From 62dbea1b19fa59221cb2b177482d150eaf274479 Mon Sep 17 00:00:00 2001 From: Yee Man Chan Date: Tue, 27 Jan 2026 14:05:53 +0800 Subject: [PATCH 1/2] working unified delta net --- convert_hf_to_gguf.py | 249 +++ gguf-py/gguf/constants.py | 65 + gguf-py/gguf/gguf_writer.py | 3 + gguf-py/gguf/tensor_mapping.py | 32 + src/CMakeLists.txt | 2 + src/llama-arch.cpp | 70 + src/llama-arch.cpp.orig | 2666 ++++++++++++++++++++++++++++ src/llama-arch.h | 12 + src/llama-arch.h.orig | 601 +++++++ src/llama-context.cpp | 2 +- src/llama-graph.cpp | 1 - src/llama-model.cpp | 176 ++ src/llama-model.h | 13 + src/llama-quant.cpp | 4 +- src/llama-vocab.cpp | 46 +- src/models/graph-context-delta.cpp | 574 ++++++ src/models/kimi-linear.cpp | 386 ++++ src/models/qwen3next.cpp | 365 +--- 18 files changed, 4887 insertions(+), 380 deletions(-) create mode 100644 src/llama-arch.cpp.orig create mode 100644 src/llama-arch.h.orig create mode 100644 src/models/graph-context-delta.cpp create mode 100644 src/models/kimi-linear.cpp diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index d8bc95fa6a..05d2a979cb 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -586,6 +586,10 @@ class ModelBase: gguf.MODEL_TENSOR.A_ENC_EMBD_POS, gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF, gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF, + # Kimi KDA conv weights should be F32 + gguf.MODEL_TENSOR.SSM_CONV1D_Q, + gguf.MODEL_TENSOR.SSM_CONV1D_K, + gguf.MODEL_TENSOR.SSM_CONV1D_V, ) ) or new_name[-7:] not in (".weight", ".lora_a", ".lora_b") @@ -5013,6 +5017,251 @@ class CodeShellModel(TextModel): self.gguf_writer.add_rope_scaling_factor(1.0) +@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM") +class KimiLinearModel(TextModel): + """Kimi-Linear model with hybrid MLA+KDA architecture""" + model_arch = gguf.MODEL_ARCH.KIMI_LINEAR + + _experts: list[dict[str, Tensor]] | None = None + + def set_vocab(self): + try: + self._set_vocab_gpt2() + return + except Exception: + pass + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True) + tokpre = self.get_vocab_base_pre(tokenizer) + + if tokpre == "kimi-k2": + # Build merges list using the approach similar to HunYuanMoE + merges = [] + vocab = {} + mergeable_ranks = tokenizer.model._mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[QwenModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) + if len(merged) == 2: + merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) + # Build token list + vocab_size = self.hparams["vocab_size"] + special_tokens = tokenizer.special_tokens + reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()} + tokens: list[str] = [] + toktypes: list[int] = [] + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + else: + token = reverse_vocab[i] + tokens.append(token) + if i in special_tokens.values(): + toktypes.append(gguf.TokenType.CONTROL) + else: + toktypes.append(gguf.TokenType.NORMAL) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_token_merges(merges) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False) + special_vocab.add_to_gguf(self.gguf_writer) + # override eos id in config.json with tiktoken eos id + self.gguf_writer.add_eos_token_id(tokenizer.eos_id) + else: + raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!") + + def set_gguf_parameters(self): + # note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group) + self.hparams["num_key_value_heads"] = 1 + + super().set_gguf_parameters() + self.gguf_writer.add_vocab_size(self.hparams["vocab_size"]) + + if (score_func := self.find_hparam(["moe_router_activation_func"], optional=True)) is not None: + if score_func == "sigmoid": + self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID) + elif score_func == "softmax": + self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX) + else: + raise ValueError(f"Unsupported expert score gating function value: {score_func}") + + # KDA & MLA params + # Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv + linear_attn_config = self.hparams.get("linear_attn_config", {}) + # n_head == 0 for KDA layers, n_head > 0 for MLA layers + # full_attention_layers list will be used to distingush layer type + _num_kv_heads = list() + _full_attn_layers = linear_attn_config["full_attn_layers"] + for il in range(self.hparams["num_hidden_layers"]): + if il + 1 in _full_attn_layers: + _num_kv_heads.append(self.hparams["num_key_value_heads"]) + else: + _num_kv_heads.append(0) + assert len(_num_kv_heads) == self.hparams["num_hidden_layers"] + self.gguf_writer.add_head_count_kv(_num_kv_heads) + + if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None: + self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv) + if (kda_head_dim := linear_attn_config.get("head_dim")) is not None: + self.gguf_writer.add_kda_head_dim(kda_head_dim) + + # MLA params - use add_* methods that handle arch substitution + # Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv) + if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=False)) is not None: + self.gguf_writer.add_q_lora_rank(q_lora_rank) + if (kv_lora_rank := self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False)) is not None: + self.gguf_writer.add_kv_lora_rank(kv_lora_rank) + + # MLA head dimensions + # Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim + qk_nope_head_dim = self.hparams.get("qk_nope_head_dim") + qk_rope_head_dim = self.hparams.get("qk_rope_head_dim") + v_head_dim = self.hparams.get("v_head_dim") + # To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA + self.gguf_writer.add_key_length(self.hparams["kv_lora_rank"] + self.hparams["qk_rope_head_dim"]) + self.gguf_writer.add_value_length(self.hparams["kv_lora_rank"]) + + # Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + if "n_embd_head_k_mla" in self.hparams: + self.gguf_writer.add_key_length_mla(self.hparams["n_embd_head_k_mla"]) + elif qk_nope_head_dim is not None and qk_rope_head_dim is not None: + n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) + + # n_embd_head_v_mla = v_head_dim + if "n_embd_head_v_mla" in self.hparams: + self.gguf_writer.add_value_length_mla(self.hparams["n_embd_head_v_mla"]) + elif v_head_dim is not None: + self.gguf_writer.add_value_length_mla(v_head_dim) + + # Rotation - use qk_rope_head_dim for Kimi + if (rope_dim := self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=True)) is not None: + self.gguf_writer.add_rope_dimension_count(rope_dim) + else: + # Default to head_dim + head_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] + self.gguf_writer.add_rope_dimension_count(head_dim) + + if (n_experts := self.find_hparam(["num_experts"], optional=False)) is not None: + self.gguf_writer.add_expert_count(n_experts) + if (n_experts_used := self.find_hparam(["num_experts_per_token"], optional=False)) is not None: + self.gguf_writer.add_expert_used_count(n_experts_used) + + # moe_intermediate_size (1024 for Kimi) + if (moe_intermediate_size := self.find_hparam(["moe_intermediate_size"], optional=False)) is not None: + self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size) + + # num_shared_experts (1 for Kimi) + if (num_shared_experts := self.find_hparam(["num_shared_experts"], optional=False)) is not None: + self.gguf_writer.add_expert_shared_count(num_shared_experts) + + # first_k_dense_replace (1 for Kimi - first layer uses dense MLP) + if (first_k_dense_replace := self.find_hparam(["first_k_dense_replace"])) is not None: + self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace) + + # Routed scaling factor (expert_weights_scale = 2.446 for Kimi) + if (routed_scaling_factor := self.find_hparam(["routed_scaling_factor"], optional=False)) is not None: + self.gguf_writer.add_expert_weights_scale(routed_scaling_factor) + + def prepare_tensors(self): + super().prepare_tensors() + if self._experts is not None: + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}") + + # Handle KDA conv1d weights + # HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest + # llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest + # GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1] + # Memory layouts match: both have conv_step (d_conv) changing fastest + if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")): + # HF shape: [d_inner, d_conv] e.g. [4096, 4] + # Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1] + if data_torch.ndim == 2: + d_inner, d_conv = data_torch.shape + # Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest) + data_torch = data_torch.reshape(1, d_inner, 1, d_conv) + logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]") + elif data_torch.ndim == 3: + # Already 3D [d_inner, 1, d_conv] from unsqueeze + d_inner, _, d_conv = data_torch.shape + data_torch = data_torch.reshape(1, d_inner, 1, d_conv) + logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]") + + # Kimi specific bias + if name.endswith("e_score_correction_bias"): + name = name.replace("e_score_correction_bias", "e_score_correction.bias") + + # Handle A_log: iHF stores as [1, 1, num_heads, 1] + # llama.cpp expects ggml ne = [1, num_heads, 1, 1] + # GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1] + if name.endswith(".A_log"): + data_torch = -torch.exp(data_torch) + if name.endswith(".dt_bias"): + name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias" + logger.info("Changed dt_bias to dt_proj.bias") + + # process the experts separately + if name.find("block_sparse_moe.experts") != -1: + n_experts = self.hparams.get("num_local_experts", self.hparams.get("num_experts")) + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + # merge the experts into a single 3d tensor + tensors = [] + # w1: gate, w2: down, w3: up + for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP), + ("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP), + ("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]: + datas: list[Tensor] = [] + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" + datas.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(datas, dim=0) + new_name = self.format_tensor_name(tname, bid) + tensors.append((new_name, data_torch)) + return tensors + return [] + + # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed + if name.endswith("kv_b_proj.weight"): + name_kb = name.replace("kv_b_proj", "k_b_proj") + name_vb = name.replace("kv_b_proj", "v_b_proj") + n_head_kv = self.hparams["num_key_value_heads"] + v_head_dim = self.hparams["v_head_dim"] + qk_nope_head_dim = self.hparams["qk_nope_head_dim"] + logger.info("Split kv_b n_head_kv %d\n" % n_head_kv) + assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim) + kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1]) + k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1) + k_b = k_b.transpose(1, 2) + return [(self.map_tensor_name(name_kb), k_b), (self.map_tensor_name(name_vb), v_b)] + + mapped_name = self.map_tensor_name(name) + logger.info(f"Returning {mapped_name}: shape after = {tuple(data_torch.shape)}") + return [(mapped_name, data_torch)] + + @ModelBase.register("InternLM2ForCausalLM") class InternLM2Model(TextModel): model_arch = gguf.MODEL_ARCH.INTERNLM2 diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 31273b2b5a..a51b3d87d1 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -207,6 +207,9 @@ class Keys: GROUP_COUNT = "{arch}.ssm.group_count" DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms" + class KDA: + HEAD_DIM = "{arch}.kda.head_dim" + class WKV: HEAD_SIZE = "{arch}.wkv.head_size" @@ -459,6 +462,7 @@ class MODEL_ARCH(IntEnum): MIMO2 = auto() LLAMA_EMBED = auto() MAINCODER = auto() + KIMI_LINEAR = auto() class VISION_PROJECTOR_TYPE(IntEnum): @@ -549,6 +553,14 @@ class MODEL_TENSOR(IntEnum): SSM_NORM = auto() SSM_OUT = auto() SSM_BETA_ALPHA = auto() # qwen3next + SSM_CONV1D_Q = auto() # Kimi Linear + SSM_CONV1D_K = auto() # Kimi Linear + SSM_CONV1D_V = auto() # Kimi Linear + SSM_F_A = auto() # Kimi Linear + SSM_F_B = auto() # Kimi Linear + SSM_BETA = auto() # Kimi Linear + SSM_G_A = auto() # Kimi Linear + SSM_G_B = auto() # Kimi Linear TIME_MIX_W0 = auto() TIME_MIX_W1 = auto() TIME_MIX_W2 = auto() @@ -880,6 +892,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.MIMO2: "mimo2", MODEL_ARCH.LLAMA_EMBED: "llama-embed", MODEL_ARCH.MAINCODER: "maincoder", + MODEL_ARCH.KIMI_LINEAR: "kimi-linear", } VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = { @@ -967,6 +980,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm", MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", MODEL_TENSOR.SSM_BETA_ALPHA: "blk.{bid}.ssm_ba", + MODEL_TENSOR.SSM_CONV1D_Q: "blk.{bid}.ssm_conv1d_q", # Kimi Linear + MODEL_TENSOR.SSM_CONV1D_K: "blk.{bid}.ssm_conv1d_k", # Kimi Linear + MODEL_TENSOR.SSM_CONV1D_V: "blk.{bid}.ssm_conv1d_v", # Kimi Linear + MODEL_TENSOR.SSM_F_A: "blk.{bid}.ssm_f_a", # Kimi Linear + MODEL_TENSOR.SSM_F_B: "blk.{bid}.ssm_f_b", # Kimi Linear + MODEL_TENSOR.SSM_BETA: "blk.{bid}.ssm_beta", # Kimi Linear + MODEL_TENSOR.SSM_G_A: "blk.{bid}.ssm_g_a", # Kimi Linear + MODEL_TENSOR.SSM_G_B: "blk.{bid}.ssm_g_b", # Kimi Linear MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0", MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1", MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2", @@ -3377,6 +3398,47 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.KIMI_LINEAR: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_Q_A, + MODEL_TENSOR.ATTN_Q_B, + MODEL_TENSOR.ATTN_KV_A_MQA, + MODEL_TENSOR.ATTN_KV_B, + MODEL_TENSOR.ATTN_K_B, + MODEL_TENSOR.ATTN_V_B, + MODEL_TENSOR.ATTN_Q_A_NORM, + MODEL_TENSOR.ATTN_KV_A_NORM, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.SSM_CONV1D_Q, + MODEL_TENSOR.SSM_CONV1D_K, + MODEL_TENSOR.SSM_CONV1D_V, + MODEL_TENSOR.SSM_F_A, + MODEL_TENSOR.SSM_F_B, + MODEL_TENSOR.SSM_BETA, + MODEL_TENSOR.SSM_A, + MODEL_TENSOR.SSM_G_A, + MODEL_TENSOR.SSM_G_B, + MODEL_TENSOR.SSM_DT, + MODEL_TENSOR.SSM_NORM, + MODEL_TENSOR.FFN_EXP_PROBS_B, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + ], # TODO } @@ -3704,6 +3766,9 @@ KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK KEY_SSM_GROUP_COUNT = Keys.SSM.GROUP_COUNT KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS +# KDA +KEY_KDA_HEAD_DIM = Keys.KDA.HEAD_DIM + # tokenization KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 7fbb78866b..8a409e51e0 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -980,6 +980,9 @@ class GGUFWriter: def add_ssm_dt_b_c_rms(self, value: bool) -> None: self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value) + def add_kda_head_dim(self, value: int) -> None: + self.add_uint32(Keys.KDA.HEAD_DIM.format(arch=self.arch), value) + def add_tokenizer_model(self, model: str) -> None: self.add_string(Keys.Tokenizer.MODEL, model) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 84aa868809..e16c06c2a3 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -438,6 +438,7 @@ class TensorNameMap: "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2 "backbone.layers.{bid}.mixer.gate.e_score_correction", # nemotron-h-moe "model.layers.{bid}.mlp.e_score_correction", # exaone-moe + "model.layers.{bid}.block_sparse_moe.gate.e_score_correction", # kimi ), # Feed-forward up @@ -502,6 +503,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan "layers.{bid}.shared_experts.w3", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe + "model.layers.{bid}.block_sparse_moe.shared_experts.up_proj", # kimi ), MODEL_TENSOR.FFN_UP_CHEXP: ( @@ -549,6 +551,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4 "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan "layers.{bid}.shared_experts.w1", # mistral-large + "model.layers.{bid}.block_sparse_moe.shared_experts.gate_proj", # kimi ), MODEL_TENSOR.FFN_GATE_CHEXP: ( @@ -613,6 +616,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan "layers.{bid}.shared_experts.w2", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe + "model.layers.{bid}.block_sparse_moe.shared_experts.down_proj", # kimi ), MODEL_TENSOR.FFN_DOWN_CHEXP: ( @@ -759,6 +763,7 @@ class TensorNameMap: "model.layers.layers.{bid}.mixer.dt_proj", # plamo2 "model.layers.{bid}.linear_attn.dt_proj", # qwen3next "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe + "model.layers.{bid}.self_attn.dt_proj", # kimi ), MODEL_TENSOR.SSM_DT_NORM: ( @@ -772,6 +777,7 @@ class TensorNameMap: "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid "model.layers.layers.{bid}.mixer.A_log", # plamo2 "model.layers.{bid}.linear_attn.A_log", # qwen3next + "model.layers.{bid}.self_attn.A_log", # kimi ), MODEL_TENSOR.SSM_B_NORM: ( @@ -797,6 +803,7 @@ class TensorNameMap: "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid "model.layers.{bid}.linear_attn.norm", # qwen3next "backbone.layers.{bid}.mixer.norm", # mamba2 + "model.layers.{bid}.self_attn.o_norm", # kimi ), MODEL_TENSOR.SSM_OUT: ( @@ -811,6 +818,31 @@ class TensorNameMap: "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next ), + # Kimi Linear KDA (using SSM_ prefix for consistency) + MODEL_TENSOR.SSM_CONV1D_Q: ( + "model.layers.{bid}.self_attn.q_conv1d", + ), + MODEL_TENSOR.SSM_CONV1D_K: ( + "model.layers.{bid}.self_attn.k_conv1d", + ), + MODEL_TENSOR.SSM_CONV1D_V: ( + "model.layers.{bid}.self_attn.v_conv1d", + ), + MODEL_TENSOR.SSM_F_A: ( + "model.layers.{bid}.self_attn.f_a_proj", + ), + MODEL_TENSOR.SSM_F_B: ( + "model.layers.{bid}.self_attn.f_b_proj", + ), + MODEL_TENSOR.SSM_BETA: ( + "model.layers.{bid}.self_attn.b_proj", + ), + MODEL_TENSOR.SSM_G_A: ( + "model.layers.{bid}.self_attn.g_a_proj", + ), + MODEL_TENSOR.SSM_G_B: ( + "model.layers.{bid}.self_attn.g_b_proj", + ), MODEL_TENSOR.TIME_MIX_W0: ( "model.layers.{bid}.attention.w0", # rwkv7 ), diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index f337afd6b3..80c0f13414 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -84,6 +84,7 @@ add_library(llama models/internlm2.cpp models/jais.cpp models/jamba.cpp + models/kimi-linear.cpp models/lfm2.cpp models/llada-moe.cpp models/llada.cpp @@ -140,6 +141,7 @@ add_library(llama models/xverse.cpp models/mistral3.cpp models/graph-context-mamba.cpp + models/graph-context-delta.cpp ) set_target_properties(llama PROPERTIES diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index a54bc1956a..a8bf1c9b80 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -120,6 +120,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_MIMO2, "mimo2" }, { LLM_ARCH_LLAMA_EMBED, "llama-embed" }, { LLM_ARCH_MAINCODER, "maincoder" }, + { LLM_ARCH_KIMI_LINEAR, "kimi-linear" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -246,6 +247,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_SSM_GROUP_COUNT, "%s.ssm.group_count" }, { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" }, + { LLM_KV_KDA_HEAD_DIM, "%s.kda.head_dim" }, + { LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" }, { LLM_KV_POSNET_EMBEDDING_LENGTH, "%s.posnet.embedding_length" }, @@ -371,6 +374,15 @@ static const std::map LLM_TENSOR_NAMES = { { LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" }, { LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" }, { LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" }, + { LLM_TENSOR_SSM_CONV1D_Q, "blk.%d.ssm_conv1d_q" }, + { LLM_TENSOR_SSM_CONV1D_K, "blk.%d.ssm_conv1d_k" }, + { LLM_TENSOR_SSM_CONV1D_V, "blk.%d.ssm_conv1d_v" }, + { LLM_TENSOR_SSM_F_A, "blk.%d.ssm_f_a" }, + { LLM_TENSOR_SSM_F_B, "blk.%d.ssm_f_b" }, + { LLM_TENSOR_SSM_BETA, "blk.%d.ssm_beta" }, + { LLM_TENSOR_SSM_G_A, "blk.%d.ssm_g_a" }, + { LLM_TENSOR_SSM_G_B, "blk.%d.ssm_g_b" }, + { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" }, { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, @@ -2289,6 +2301,54 @@ static std::set llm_get_tensor_names(llm_arch arch) { LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, }; + case LLM_ARCH_KIMI_LINEAR: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + // Dense FFN (layer 0 only) + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + // MoE FFN (layers 1+) + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + // Shared experts + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + // KDA (using SSM_ enum prefix, keeping GGUF names for backward compat) + LLM_TENSOR_SSM_CONV1D_Q, + LLM_TENSOR_SSM_CONV1D_K, + LLM_TENSOR_SSM_CONV1D_V, + LLM_TENSOR_SSM_F_A, + LLM_TENSOR_SSM_F_B, + LLM_TENSOR_SSM_BETA, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_G_A, + LLM_TENSOR_SSM_G_B, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_NORM, + // MLA + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_K_B, + LLM_TENSOR_ATTN_V_B, + LLM_TENSOR_ATTN_KV_A_NORM, + }; default: GGML_ABORT("unknown architecture for tensor mapping"); } @@ -2392,6 +2452,15 @@ static const std::map LLM_TENSOR_INFOS = { {LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + // Kimi KDA - Conv tensors are 4D [d_conv, 1, d_inner, 1], reshaped to 2D at runtime + {LLM_TENSOR_SSM_CONV1D_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_F_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_F_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_BETA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_G_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_G_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, {LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, @@ -2573,6 +2642,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) { case LLM_ARCH_NEMOTRON_H: case LLM_ARCH_NEMOTRON_H_MOE: case LLM_ARCH_QWEN3NEXT: + case LLM_ARCH_KIMI_LINEAR: return true; default: return false; diff --git a/src/llama-arch.cpp.orig b/src/llama-arch.cpp.orig new file mode 100644 index 0000000000..654276542d --- /dev/null +++ b/src/llama-arch.cpp.orig @@ -0,0 +1,2666 @@ +#include "llama-arch.h" + +#include "llama-impl.h" + +#include +#include + +static const std::map LLM_ARCH_NAMES = { + { LLM_ARCH_CLIP, "clip" }, // dummy, only used by llama-quantize + { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_LLAMA4, "llama4" }, + { LLM_ARCH_DECI, "deci" }, + { LLM_ARCH_FALCON, "falcon" }, + { LLM_ARCH_GROK, "grok" }, + { LLM_ARCH_GPT2, "gpt2" }, + { LLM_ARCH_GPTJ, "gptj" }, + { LLM_ARCH_GPTNEOX, "gptneox" }, + { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_BAICHUAN, "baichuan" }, + { LLM_ARCH_STARCODER, "starcoder" }, + { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_BERT, "bert" }, + { LLM_ARCH_MODERN_BERT, "modern-bert" }, + { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, + { LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" }, + { LLM_ARCH_NEO_BERT, "neo-bert" }, + { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, + { LLM_ARCH_JINA_BERT_V3, "jina-bert-v3" }, + { LLM_ARCH_BLOOM, "bloom" }, + { LLM_ARCH_STABLELM, "stablelm" }, + { LLM_ARCH_QWEN, "qwen" }, + { LLM_ARCH_QWEN2, "qwen2" }, + { LLM_ARCH_QWEN2MOE, "qwen2moe" }, + { LLM_ARCH_QWEN2VL, "qwen2vl" }, + { LLM_ARCH_QWEN3, "qwen3" }, + { LLM_ARCH_QWEN3MOE, "qwen3moe" }, + { LLM_ARCH_QWEN3NEXT, "qwen3next" }, + { LLM_ARCH_QWEN3VL, "qwen3vl" }, + { LLM_ARCH_QWEN3VLMOE, "qwen3vlmoe" }, + { LLM_ARCH_PHI2, "phi2" }, + { LLM_ARCH_PHI3, "phi3" }, + { LLM_ARCH_PHIMOE, "phimoe" }, + { LLM_ARCH_PLAMO, "plamo" }, + { LLM_ARCH_PLAMO2, "plamo2" }, + { LLM_ARCH_PLAMO3, "plamo3" }, + { LLM_ARCH_CODESHELL, "codeshell" }, + { LLM_ARCH_ORION, "orion" }, + { LLM_ARCH_INTERNLM2, "internlm2" }, + { LLM_ARCH_MINICPM, "minicpm" }, + { LLM_ARCH_MINICPM3, "minicpm3" }, + { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_GEMMA2, "gemma2" }, + { LLM_ARCH_GEMMA3, "gemma3" }, + { LLM_ARCH_GEMMA3N, "gemma3n" }, + { LLM_ARCH_GEMMA_EMBEDDING, "gemma-embedding" }, + { LLM_ARCH_STARCODER2, "starcoder2" }, + { LLM_ARCH_MAMBA, "mamba" }, + { LLM_ARCH_MAMBA2, "mamba2" }, + { LLM_ARCH_JAMBA, "jamba" }, + { LLM_ARCH_FALCON_H1, "falcon-h1" }, + { LLM_ARCH_XVERSE, "xverse" }, + { LLM_ARCH_COMMAND_R, "command-r" }, + { LLM_ARCH_COHERE2, "cohere2" }, + { LLM_ARCH_DBRX, "dbrx" }, + { LLM_ARCH_OLMO, "olmo" }, + { LLM_ARCH_OLMO2, "olmo2" }, + { LLM_ARCH_OLMOE, "olmoe" }, + { LLM_ARCH_OPENELM, "openelm" }, + { LLM_ARCH_ARCTIC, "arctic" }, + { LLM_ARCH_DEEPSEEK, "deepseek" }, + { LLM_ARCH_DEEPSEEK2, "deepseek2" }, + { LLM_ARCH_CHATGLM, "chatglm" }, + { LLM_ARCH_GLM4, "glm4" }, + { LLM_ARCH_GLM4_MOE, "glm4moe" }, + { LLM_ARCH_BITNET, "bitnet" }, + { LLM_ARCH_T5, "t5" }, + { LLM_ARCH_T5ENCODER, "t5encoder" }, + { LLM_ARCH_JAIS, "jais" }, + { LLM_ARCH_NEMOTRON, "nemotron" }, + { LLM_ARCH_NEMOTRON_H, "nemotron_h" }, + { LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" }, + { LLM_ARCH_EXAONE, "exaone" }, + { LLM_ARCH_EXAONE4, "exaone4" }, + { LLM_ARCH_EXAONE_MOE, "exaone-moe" }, + { LLM_ARCH_RWKV6, "rwkv6" }, + { LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" }, + { LLM_ARCH_RWKV7, "rwkv7" }, + { LLM_ARCH_ARWKV7, "arwkv7" }, + { LLM_ARCH_GRANITE, "granite" }, + { LLM_ARCH_GRANITE_MOE, "granitemoe" }, + { LLM_ARCH_GRANITE_HYBRID, "granitehybrid" }, + { LLM_ARCH_CHAMELEON, "chameleon" }, + { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" }, + { LLM_ARCH_PLM, "plm" }, + { LLM_ARCH_BAILINGMOE, "bailingmoe" }, + { LLM_ARCH_BAILINGMOE2, "bailingmoe2" }, + { LLM_ARCH_DOTS1, "dots1" }, + { LLM_ARCH_ARCEE, "arcee" }, + { LLM_ARCH_AFMOE, "afmoe" }, + { LLM_ARCH_ERNIE4_5, "ernie4_5" }, + { LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" }, + { LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" }, + { LLM_ARCH_HUNYUAN_DENSE, "hunyuan-dense" }, + { LLM_ARCH_SMOLLM3, "smollm3" }, + { LLM_ARCH_OPENAI_MOE, "gpt-oss" }, + { LLM_ARCH_LFM2, "lfm2" }, + { LLM_ARCH_LFM2MOE, "lfm2moe" }, + { LLM_ARCH_DREAM, "dream" }, + { LLM_ARCH_SMALLTHINKER, "smallthinker" }, + { LLM_ARCH_LLADA, "llada" }, + { LLM_ARCH_LLADA_MOE, "llada-moe" }, + { LLM_ARCH_SEED_OSS, "seed_oss" }, + { LLM_ARCH_GROVEMOE, "grovemoe" }, + { LLM_ARCH_APERTUS, "apertus" }, + { LLM_ARCH_MINIMAX_M2, "minimax-m2" }, + { LLM_ARCH_COGVLM, "cogvlm" }, + { LLM_ARCH_RND1, "rnd1" }, + { LLM_ARCH_PANGU_EMBED, "pangu-embedded" }, + { LLM_ARCH_MISTRAL3, "mistral3" }, + { LLM_ARCH_MIMO2, "mimo2" }, + { LLM_ARCH_LLAMA_EMBED, "llama-embed" }, + { LLM_ARCH_MAINCODER, "maincoder" }, + { LLM_ARCH_KIMI_LINEAR, "kimi-linear" }, + { LLM_ARCH_UNKNOWN, "(unknown)" }, +}; + +static const std::map LLM_KV_NAMES = { + { LLM_KV_GENERAL_TYPE, "general.type" }, + { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, + { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, + { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, + { LLM_KV_GENERAL_FILE_TYPE, "general.file_type" }, + { LLM_KV_GENERAL_SAMPLING_SEQUENCE, "general.sampling.sequence" }, + { LLM_KV_GENERAL_SAMPLING_TOP_K, "general.sampling.top_k" }, + { LLM_KV_GENERAL_SAMPLING_TOP_P, "general.sampling.top_p" }, + { LLM_KV_GENERAL_SAMPLING_MIN_P, "general.sampling.min_p" }, + { LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY, "general.sampling.xtc_probability" }, + { LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD, "general.sampling.xtc_threshold" }, + { LLM_KV_GENERAL_SAMPLING_TEMP, "general.sampling.temp" }, + { LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N, "general.sampling.penalty_last_n" }, + { LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT, "general.sampling.penalty_repeat" }, + { LLM_KV_GENERAL_SAMPLING_MIROSTAT, "general.sampling.mirostat" }, + { LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU, "general.sampling.mirostat_tau" }, + { LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA, "general.sampling.mirostat_eta" }, + { LLM_KV_GENERAL_NAME, "general.name" }, + { LLM_KV_GENERAL_AUTHOR, "general.author" }, + { LLM_KV_GENERAL_VERSION, "general.version" }, + { LLM_KV_GENERAL_URL, "general.url" }, + { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, + { LLM_KV_GENERAL_LICENSE, "general.license" }, + { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, + { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, + + { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, + { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, + { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, + { LLM_KV_EMBEDDING_LENGTH_OUT, "%s.embedding_length_out" }, + { LLM_KV_FEATURES_LENGTH, "%s.features_length" }, + { LLM_KV_BLOCK_COUNT, "%s.block_count" }, + { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, + { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, + { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, + { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" }, + { LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, "%s.expert_chunk_feed_forward_length" }, + { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, + { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, + { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, + { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, + { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, + { LLM_KV_EXPERT_GROUP_COUNT, "%s.expert_group_count" }, + { LLM_KV_EXPERT_GROUP_USED_COUNT, "%s.expert_group_used_count" }, + { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, + { LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" }, + { LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" }, + { LLM_KV_EXPERT_GROUP_SCALE, "%s.expert_group_scale" }, + { LLM_KV_EXPERTS_PER_GROUP, "%s.experts_per_group" }, + { LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" }, + { LLM_KV_NEXTN_PREDICT_LAYERS, "%s.nextn_predict_layers" }, + { LLM_KV_NUM_DEEPSTACK_LAYERS, "%s.n_deepstack_layers" }, + { LLM_KV_POOLING_TYPE, "%s.pooling_type" }, + { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, + { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, + { LLM_KV_DECODER_BLOCK_COUNT, "%s.decoder_block_count" }, + { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" }, + { LLM_KV_ROUTER_LOGIT_SOFTCAPPING, "%s.router_logit_softcapping" }, + { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" }, + { LLM_KV_SWIN_NORM, "%s.swin_norm" }, + { LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" }, + { LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" }, + { LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" }, + { LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" }, + { LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" }, + { LLM_KV_TOKEN_SHIFT_COUNT, "%s.token_shift_count" }, + { LLM_KV_INTERLEAVE_MOE_LAYER_STEP, "%s.interleave_moe_layer_step" }, + + { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, + { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, + { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, + { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, + { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, + { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, + { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, + { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, + { LLM_KV_ATTENTION_GROUPNORM_EPS, "%s.attention.group_norm_epsilon" }, + { LLM_KV_ATTENTION_GROUPNORM_GROUPS, "%s.attention.group_norm_groups" }, + { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, + { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, + { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