().set_gguf_parameters() self._try_set_pooling_type() - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: if self.hf_arch == "Qwen2Model": @@ -3499,12 +3453,6 @@ class DreamModel(TextModel): # Dream models use non-causal attention for diffusion self.gguf_writer.add_causal_attention(False) - # Handle RoPE scaling similar to Qwen2 - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) # Add Dream-specific parameters mask_token_id = self.hparams.get("mask_token_id") @@ -4048,13 +3996,6 @@ class Qwen2MoeModel(TextModel): if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None: self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size) logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}") - # YaRN is not enabled by default - # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) _experts: list[dict[str, Tensor]] | None = None @@ -4656,7 +4597,7 @@ class Phi3MiniModel(TextModel): self.gguf_writer.add_head_count_kv(n_head_kv) self.gguf_writer.add_layer_norm_rms_eps(rms_eps) self.gguf_writer.add_rope_dimension_count(rope_dims) - self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"])) + self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"]) self.gguf_writer.add_file_type(self.ftype) sliding_window = self.hparams.get("sliding_window") # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models @@ -4932,7 +4873,7 @@ class Plamo2Model(TextModel): self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128)) self.gguf_writer.add_block_count(self.block_count) self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06)) - self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000)) + self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000)) # Mamba parameters self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64)) @@ -5130,21 +5071,6 @@ class InternLM2Model(TextModel): special_vocab.add_to_gguf(self.gguf_writer) - def set_gguf_parameters(self): - self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) - self.gguf_writer.add_block_count(self.block_count) - self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) - self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) - self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) - self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) - self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) - self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) - self.gguf_writer.add_file_type(self.ftype) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: num_heads = self.hparams["num_attention_heads"] num_kv_heads = self.hparams["num_key_value_heads"] @@ -5221,11 +5147,6 @@ class InternLM3Model(TextModel): rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams.get("num_key_value_heads") @@ -5588,7 +5509,6 @@ class NomicBertModel(BertModel): def set_gguf_parameters(self): super().set_gguf_parameters() - self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) if self.is_moe: self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"]) self.gguf_writer.add_expert_count(self.hparams["num_experts"]) @@ -5711,8 +5631,6 @@ class XLMRobertaModel(BertModel): super().set_gguf_parameters() # jina-embeddings-v3 - if rotary_emb_base := self.hparams.get("rotary_emb_base"): - self.gguf_writer.add_rope_freq_base(rotary_emb_base) lora_alpha = self.hparams.get("lora_alpha") if lora_prompt_prefixes := self.hparams.get("task_instructions"): assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys()) @@ -5840,19 +5758,16 @@ class Gemma3Model(TextModel): self._set_vocab_gpt2() def set_gguf_parameters(self): + super().set_gguf_parameters() hparams = self.hparams # some default values are not specified in the hparams self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072)) - self.gguf_writer.add_embedding_length(hparams["hidden_size"]) - self.gguf_writer.add_block_count(self.block_count) - self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8)) self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6)) self.gguf_writer.add_key_length(hparams.get("head_dim", 256)) self.gguf_writer.add_value_length(hparams.get("head_dim", 256)) - self.gguf_writer.add_file_type(self.ftype) - self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers + self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers # attn_logit_softcapping is removed in Gemma3 assert hparams.get("attn_logit_softcapping") is None if (final_logit_softcap := hparams.get("final_logit_softcapping")): @@ -5860,19 +5775,6 @@ class Gemma3Model(TextModel): if hparams.get("sliding_window_pattern") != 1: self.gguf_writer.add_sliding_window(hparams["sliding_window"]) self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4)) - if hparams.get("rope_scaling") is not None: - rope_scaling = hparams["rope_scaling"] - if rope_scaling["rope_type"] == "linear": - # important: this rope_scaling is only applied for global layers, and not used by 1B model - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - elif rope_scaling["rope_type"] == "yarn": - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) - self.gguf_writer.add_rope_scaling_yarn_ext_factor(rope_scaling["extrapolation_factor"]) - self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_scaling["beta_fast"]) - self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_scaling["beta_slow"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused @@ -6776,13 +6678,6 @@ class Olmo2Model(TextModel): def set_gguf_parameters(self): super().set_gguf_parameters() - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) - if "sliding_window" in self.hparams: self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) @@ -7281,16 +7176,11 @@ class DeepseekV2Model(TextModel): self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) - + if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None: # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX] # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul # ref https://github.com/ggml-org/llama.cpp/pull/17945 - self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"]) + self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all) _experts: list[dict[str, Tensor]] | None = None @@ -7898,11 +7788,6 @@ class Glm4Model(TextModel): if (rope_dim := self.hparams.get("head_dim")) is None: rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: if name.startswith("model.visual."): # ignore visual part of Glm4v @@ -8240,50 +8125,26 @@ class ExaoneModel(TextModel): model_arch = gguf.MODEL_ARCH.EXAONE def set_gguf_parameters(self): + super().set_gguf_parameters() hparams = self.hparams assert (hparams["activation_function"] == "silu") - max_position_embeddings = hparams["max_position_embeddings"] - embed_dim = hparams["hidden_size"] - num_heads = hparams["num_attention_heads"] - num_kv_heads = hparams.get("num_key_value_heads", num_heads) - layer_norm_eps = hparams["layer_norm_epsilon"] - intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim - # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0 - # attention_dropout_rate = hparams["attention_dropout"] - # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0 - # embed_dropout_rate = hparams["embed_dropout"] - self.gguf_writer.add_embedding_length(embed_dim) - self.gguf_writer.add_head_count(num_heads) - self.gguf_writer.add_head_count_kv(num_kv_heads) - self.gguf_writer.add_context_length(max_position_embeddings) - self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps) - self.gguf_writer.add_feed_forward_length(intermediate_size) - self.gguf_writer.add_block_count(self.block_count) - self.gguf_writer.add_file_type(self.ftype) - - if (rope_theta := self.hparams.get("rope_theta")) is not None: - self.gguf_writer.add_rope_freq_base(rope_theta) rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True) rotary_factor = rotary_factor if rotary_factor is not None else 1.0 self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: - if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): - if rope_scaling.get("rope_type", '').lower() == "llama3": - base = self.hparams.get("rope_theta", 10000.0) + if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters): + if rope_params.get("rope_type", '').lower() == "llama3": + base = self.rope_parameters.get("rope_theta", 10000.0) if (dim := self.hparams.get("head_dim")) is None: dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) - factor = rope_scaling.get("factor", 8.0) - low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) - high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + factor = rope_params.get("factor", 8.0) + low_freq_factor = rope_params.get("low_freq_factor", 1.0) + high_freq_factor = rope_params.get("high_freq_factor", 4.0) old_context_len = self.hparams.get("original_max_position_embeddings", 8192) low_freq_wavelen = old_context_len / low_freq_factor @@ -8338,22 +8199,17 @@ class Exaone4Model(TextModel): if len(sliding_window_pattern) == hparams["num_hidden_layers"]: self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: - if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): - if rope_scaling.get("rope_type", '').lower() == "llama3": - base = self.hparams.get("rope_theta", 10_000.0) + if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters): + if rope_params.get("rope_type", '').lower() == "llama3": + base = rope_params.get("rope_theta", 10_000.0) if (dim := self.hparams.get("head_dim")) is None: dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) - factor = rope_scaling.get("factor", 16.0) - low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) - high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + factor = rope_params.get("factor", 16.0) + low_freq_factor = rope_params.get("low_freq_factor", 1.0) + high_freq_factor = rope_params.get("high_freq_factor", 4.0) old_context_len = self.hparams.get("original_max_position_embeddings", 8192) low_freq_wavelen = old_context_len / low_freq_factor @@ -8664,13 +8520,6 @@ class BailingMoeModel(TextModel): rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) - else: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) self.gguf_writer.add_vocab_size(hparams["vocab_size"]) self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) @@ -8777,13 +8626,6 @@ class BailingMoeV2Model(TextModel): rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))) - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) - else: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) self.gguf_writer.add_vocab_size(hparams["vocab_size"]) self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) @@ -8862,13 +8704,6 @@ class GroveMoeModel(TextModel): self.gguf_writer.add_experts_per_group(2) # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376 self.gguf_writer.add_expert_group_scale(0.05) - # YaRN is not enabled by default - # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) _experts: list[dict[str, Tensor]] | None = None _chunk_experts: list[dict[str, Tensor]] | None = None @@ -9178,7 +9013,7 @@ class FalconH1Model(Mamba2Model): assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}" # Add any other Falcon Mamba2 specific configuration - self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"])) + self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"]) @ModelBase.register("HunYuanMoEV1ForCausalLM") @@ -9256,12 +9091,11 @@ class HunYuanMoEModel(TextModel): self.gguf_writer.add_expert_shared_count(moe_shared_expert[0]) # Rope - rope_scaling = hparams.get("rope_scaling", {}) - if rope_scaling.get("type") == "dynamic": + if self.rope_parameters.get("rope_type") == "dynamic": # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf) - alpha = rope_scaling.get("alpha", 1000) - base = hparams.get("rope_theta", 10000.0) + alpha = self.rope_parameters.get("alpha", 1000) + base = self.rope_parameters.get("rope_theta", 10000.0) dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128 scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251 self.gguf_writer.add_rope_freq_base(scaled_base) @@ -9456,12 +9290,11 @@ class HunYuanModel(TextModel): hparams = self.hparams # Rope - rope_scaling = hparams.get("rope_scaling", {}) - if rope_scaling.get("type") == "dynamic": + if self.rope_parameters.get("rope_type") == "dynamic": # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf) - alpha = rope_scaling.get("alpha", 50) - base = hparams.get("rope_theta", 10000.0) + alpha = self.rope_parameters.get("alpha", 50) + base = self.rope_parameters.get("rope_theta", 10000.0) dim = hparams["head_dim"] scaled_base = base * (alpha ** (dim / (dim - 2))) self.gguf_writer.add_rope_freq_base(scaled_base) @@ -9612,13 +9445,6 @@ class GptOssModel(TextModel): self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"]) - rope_scaling = self.hparams.get("rope_scaling") or {} - rope_type = rope_scaling.get("rope_type", rope_scaling.get("type")) - assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}" - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096)) - @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM") class LFM2Model(TextModel): @@ -9791,13 +9617,6 @@ class SmallThinkerModel(TextModel): self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX) else: self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID) - # YaRN is not enabled by default - # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts - rope_scaling = self.hparams.get("rope_scaling") or {} - if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: - self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) - self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) - self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) sliding_window_layout = self.hparams.get("sliding_window_layout") if sliding_window_layout: