NPU fix llama-bench

This commit is contained in:
Yu, Zijun 2025-12-03 15:45:40 +08:00 committed by Mustafa Cavus
parent 38254cf592
commit 59e7e7c47d
5 changed files with 191 additions and 108 deletions

View File

@ -36,6 +36,8 @@
#include <vector>
GgmlOvDecoder::GgmlOvDecoder(ggml_cgraph * cgraph,
ModelParams & model_params,
ComputeParams & compute_params,
std::map<std::string, std::shared_ptr<ov::Node>> & model_weights,
bool is_static,
bool is_prefill,
@ -44,7 +46,9 @@ GgmlOvDecoder::GgmlOvDecoder(ggml_cgraph * cgraph,
m_is_prefill(is_prefill),
m_prefill_chunk_size(prefill_chunk_size),
m_cgraph(cgraph),
m_model_weights(model_weights) {
m_model_weights(model_weights),
m_model_params(model_params),
m_compute_params(compute_params) {
if (auto * env = getenv("GGML_OPENVINO_PRINT_CGRAPH_TENSOR_ADDRESS"); env && std::string(env) != "0") {
#ifdef _WIN32
_putenv_s("GGML_OPENVINO_PRINT_CGRAPH_TENSOR_ADDRESS", "");
@ -54,7 +58,6 @@ GgmlOvDecoder::GgmlOvDecoder(ggml_cgraph * cgraph,
print_tensor_address_map(cgraph);
}
set_llm_params();
validate_cgraph();
for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
@ -163,12 +166,6 @@ void GgmlOvDecoder::set_input_output(ggml_tensor * node, bool naive) {
// Workaround: the final tensor "result_output" does not have GGML_TENSOR_FLAG_OUTPUT flag set in cgraph
if (node->op == GGML_OP_SET_ROWS || node->flags & GGML_TENSOR_FLAG_OUTPUT ||
node_name.find("output") != std::string::npos || debug_output_names.count(node_name)) {
if (node->op == GGML_OP_SET_ROWS) {
assert(node_name.find("cache_k") == 0 || node_name.find("cache_v") == 0);
if (auto it = std::find(m_kv_names.begin(), m_kv_names.end(), node_name); it == m_kv_names.end()) {
m_kv_names.push_back(node_name);
}
}
if (auto it = std::find(m_model_output_names.begin(), m_model_output_names.end(), node_name);
it == m_model_output_names.end()) {
m_model_output_names.push_back(node_name);
@ -277,9 +274,11 @@ int extract_layer_from_name(const std::string & name) {
return layer;
}
void GgmlOvDecoder::set_llm_params() {
for (int i = 0; i < m_cgraph->n_nodes; i++) {
auto * node = m_cgraph->nodes[i];
std::pair<ModelParams, ComputeParams> GgmlOvDecoder::compute_llm_params(ggml_cgraph * cgraph, bool is_static) {
ModelParams model_params;
ComputeParams compute_params;
for (int i = 0; i < cgraph->n_nodes; i++) {
auto * node = cgraph->nodes[i];
std::string name = std::string(node->name);
if (node->op == GGML_OP_FLASH_ATTN_EXT) {
auto * cache_k_perm = node->src[1];
@ -294,49 +293,50 @@ void GgmlOvDecoder::set_llm_params() {
assert(mask_name.find("KQ_mask") == 0);
if (std::string(node->src[3]->name).find("swa") != std::string::npos) {
m_swa_layers.push_back(layer);
m_ctx_per_seq_swa = cache_k->ne[1];
model_params.swa_layers.push_back(layer);
model_params.ctx_per_seq_swa = cache_k->ne[1];
} else {
m_ctx_per_seq = cache_k->ne[1];
m_n_seq = cache_k->ne[2];
model_params.ctx_per_seq = cache_k->ne[1];
model_params.n_seq = cache_k->ne[2];
}
m_n_seq_active = mask->ne[3];
compute_params.n_seq_active = mask->ne[3];
auto seq_size = cache_k->ne[0] * cache_k->ne[1] * ggml_type_size(cache_k->type);
size_t offset;
memcpy(&offset, cache_k_view->op_params, sizeof(size_t));
m_seq_active_start = offset / seq_size;
m_token_len_per_seq = node->ne[2];
compute_params.seq_active_start = offset / seq_size;
compute_params.token_len_per_seq = node->ne[2];
if (mask_name.find("swa") != std::string::npos) {
m_attention_size_swa = mask->ne[0];
compute_params.attention_size_swa = mask->ne[0];
} else {
m_attention_size = mask->ne[0];
compute_params.attention_size = mask->ne[0];
}
if (m_is_static) {
m_attention_size = m_ctx_per_seq;
m_attention_size_swa = m_ctx_per_seq_swa;
m_token_len_per_seq = 1;
if (is_static) {
compute_params.attention_size = model_params.ctx_per_seq;
compute_params.attention_size_swa = model_params.ctx_per_seq_swa;
compute_params.token_len_per_seq = 1;
}
} else if (node->op == GGML_OP_ROPE) {
if (name.find("Qcur-0") == 0 || std::string(node->src[0]->name).find("Qcur-0") == 0) {
m_head_size = node->ne[0];
m_n_heads = node->ne[1];
m_rope_params = node->op_params;
model_params.head_size = node->ne[0];
model_params.n_heads = node->ne[1];
model_params.rope_params = node->op_params;
auto * inp_pos = node->src[1];
m_input_len = inp_pos->ne[0];
compute_params.input_len = inp_pos->ne[0];
} else if (name.find("Kcur-0") == 0 || std::string(node->src[0]->name).find("Kcur-0") == 0) {
m_n_heads_kv = node->ne[1];
model_params.n_heads_kv = node->ne[1];
}
}
}
m_ctx = m_ctx_per_seq * m_n_seq;
m_ctx_swa = m_ctx_per_seq_swa * m_n_seq;
model_params.ctx = model_params.ctx_per_seq * model_params.n_seq;
model_params.ctx_swa = model_params.ctx_per_seq_swa * model_params.n_seq;
return {model_params, compute_params};
}
void GgmlOvDecoder::validate_cgraph() const {
if (m_n_seq > 1 && m_is_static == true) {
if (m_model_params.n_seq > 1 && m_is_static == true) {
throw std::runtime_error("n_seq > 1 is not supported on NPU. Try setting -np 1.");
}
}
@ -354,7 +354,7 @@ ov::PartialShape GgmlOvDecoder::get_graph_input_shape(const ggml_tensor * op, co
} else if (name.find("KQ_mask") == 0) {
if (m_is_static) {
input_shape = ov::PartialShape{1, 1, m_is_prefill ? m_prefill_chunk_size : 1, m_ctx};
input_shape = ov::PartialShape{1, 1, m_is_prefill ? m_prefill_chunk_size : 1, m_model_params.ctx};
} else {
input_shape = ov::PartialShape{-1, 1, -1, -1};
}
@ -403,14 +403,14 @@ void GgmlOvDecoder::add_extra_inputs() {
}
};
create_1d_input("attention_size", m_attention_size);
if (m_attention_size_swa != -1) {
create_1d_input("attention_size_swa", m_attention_size_swa);
create_1d_input("attention_size", m_compute_params.attention_size);
if (m_compute_params.attention_size_swa != -1) {
create_1d_input("attention_size_swa", m_compute_params.attention_size_swa);
}
create_1d_input("n_seq_active", m_n_seq_active);
create_1d_input("seq_active_start", m_seq_active_start);
create_1d_input("seq_active_end", m_seq_active_start + m_n_seq_active);
create_1d_input("token_len_per_seq", m_token_len_per_seq);
create_1d_input("n_seq_active", m_compute_params.n_seq_active);
create_1d_input("seq_active_start", m_compute_params.seq_active_start);
create_1d_input("seq_active_end", m_compute_params.seq_active_start + m_compute_params.n_seq_active);
create_1d_input("token_len_per_seq", m_compute_params.token_len_per_seq);
// create_1d_input("token_len", m_token_len_per_seq * m_n_seq_active);
}
@ -445,15 +445,15 @@ const ggml_tensor * GgmlOvDecoder::get_tensor_from_name(const std::string & name
return nullptr;
}
std::map<std::string, std::string> GgmlOvDecoder::get_kv_param_res_names() const {
std::map<std::string, std::string> kv_param_res_names;
for (const auto & name : m_kv_names) {
if (name.find("cache_k") == 0 || name.find("cache_v") == 0) {
kv_param_res_names[name] = name;
}
}
return kv_param_res_names;
}
// std::map<std::string, std::string> GgmlOvDecoder::get_kv_param_res_names() const {
// std::map<std::string, std::string> kv_param_res_names;
// for (const auto & name : m_model_params.kv_names) {
// if (name.find("cache_k") == 0 || name.find("cache_v") == 0) {
// kv_param_res_names[name] = name;
// }
// }
// return kv_param_res_names;
// }
std::map<std::string, std::shared_ptr<ov::Node>> GgmlOvDecoder::create_weight_nodes(
ggml_cgraph * cgraph,

View File

@ -11,6 +11,42 @@
#include <optional>
#include <vector>
struct ModelParams {
int ctx = -1;
int ctx_swa = -1;
int ctx_per_seq = -1;
int ctx_per_seq_swa = -1;
int n_seq = -1;
int n_heads = -1;
int n_heads_kv = -1;
int head_size = -1;
int32_t * rope_params = nullptr;
std::vector<int> swa_layers;
// std::vector<std::string> kv_names;
bool can_reuse_dynamically(const ModelParams & other) const {
return n_seq == other.n_seq && n_heads == other.n_heads && n_heads_kv == other.n_heads_kv &&
head_size == other.head_size && rope_params == other.rope_params && swa_layers == other.swa_layers;
}
bool can_reuse_statically(const ModelParams & other) const {
return can_reuse_dynamically(other) && ctx_per_seq == other.ctx_per_seq &&
ctx_per_seq_swa == other.ctx_per_seq_swa;
}
};
struct ComputeParams {
int n_seq_active = -1;
int seq_active_start = -1;
int attention_size = -1;
int attention_size_swa = -1;
int input_len = -1;
int token_len_per_seq = -1;
int past_kv_len = -1;
int output_len = -1;
};
class GgmlOvDecoder : public ov::frontend::ggml::GgmlDecoder {
public:
struct NodeInfo {
@ -25,6 +61,8 @@ public:
};
// Graph decoder
GgmlOvDecoder(ggml_cgraph * cgraph,
ModelParams & model_params,
ComputeParams & compute_params,
std::map<std::string, std::shared_ptr<ov::Node>> & model_weights,
bool is_static,
bool is_prefill = false,
@ -120,27 +158,28 @@ public:
virtual const std::vector<std::string> & get_model_output_names() const override { return m_model_output_names; }
virtual int get_ctx_size() const { return m_ctx; }
virtual int get_ctx_size() const { return m_model_params.ctx; }
virtual int get_ctx_swa_size() const { return m_ctx_swa; }
virtual int get_ctx_swa_size() const { return m_model_params.ctx_swa; }
virtual int get_ctx_per_seq() const { return m_ctx_per_seq; }
virtual int get_ctx_per_seq() const { return m_model_params.ctx_per_seq; }
virtual int get_ctx_per_seq_swa() const { return m_ctx_per_seq_swa; }
virtual int get_ctx_per_seq_swa() const { return m_model_params.ctx_per_seq_swa; }
virtual int get_n_seq() const { return m_n_seq; }
virtual int get_n_seq() const { return m_model_params.n_seq; }
virtual int is_swa_layer(int layer) const override {
return std::find(m_swa_layers.begin(), m_swa_layers.end(), layer) != m_swa_layers.end();
return std::find(m_model_params.swa_layers.begin(), m_model_params.swa_layers.end(), layer) !=
m_model_params.swa_layers.end();
}
int get_past_kv_len() const { return m_past_kv_len; }
int get_past_kv_len() const { return m_compute_params.past_kv_len; }
int get_input_len() const { return m_input_len; }
int get_input_len() const { return m_compute_params.input_len; }
virtual int32_t * get_rope_params() const override { return m_rope_params; }
virtual int32_t * get_rope_params() const override { return m_model_params.rope_params; }
virtual std::map<std::string, std::string> get_kv_param_res_names() const override;
// virtual std::map<std::string, std::string> get_kv_param_res_names() const override;
virtual bool is_static() const override { return m_is_static; }
@ -161,6 +200,16 @@ public:
void clear_model_weights() { m_model_weights.clear(); }
static std::pair<ModelParams, ComputeParams> compute_llm_params(ggml_cgraph * cgraph, bool is_static);
ModelParams get_model_params() const { return m_model_params; }
ComputeParams get_compute_params() const { return m_compute_params; }
void set_model_params(const ModelParams & model_params) { m_model_params = model_params; }
void set_compute_params(const ComputeParams & compute_params) { m_compute_params = compute_params; }
bool m_is_static = false;
bool m_is_prefill = false;
int m_prefill_chunk_size = 0;
@ -174,7 +223,6 @@ private:
int compute_op_case(const ggml_tensor * node);
std::string compute_op_type(const ggml_tensor * node);
void set_llm_params();
void validate_cgraph() const;
ggml_cgraph * m_cgraph = nullptr;
@ -191,27 +239,8 @@ private:
std::vector<std::string> m_model_output_names;
std::vector<NodeInfo> m_node_info_list;
// Fixed for a model
int m_ctx = -1;
int m_ctx_swa = -1;
int m_ctx_per_seq = -1;
int m_ctx_per_seq_swa = -1;
int m_n_seq = -1;
int m_n_heads = -1;
int m_n_heads_kv = -1;
int m_head_size = -1;
std::vector<int> m_swa_layers;
std::vector<std::string> m_kv_names;
// Changed per inference
int m_n_seq_active = -1;
int m_seq_active_start = -1;
int m_attention_size = -1;
int m_attention_size_swa = -1;
int m_input_len = -1;
int m_token_len_per_seq = -1;
int m_past_kv_len = -1;
int32_t * m_rope_params = nullptr;
ModelParams m_model_params;
ComputeParams m_compute_params;
};
void print_tensor_address_map(const ggml_cgraph * cgraph);

View File

@ -75,7 +75,7 @@ public:
virtual const std::vector<std::string>& get_model_output_names() const = 0;
virtual int32_t* get_rope_params() const = 0;
virtual std::map<std::string, std::string> get_kv_param_res_names() const = 0;
// virtual std::map<std::string, std::string> get_kv_param_res_names() const = 0;
virtual bool is_static() const = 0;

View File

@ -79,16 +79,21 @@ enum ggml_status openvino_frontend_compute(ggml_backend_t backend, ggml_cgraph *
}
static std::mutex cache_mutex;
static std::unordered_map<ggml_cgraph *, std::shared_ptr<ov::InferRequest>> infer_request_cache;
static std::unordered_map<ggml_cgraph *, std::shared_ptr<ov::InferRequest>> infer_request_cache_prefill;
static std::unordered_map<ggml_cgraph *, std::vector<std::string>> ov_input_names_cache;
static std::unordered_map<ggml_cgraph *, std::vector<std::string>> ov_output_names_cache;
static std::unordered_map<graph_key, std::shared_ptr<GgmlOvDecoder>, graph_key_hash> decoder_cache;
static std::unordered_map<graph_key, std::shared_ptr<ov::InferRequest>, graph_key_hash> infer_request_cache;
static std::unordered_map<graph_key, std::shared_ptr<ov::InferRequest>, graph_key_hash> infer_request_cache_prefill;
static std::unordered_map<graph_key, std::vector<std::string>, graph_key_hash> ov_input_names_cache;
static std::unordered_map<graph_key, std::vector<std::string>, graph_key_hash> ov_output_names_cache;
std::shared_ptr<GgmlOvDecoder> ggml_decoder;
std::shared_ptr<ov::InferRequest> infer_request;
ModelParams m_params;
ComputeParams c_params;
std::tie(m_params, c_params) = GgmlOvDecoder::compute_llm_params(cgraph, is_static);
const auto * inp_pos = get_inp_pos_tensor(cgraph);
const auto is_prefill = get_is_prefill(inp_pos);
const auto key = compute_graph_key(cgraph);
int64_t decoder_end_time;
int64_t conversion_end_time;
@ -98,25 +103,34 @@ enum ggml_status openvino_frontend_compute(ggml_backend_t backend, ggml_cgraph *
{
std::lock_guard<std::mutex> lock(cache_mutex);
auto it = infer_request_cache.find(cgraph);
if (it != infer_request_cache.end()) {
auto it = decoder_cache.find(key);
auto cache_hit = it != decoder_cache.end();
if (cache_hit) {
ggml_decoder = it->second;
cache_hit = is_static ? ggml_decoder->get_model_params().can_reuse_statically(m_params) :
ggml_decoder->get_model_params().can_reuse_dynamically(m_params);
}
if (cache_hit) {
std::map<std::string, std::shared_ptr<ov::Node>> model_weights;
ggml_decoder =
std::make_shared<GgmlOvDecoder>(cgraph, model_weights, is_static, is_prefill, prefill_chunk_size);
ggml_decoder = std::make_shared<GgmlOvDecoder>(cgraph, m_params, c_params, model_weights, is_static,
is_prefill, prefill_chunk_size);
decoder_cache[key] = ggml_decoder;
decoder_end_time = ggml_time_us();
infer_request = infer_request_cache[cgraph];
if (is_static && is_prefill) {
infer_request = infer_request_cache_prefill[cgraph];
}
infer_request = is_static && is_prefill ? infer_request_cache_prefill[key] : infer_request_cache[key];
conversion_end_time = ggml_time_us();
compile_end_time = conversion_end_time;
} else {
infer_request_cache.erase(key);
infer_request_cache_prefill.erase(key);
std::shared_ptr<ov::Model> model;
auto model_weights = GgmlOvDecoder::create_weight_nodes(cgraph, get_types_to_requant(device));
if (!is_static) {
ggml_decoder = std::make_shared<GgmlOvDecoder>(cgraph, model_weights, is_static);
ggml_decoder = std::make_shared<GgmlOvDecoder>(cgraph, m_params, c_params, model_weights, is_static);
decoder_end_time = ggml_time_us();
auto input_model = std::make_shared<ov::frontend::ggml::InputModel>(ggml_decoder);
@ -133,13 +147,14 @@ enum ggml_status openvino_frontend_compute(ggml_backend_t backend, ggml_cgraph *
auto compiled_model = core.compile_model(model, device, get_ov_compile_config(device));
compile_end_time = ggml_time_us();
infer_request_cache[cgraph] = std::make_shared<ov::InferRequest>(compiled_model.create_infer_request());
infer_request = infer_request_cache[cgraph];
infer_request = std::make_shared<ov::InferRequest>(compiled_model.create_infer_request());
infer_request_cache[key] = infer_request;
decoder_cache[key] = ggml_decoder;
} else {
auto ggml_decoder_prefill =
std::make_shared<GgmlOvDecoder>(cgraph, model_weights, is_static, true, prefill_chunk_size);
auto ggml_decoder_decode =
std::make_shared<GgmlOvDecoder>(cgraph, model_weights, is_static, false, prefill_chunk_size);
auto ggml_decoder_prefill = std::make_shared<GgmlOvDecoder>(cgraph, m_params, c_params, model_weights,
is_static, true, prefill_chunk_size);
auto ggml_decoder_decode = std::make_shared<GgmlOvDecoder>(cgraph, m_params, c_params, model_weights,
is_static, false, prefill_chunk_size);
decoder_end_time = ggml_time_us();
auto input_model_prefill = std::make_shared<ov::frontend::ggml::InputModel>(ggml_decoder_prefill);
@ -162,15 +177,17 @@ enum ggml_status openvino_frontend_compute(ggml_backend_t backend, ggml_cgraph *
auto compiled_model_prefill = core.compile_model(model_prefill, device, get_ov_compile_config(device));
auto compiled_model_decode = core.compile_model(model_decode, device, get_ov_compile_config(device));
infer_request_cache_prefill[cgraph] =
infer_request_cache_prefill[key] =
std::make_shared<ov::InferRequest>(compiled_model_prefill.create_infer_request());
infer_request_cache[cgraph] =
infer_request_cache[key] =
std::make_shared<ov::InferRequest>(compiled_model_decode.create_infer_request());
compile_end_time = ggml_time_us();
model = is_prefill ? model_prefill : model_decode;
ggml_decoder = is_prefill ? ggml_decoder_prefill : ggml_decoder_decode;
infer_request = is_prefill ? infer_request_cache_prefill[cgraph] : infer_request_cache[cgraph];
infer_request = is_prefill ? infer_request_cache_prefill[key] : infer_request_cache[key];
decoder_cache[key] = ggml_decoder;
}
std::vector<std::string> ov_input_names;
@ -181,8 +198,8 @@ enum ggml_status openvino_frontend_compute(ggml_backend_t backend, ggml_cgraph *
for (const auto & ov_output : model->get_results()) {
ov_output_names.push_back(ov_output->get_friendly_name());
}
ov_input_names_cache[cgraph] = ov_input_names;
ov_output_names_cache[cgraph] = ov_output_names;
ov_input_names_cache[key] = ov_input_names;
ov_output_names_cache[key] = ov_output_names;
// Set output tensors (for NPU) and kvcache i/o tensors once and for all
// Note: does not seem to improve perf on CPU/GPU, but breaks llama-bench, so disabled it for CPU/GPU
@ -205,8 +222,8 @@ enum ggml_status openvino_frontend_compute(ggml_backend_t backend, ggml_cgraph *
}
}
auto ov_input_names = ov_input_names_cache[cgraph];
auto ov_output_names = ov_output_names_cache[cgraph];
auto ov_input_names = ov_input_names_cache[key];
auto ov_output_names = ov_output_names_cache[key];
if (!is_static) {
for (size_t i = 0; i < ov_input_names.size(); i++) {
@ -675,4 +692,19 @@ bool get_is_prefill(const ggml_tensor * inp_pos) {
return inp_pos->ne[0] > 1;
}
graph_key compute_graph_key(ggml_cgraph * cgraph) {
graph_key key;
key.n_nodes = cgraph->n_nodes;
if (cgraph->n_nodes > 0) {
key.first_node_name = std::string(cgraph->nodes[0]->name);
key.last_node_name = std::string(cgraph->nodes[cgraph->n_nodes - 1]->name);
} else {
key.first_node_name = "";
key.last_node_name = "";
}
return key;
}
#pragma GCC diagnostic pop