, + { LLM_KV_ATTENTION_DECAY_LORA_RANK, "%s.attention.decay_lora_rank" }, + { LLM_KV_ATTENTION_ICLR_LORA_RANK, "%s.attention.iclr_lora_rank" }, + { LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, "%s.attention.value_residual_mix_lora_rank" }, + { LLM_KV_ATTENTION_GATE_LORA_RANK, "%s.attention.gate_lora_rank" }, + { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" }, + { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" }, + { LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, "%s.attention.sliding_window_pattern" }, + { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" }, + { LLM_KV_ATTENTION_OUTPUT_SCALE, "%s.attention.output_scale" }, + { LLM_KV_ATTENTION_TEMPERATURE_LENGTH, "%s.attention.temperature_length" }, + { LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" }, + { LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" }, + { LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" }, + + { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, + { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" }, + { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, + { LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" }, + { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, + { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, + { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, + { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, + { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, + { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, + { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, + { LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" }, + { LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" }, + { LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" }, + { LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" }, + + { LLM_KV_SPLIT_NO, "split.no" }, + { LLM_KV_SPLIT_COUNT, "split.count" }, + { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" }, + + { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" }, + { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" }, + { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" }, + { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, + { LLM_KV_SSM_GROUP_COUNT, "%s.ssm.group_count" }, + { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" }, + + { LLM_KV_KDA_HEAD_DIM, "%s.kda.head_dim" }, + + { LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" }, + + { LLM_KV_POSNET_EMBEDDING_LENGTH, "%s.posnet.embedding_length" }, + { LLM_KV_POSNET_BLOCK_COUNT, "%s.posnet.block_count" }, + + { LLM_KV_CONVNEXT_EMBEDDING_LENGTH, "%s.convnext.embedding_length" }, + { LLM_KV_CONVNEXT_BLOCK_COUNT, "%s.convnext.block_count" }, + + { LLM_KV_CLASSIFIER_OUTPUT_LABELS, "%s.classifier.output_labels" }, + + { LLM_KV_SHORTCONV_L_CACHE, "%s.shortconv.l_cache" }, + // sentence-transformers dense modules feature dims + { LLM_KV_DENSE_2_FEAT_IN, "%s.dense_2_feat_in" }, + { LLM_KV_DENSE_2_FEAT_OUT, "%s.dense_2_feat_out" }, + { LLM_KV_DENSE_3_FEAT_IN, "%s.dense_3_feat_in" }, + { LLM_KV_DENSE_3_FEAT_OUT, "%s.dense_3_feat_out" }, + + { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, + { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, + { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, + { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, + { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, + { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, + { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, + { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, + { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, + { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" }, + { LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" }, + { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, + { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, + { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, + { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" }, + { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" }, + { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, + { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, + { LLM_KV_TOKENIZER_ADD_SEP, "tokenizer.ggml.add_sep_token" }, + { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, + { LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" }, + { LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" }, + { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, + { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, + { LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" }, + { LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" }, + { LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" }, + { LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" }, + { LLM_KV_TOKENIZER_FIM_PAD_ID, "tokenizer.ggml.fim_pad_token_id" }, + { LLM_KV_TOKENIZER_FIM_REP_ID, "tokenizer.ggml.fim_rep_token_id" }, + { LLM_KV_TOKENIZER_FIM_SEP_ID, "tokenizer.ggml.fim_sep_token_id" }, + + { LLM_KV_ADAPTER_TYPE, "adapter.type" }, + { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" }, + { LLM_KV_ADAPTER_LORA_TASK_NAME, "adapter.lora.task_name" }, + { LLM_KV_ADAPTER_LORA_PROMPT_PREFIX, "adapter.lora.prompt_prefix" }, + { LLM_KV_ADAPTER_ALORA_INVOCATION_TOKENS, "adapter.alora.invocation_tokens" }, + + { LLM_KV_XIELU_ALPHA_N, "xielu.alpha_n" }, + { LLM_KV_XIELU_ALPHA_P, "xielu.alpha_p" }, + { LLM_KV_XIELU_BETA, "xielu.beta" }, + { LLM_KV_XIELU_EPS, "xielu.eps" }, + + // deprecated + { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" }, + { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" }, + { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" }, +}; + +static const std::map LLM_TENSOR_NAMES = { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT_NORM_LFM2, "token_embd_norm" }, // fix for wrong tensor name + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_GATE, "blk.%d.attn_gate" }, + { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" }, + { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_CLS, "cls" }, + { LLM_TENSOR_CLS_OUT, "cls.output" }, + { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_SSM_A_NOSCAN, "blk.%d.ssm_a" }, + { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, + { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, + { LLM_TENSOR_SSM_BETA_ALPHA, "blk.%d.ssm_ba" }, + { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, + { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" }, + { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, + { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" }, + { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" }, + { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" }, + { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, + { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, + { LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" }, + { LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" }, + { LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" }, + { LLM_TENSOR_SSM_CONV1D_Q, "blk.%d.ssm_conv1d_q" }, + { LLM_TENSOR_SSM_CONV1D_K, "blk.%d.ssm_conv1d_k" }, + { LLM_TENSOR_SSM_CONV1D_V, "blk.%d.ssm_conv1d_v" }, + { LLM_TENSOR_SSM_F_A, "blk.%d.ssm_f_a" }, + { LLM_TENSOR_SSM_F_B, "blk.%d.ssm_f_b" }, + { LLM_TENSOR_SSM_BETA, "blk.%d.ssm_beta" }, + { LLM_TENSOR_SSM_A_LOG, "blk.%d.ssm_a" }, + { LLM_TENSOR_SSM_DT_B, "blk.%d.ssm_dt" }, + { LLM_TENSOR_SSM_G_A, "blk.%d.ssm_g_a" }, + { LLM_TENSOR_SSM_G_B, "blk.%d.ssm_g_b" }, + { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" }, + { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, + { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, + { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, + { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" }, + { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" }, + { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" }, + { LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "per_layer_token_embd" }, + { LLM_TENSOR_PER_LAYER_MODEL_PROJ, "per_layer_model_proj" }, + { LLM_TENSOR_PER_LAYER_PROJ_NORM, "per_layer_proj_norm" }, + { LLM_TENSOR_ALTUP_UNEMBD_PROJ, "altup_unembd_proj" }, + { LLM_TENSOR_ALTUP_PROJ, "altup_proj" }, + { LLM_TENSOR_PER_LAYER_INP_GATE, "blk.%d.inp_gate" }, + { LLM_TENSOR_PER_LAYER_PROJ, "blk.%d.proj" }, + { LLM_TENSOR_PER_LAYER_POST_NORM, "blk.%d.post_norm" }, + { LLM_TENSOR_ALTUP_CORRECT_COEF, "blk.%d.altup_correct_coef" }, + { LLM_TENSOR_ALTUP_CORRECT_SCALE, "blk.%d.altup_correct_scale" }, + { LLM_TENSOR_ALTUP_PREDICT_COEF, "blk.%d.altup_predict_coef" }, + { LLM_TENSOR_ALTUP_ROUTER, "blk.%d.altup_router" }, + { LLM_TENSOR_ALTUP_ROUTER_NORM, "blk.%d.altup_router_norm" }, + { LLM_TENSOR_LAUREL_L, "blk.%d.laurel_l" }, + { LLM_TENSOR_LAUREL_R, "blk.%d.laurel_r" }, + { LLM_TENSOR_LAUREL_POST_NORM, "blk.%d.laurel_post_norm" }, + { LLM_TENSOR_DENSE_2_OUT, "dense_2" }, + { LLM_TENSOR_DENSE_3_OUT, "dense_3" }, + { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" }, + { LLM_TENSOR_ATTN_K_B, "blk.%d.attn_k_b" }, + { LLM_TENSOR_ATTN_V_B, "blk.%d.attn_v_b" }, + { LLM_TENSOR_NEXTN_EH_PROJ, "blk.%d.nextn.eh_proj" }, + { LLM_TENSOR_NEXTN_EMBED_TOKENS, "blk.%d.nextn.embed_tokens" }, + { LLM_TENSOR_NEXTN_ENORM, "blk.%d.nextn.enorm" }, + { LLM_TENSOR_NEXTN_HNORM, "blk.%d.nextn.hnorm" }, + { LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "blk.%d.nextn.shared_head_head" }, + { LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "blk.%d.nextn.shared_head_norm" }, + { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" }, + { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" }, + { LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" }, + { LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" }, + { LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" }, + { LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" }, + { LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" }, + { LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" }, + { LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" }, + { LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" }, + { LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" }, + { LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" }, + { LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" }, + { LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" }, + { LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" }, + { LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" }, + { LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" }, + { LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" }, + { LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" }, + { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" }, + { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" }, + { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" }, + { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" }, + { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" }, + { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" }, + { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" }, + { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" }, + { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" }, + { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" }, + { LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" }, + { LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" }, + { LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" }, + { LLM_TENSOR_TIME_MIX_LERP_W, "blk.%d.time_mix_lerp_w" }, + { LLM_TENSOR_TIME_MIX_LERP_K, "blk.%d.time_mix_lerp_k" }, + { LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" }, + { LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" }, + { LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" }, + { LLM_TENSOR_TIME_MIX_LERP_FUSED, "blk.%d.time_mix_lerp_fused" }, + { LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" }, + { LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" }, + { LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" }, + { LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" }, + { LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" }, + { LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" }, + { LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" }, + { LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" }, + { LLM_TENSOR_TIME_MIX_LN, "blk.%d.time_mix_ln" }, + { LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" }, + { LLM_TENSOR_CHANNEL_MIX_LERP_K, "blk.%d.channel_mix_lerp_k" }, + { LLM_TENSOR_CHANNEL_MIX_LERP_R, "blk.%d.channel_mix_lerp_r" }, + { LLM_TENSOR_CHANNEL_MIX_KEY, "blk.%d.channel_mix_key" }, + { LLM_TENSOR_CHANNEL_MIX_VALUE, "blk.%d.channel_mix_value" }, + { LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" }, + { LLM_TENSOR_TIME_MIX_W0, "blk.%d.time_mix_w0" }, + { LLM_TENSOR_TIME_MIX_A0, "blk.%d.time_mix_a0" }, + { LLM_TENSOR_TIME_MIX_A1, "blk.%d.time_mix_a1" }, + { LLM_TENSOR_TIME_MIX_A2, "blk.%d.time_mix_a2" }, + { LLM_TENSOR_TIME_MIX_V0, "blk.%d.time_mix_v0" }, + { LLM_TENSOR_TIME_MIX_V1, "blk.%d.time_mix_v1" }, + { LLM_TENSOR_TIME_MIX_V2, "blk.%d.time_mix_v2" }, + { LLM_TENSOR_TIME_MIX_G1, "blk.%d.time_mix_g1" }, + { LLM_TENSOR_TIME_MIX_G2, "blk.%d.time_mix_g2" }, + { LLM_TENSOR_TIME_MIX_K_K, "blk.%d.time_mix_k_k" }, + { LLM_TENSOR_TIME_MIX_K_A, "blk.%d.time_mix_k_a" }, + { LLM_TENSOR_TIME_MIX_R_K, "blk.%d.time_mix_r_k" }, + { LLM_TENSOR_CONV1D, "conv1d" }, + { LLM_TENSOR_CONVNEXT_DW, "convnext.%d.dw" }, + { LLM_TENSOR_CONVNEXT_NORM, "convnext.%d.norm" }, + { LLM_TENSOR_CONVNEXT_PW1, "convnext.%d.pw1" }, + { LLM_TENSOR_CONVNEXT_PW2, "convnext.%d.pw2" }, + { LLM_TENSOR_CONVNEXT_GAMMA, "convnext.%d.gamma" }, + { LLM_TENSOR_POS_NET_CONV1, "posnet.%d.conv1" }, + { LLM_TENSOR_POS_NET_CONV2, "posnet.%d.conv2" }, + { LLM_TENSOR_POS_NET_NORM, "posnet.%d.norm" }, + { LLM_TENSOR_POS_NET_NORM1, "posnet.%d.norm1" }, + { LLM_TENSOR_POS_NET_NORM2, "posnet.%d.norm2" }, + { LLM_TENSOR_POS_NET_ATTN_NORM, "posnet.%d.attn_norm" }, + { LLM_TENSOR_POS_NET_ATTN_Q, "posnet.%d.attn_q" }, + { LLM_TENSOR_POS_NET_ATTN_K, "posnet.%d.attn_k" }, + { LLM_TENSOR_POS_NET_ATTN_V, "posnet.%d.attn_v" }, + { LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" }, + { LLM_TENSOR_ATTN_SINKS, "blk.%d.attn_sinks" }, + { LLM_TENSOR_SHORTCONV_CONV, "blk.%d.shortconv.conv" }, + { LLM_TENSOR_SHORTCONV_INPROJ, "blk.%d.shortconv.in_proj" }, + { LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" }, + { LLM_TENSOR_FFN_GATE_CHEXPS, "blk.%d.ffn_gate_chexps" }, + { LLM_TENSOR_FFN_DOWN_CHEXPS, "blk.%d.ffn_down_chexps" }, + { LLM_TENSOR_FFN_UP_CHEXPS, "blk.%d.ffn_up_chexps" }, + { LLM_TENSOR_VISEXP_ATTN_QKV, "blk.%d.vis_attn_qkv" }, + { LLM_TENSOR_VISEXP_ATTN_OUT, "blk.%d.vis_attn_output" }, + { LLM_TENSOR_VISEXP_FFN_GATE, "blk.%d.vis_gate" }, + { LLM_TENSOR_VISEXP_FFN_DOWN, "blk.