View File

@ -6,6 +6,26 @@
#include <cstddef>
#include <openvino/runtime/core.hpp>
struct graph_key {
size_t n_nodes;
std::string first_node_name;
std::string last_node_name;
bool operator==(const graph_key & other) const {
return n_nodes == other.n_nodes && first_node_name == other.first_node_name &&
last_node_name == other.last_node_name;
}
};
struct graph_key_hash {
size_t operator()(const graph_key & key) const {
size_t h = std::hash<size_t>{}(key.n_nodes);
h ^= std::hash<std::string>{}(key.first_node_name) + 0x9e3779b9 + (h << 6) + (h >> 2);
h ^= std::hash<std::string>{}(key.last_node_name) + 0x9e3779b9 + (h << 6) + (h >> 2);
return h;
}
};
enum ggml_status openvino_frontend_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph);
size_t checksum(const void * data, size_t size);
@ -46,6 +66,8 @@ const ggml_tensor * get_inp_pos_tensor(struct ggml_cgraph * cgraph);
bool get_is_prefill(const ggml_tensor * inp_pos);
graph_key compute_graph_key(struct ggml_cgraph * cgraph);
ov::AnyMap get_ov_compile_config(const std::string & device);
std::map<ggml_type, ExtraQuantType> get_types_to_requant(const std::string & device);