%d.vis_down" }, + { LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" }, +}; + +static std::set llm_get_tensor_names(llm_arch arch) { + switch (arch) { + case LLM_ARCH_CLIP: + return {}; + case LLM_ARCH_LLAMA: + case LLM_ARCH_DECI: + case LLM_ARCH_MISTRAL3: + case LLM_ARCH_LLAMA_EMBED: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXP, + LLM_TENSOR_FFN_DOWN_EXP, + LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_ARCEE: + case LLM_ARCH_STARCODER2: + case LLM_ARCH_NEMOTRON: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_AFMOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_GATE, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_POST_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; + case LLM_ARCH_LLAMA4: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXP, + LLM_TENSOR_FFN_DOWN_EXP, + LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + }; + case LLM_ARCH_BAICHUAN: + case LLM_ARCH_ORION: + case LLM_ARCH_XVERSE: + case LLM_ARCH_EXAONE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_FALCON: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_NORM_2, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_GROK: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXP, + LLM_TENSOR_FFN_DOWN_EXP, + LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_POST_NORM, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_ATTN_OUT_NORM, + }; + case LLM_ARCH_GPT2: + case LLM_ARCH_STARCODER: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_POS_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_DOWN, + }; + case LLM_ARCH_GPTNEOX: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_MPT: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_ACT, + LLM_TENSOR_POS_EMBD, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + }; + case LLM_ARCH_REFACT: + case LLM_ARCH_QWEN2: + case LLM_ARCH_QWEN2VL: + case LLM_ARCH_INTERNLM2: + case LLM_ARCH_GRANITE: + case LLM_ARCH_ERNIE4_5: + case LLM_ARCH_SMOLLM3: + case LLM_ARCH_DREAM: + case LLM_ARCH_LLADA: + case LLM_ARCH_PANGU_EMBED: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_BERT: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_POS_EMBD, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_CLS, + LLM_TENSOR_CLS_OUT, + }; + case LLM_ARCH_NOMIC_BERT: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_NOMIC_BERT_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_NEO_BERT: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_ENC_OUTPUT_NORM, + LLM_TENSOR_CLS, + LLM_TENSOR_CLS_OUT, + }; + case LLM_ARCH_MODERN_BERT: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_CLS, + LLM_TENSOR_CLS_OUT, + }; + case LLM_ARCH_JINA_BERT_V2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_ATTN_NORM_2, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_CLS, + }; + case LLM_ARCH_JINA_BERT_V3: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_LAYER_OUT_NORM, + }; + case LLM_ARCH_BLOOM: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_DOWN, + }; + case LLM_ARCH_STABLELM: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + }; + case LLM_ARCH_QWEN: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_QWEN2MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + }; + case LLM_ARCH_QWEN3: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_CLS_OUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_QWEN3MOE: + case LLM_ARCH_QWEN3VLMOE: + case LLM_ARCH_OLMOE: + case LLM_ARCH_LLADA_MOE: + case LLM_ARCH_RND1: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_QWEN3NEXT: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_GATE, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_SSM_A_NOSCAN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_BETA_ALPHA, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_NORM, + LLM_TENSOR_SSM_OUT, + }; + case LLM_ARCH_QWEN3VL: + case LLM_ARCH_CHAMELEON: + case LLM_ARCH_HUNYUAN_DENSE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_PHI2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_PHI3: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_PHIMOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_PLAMO: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_PLAMO2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_X, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_OUT, + LLM_TENSOR_SSM_DT_NORM, + LLM_TENSOR_SSM_B_NORM, + LLM_TENSOR_SSM_C_NORM, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_POST_NORM, + }; + case LLM_ARCH_PLAMO3: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_POST_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_CODESHELL: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_MINICPM: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXP, + LLM_TENSOR_FFN_DOWN_EXP, + LLM_TENSOR_FFN_UP_EXP, + }; + case LLM_ARCH_MINICPM3: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_DOWN, + }; + case LLM_ARCH_GEMMA: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_GEMMA2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_POST_NORM, + }; + case LLM_ARCH_GEMMA3: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_POST_NORM, + }; + case LLM_ARCH_GEMMA3N: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_POST_NORM, + LLM_TENSOR_PER_LAYER_TOKEN_EMBD, + LLM_TENSOR_PER_LAYER_MODEL_PROJ, + LLM_TENSOR_PER_LAYER_PROJ_NORM, + LLM_TENSOR_ALTUP_UNEMBD_PROJ, + LLM_TENSOR_ALTUP_PROJ, + LLM_TENSOR_PER_LAYER_INP_GATE, + LLM_TENSOR_PER_LAYER_PROJ, + LLM_TENSOR_PER_LAYER_POST_NORM, + LLM_TENSOR_ALTUP_CORRECT_COEF, + LLM_TENSOR_ALTUP_CORRECT_SCALE, + LLM_TENSOR_ALTUP_PREDICT_COEF, + LLM_TENSOR_ALTUP_ROUTER, + LLM_TENSOR_ALTUP_ROUTER_NORM, + LLM_TENSOR_LAUREL_L, + LLM_TENSOR_LAUREL_R, + LLM_TENSOR_LAUREL_POST_NORM, + }; + case LLM_ARCH_GEMMA_EMBEDDING: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_DENSE_2_OUT, + LLM_TENSOR_DENSE_3_OUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_POST_NORM, + }; + case LLM_ARCH_MAMBA: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_X, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_OUT, + }; + case LLM_ARCH_MAMBA2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_NORM, + LLM_TENSOR_SSM_OUT, + }; + case LLM_ARCH_JAMBA: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_X, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_DT_NORM, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_B_NORM, + LLM_TENSOR_SSM_C_NORM, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_OUT, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_FALCON_H1: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_NORM, + LLM_TENSOR_SSM_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_COMMAND_R: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + }; + case LLM_ARCH_COHERE2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_DBRX: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_OLMO: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_OLMO2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_FFN_POST_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_OPENELM: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_ARCTIC: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_NORM_EXPS, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_DEEPSEEK: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + }; + case LLM_ARCH_DEEPSEEK2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_K_B, + LLM_TENSOR_ATTN_V_B, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; + case LLM_ARCH_PLM: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_A_NORM, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_CHATGLM: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_DOWN, + }; + case LLM_ARCH_GLM4: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_POST_NORM, + }; + case LLM_ARCH_GLM4_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, + LLM_TENSOR_NEXTN_EH_PROJ, + LLM_TENSOR_NEXTN_EMBED_TOKENS, + LLM_TENSOR_NEXTN_ENORM, + LLM_TENSOR_NEXTN_HNORM, + LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, + LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, + }; + case LLM_ARCH_BITNET: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_SUB_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_SUB_NORM, + }; + case LLM_ARCH_T5: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_DEC_OUTPUT_NORM, + LLM_TENSOR_DEC_ATTN_NORM, + LLM_TENSOR_DEC_ATTN_Q, + LLM_TENSOR_DEC_ATTN_K, + LLM_TENSOR_DEC_ATTN_V, + LLM_TENSOR_DEC_ATTN_OUT, + LLM_TENSOR_DEC_ATTN_REL_B, + LLM_TENSOR_DEC_CROSS_ATTN_NORM, + LLM_TENSOR_DEC_CROSS_ATTN_Q, + LLM_TENSOR_DEC_CROSS_ATTN_K, + LLM_TENSOR_DEC_CROSS_ATTN_V, + LLM_TENSOR_DEC_CROSS_ATTN_OUT, + LLM_TENSOR_DEC_CROSS_ATTN_REL_B, + LLM_TENSOR_DEC_FFN_NORM, + LLM_TENSOR_DEC_FFN_GATE, + LLM_TENSOR_DEC_FFN_DOWN, + LLM_TENSOR_DEC_FFN_UP, + LLM_TENSOR_ENC_OUTPUT_NORM, + LLM_TENSOR_ENC_ATTN_NORM, + LLM_TENSOR_ENC_ATTN_Q, + LLM_TENSOR_ENC_ATTN_K, + LLM_TENSOR_ENC_ATTN_V, + LLM_TENSOR_ENC_ATTN_OUT, + LLM_TENSOR_ENC_ATTN_REL_B, + LLM_TENSOR_ENC_FFN_NORM, + LLM_TENSOR_ENC_FFN_GATE, + LLM_TENSOR_ENC_FFN_DOWN, + LLM_TENSOR_ENC_FFN_UP, + }; + case LLM_ARCH_T5ENCODER: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ENC_OUTPUT_NORM, + LLM_TENSOR_ENC_ATTN_NORM, + LLM_TENSOR_ENC_ATTN_Q, + LLM_TENSOR_ENC_ATTN_K, + LLM_TENSOR_ENC_ATTN_V, + LLM_TENSOR_ENC_ATTN_OUT, + LLM_TENSOR_ENC_ATTN_REL_B, + LLM_TENSOR_ENC_FFN_NORM, + LLM_TENSOR_ENC_FFN_GATE, + LLM_TENSOR_ENC_FFN_DOWN, + LLM_TENSOR_ENC_FFN_UP, + }; + case LLM_ARCH_JAIS: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + }; + case LLM_ARCH_NEMOTRON_H: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_NORM, + LLM_TENSOR_SSM_OUT, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_NEMOTRON_H_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + // mamba(2) ssm layers + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_NORM, + LLM_TENSOR_SSM_OUT, + // attention layers + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + // dense FFN + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + // MoE FFN (for MoE layers) + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + // MoE shared expert layer + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + }; + case LLM_ARCH_EXAONE4: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_POST_NORM, + }; + case LLM_ARCH_EXAONE_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, + LLM_TENSOR_NEXTN_EH_PROJ, + LLM_TENSOR_NEXTN_EMBED_TOKENS, + LLM_TENSOR_NEXTN_ENORM, + LLM_TENSOR_NEXTN_HNORM, + LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, + LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, + }; + case LLM_ARCH_RWKV6: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_NORM_2, + LLM_TENSOR_TIME_MIX_W1, + LLM_TENSOR_TIME_MIX_W2, + LLM_TENSOR_TIME_MIX_LERP_X, + LLM_TENSOR_TIME_MIX_LERP_W, + LLM_TENSOR_TIME_MIX_LERP_K, + LLM_TENSOR_TIME_MIX_LERP_V, + LLM_TENSOR_TIME_MIX_LERP_R, + LLM_TENSOR_TIME_MIX_LERP_G, + LLM_TENSOR_TIME_MIX_LERP_FUSED, + LLM_TENSOR_TIME_MIX_FIRST, + LLM_TENSOR_TIME_MIX_DECAY, + LLM_TENSOR_TIME_MIX_DECAY_W1, + LLM_TENSOR_TIME_MIX_DECAY_W2, + LLM_TENSOR_TIME_MIX_KEY, + LLM_TENSOR_TIME_MIX_VALUE, + LLM_TENSOR_TIME_MIX_RECEPTANCE, + LLM_TENSOR_TIME_MIX_GATE, + LLM_TENSOR_TIME_MIX_LN, + LLM_TENSOR_TIME_MIX_OUTPUT, + LLM_TENSOR_CHANNEL_MIX_LERP_K, + LLM_TENSOR_CHANNEL_MIX_LERP_R, + LLM_TENSOR_CHANNEL_MIX_KEY, + LLM_TENSOR_CHANNEL_MIX_VALUE, + LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, + }; + case LLM_ARCH_RWKV6QWEN2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_TIME_MIX_W1, + LLM_TENSOR_TIME_MIX_W2, + LLM_TENSOR_TIME_MIX_LERP_X, + LLM_TENSOR_TIME_MIX_LERP_FUSED, + LLM_TENSOR_TIME_MIX_FIRST, + LLM_TENSOR_TIME_MIX_DECAY, + LLM_TENSOR_TIME_MIX_DECAY_W1, + LLM_TENSOR_TIME_MIX_DECAY_W2, + LLM_TENSOR_TIME_MIX_KEY, + LLM_TENSOR_TIME_MIX_VALUE, + LLM_TENSOR_TIME_MIX_RECEPTANCE, + LLM_TENSOR_TIME_MIX_GATE, + LLM_TENSOR_TIME_MIX_OUTPUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_RWKV7: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_NORM_2, + LLM_TENSOR_TIME_MIX_W0, + LLM_TENSOR_TIME_MIX_W1, + LLM_TENSOR_TIME_MIX_W2, + LLM_TENSOR_TIME_MIX_A0, + LLM_TENSOR_TIME_MIX_A1, + LLM_TENSOR_TIME_MIX_A2, + LLM_TENSOR_TIME_MIX_V0, + LLM_TENSOR_TIME_MIX_V1, + LLM_TENSOR_TIME_MIX_V2, + LLM_TENSOR_TIME_MIX_G1, + LLM_TENSOR_TIME_MIX_G2, + LLM_TENSOR_TIME_MIX_K_K, + LLM_TENSOR_TIME_MIX_K_A, + LLM_TENSOR_TIME_MIX_R_K, + LLM_TENSOR_TIME_MIX_LERP_FUSED, + LLM_TENSOR_TIME_MIX_KEY, + LLM_TENSOR_TIME_MIX_VALUE, + LLM_TENSOR_TIME_MIX_RECEPTANCE, + LLM_TENSOR_TIME_MIX_LN, + LLM_TENSOR_TIME_MIX_OUTPUT, + LLM_TENSOR_CHANNEL_MIX_LERP_K, + LLM_TENSOR_CHANNEL_MIX_KEY, + LLM_TENSOR_CHANNEL_MIX_VALUE, + }; + case LLM_ARCH_ARWKV7: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_TIME_MIX_W0, + LLM_TENSOR_TIME_MIX_W1, + LLM_TENSOR_TIME_MIX_W2, + LLM_TENSOR_TIME_MIX_A0, + LLM_TENSOR_TIME_MIX_A1, + LLM_TENSOR_TIME_MIX_A2, + LLM_TENSOR_TIME_MIX_V0, + LLM_TENSOR_TIME_MIX_V1, + LLM_TENSOR_TIME_MIX_V2, + LLM_TENSOR_TIME_MIX_G1, + LLM_TENSOR_TIME_MIX_G2, + LLM_TENSOR_TIME_MIX_K_K, + LLM_TENSOR_TIME_MIX_K_A, + LLM_TENSOR_TIME_MIX_R_K, + LLM_TENSOR_TIME_MIX_LERP_FUSED, + LLM_TENSOR_TIME_MIX_KEY, + LLM_TENSOR_TIME_MIX_VALUE, + LLM_TENSOR_TIME_MIX_RECEPTANCE, + LLM_TENSOR_TIME_MIX_LN, + LLM_TENSOR_TIME_MIX_OUTPUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_GRANITE_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + }; + case LLM_ARCH_GRANITE_HYBRID: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_NORM, + LLM_TENSOR_SSM_OUT, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + }; + case LLM_ARCH_WAVTOKENIZER_DEC: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_CONV1D, + LLM_TENSOR_CONVNEXT_DW, + LLM_TENSOR_CONVNEXT_NORM, + LLM_TENSOR_CONVNEXT_PW1, + LLM_TENSOR_CONVNEXT_PW2, + LLM_TENSOR_CONVNEXT_GAMMA, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_POS_NET_CONV1, + LLM_TENSOR_POS_NET_CONV2, + LLM_TENSOR_POS_NET_NORM, + LLM_TENSOR_POS_NET_NORM1, + LLM_TENSOR_POS_NET_NORM2, + LLM_TENSOR_POS_NET_ATTN_NORM, + LLM_TENSOR_POS_NET_ATTN_Q, + LLM_TENSOR_POS_NET_ATTN_K, + LLM_TENSOR_POS_NET_ATTN_V, + LLM_TENSOR_POS_NET_ATTN_OUT, + }; + case LLM_ARCH_BAILINGMOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + }; + case LLM_ARCH_BAILINGMOE2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_EXP_PROBS_B, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_NEXTN_EH_PROJ, + LLM_TENSOR_NEXTN_EMBED_TOKENS, + LLM_TENSOR_NEXTN_ENORM, + LLM_TENSOR_NEXTN_HNORM, + LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, + LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, + LLM_TENSOR_LAYER_OUT_NORM, + }; + case LLM_ARCH_DOTS1: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; + case LLM_ARCH_ERNIE4_5_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; + case LLM_ARCH_HUNYUAN_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_OPENAI_MOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_SINKS, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_LFM2: + return { + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_SHORTCONV_CONV, + LLM_TENSOR_SHORTCONV_INPROJ, + LLM_TENSOR_SHORTCONV_OUTPROJ, + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM_LFM2, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_DENSE_2_OUT, + }; + case LLM_ARCH_LFM2MOE: + return { + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_SHORTCONV_CONV, + LLM_TENSOR_SHORTCONV_INPROJ, + LLM_TENSOR_SHORTCONV_OUTPROJ, + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM_LFM2, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; + case LLM_ARCH_SMALLTHINKER: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + }; + case LLM_ARCH_APERTUS: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_SEED_OSS: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_GROVEMOE: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_CHEXPS, + LLM_TENSOR_FFN_DOWN_CHEXPS, + LLM_TENSOR_FFN_UP_CHEXPS, + }; + case LLM_ARCH_MINIMAX_M2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; + case LLM_ARCH_COGVLM: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_VISEXP_ATTN_QKV, + LLM_TENSOR_VISEXP_ATTN_OUT, + LLM_TENSOR_VISEXP_FFN_GATE, + LLM_TENSOR_VISEXP_FFN_DOWN, + LLM_TENSOR_VISEXP_FFN_UP, + }; + case LLM_ARCH_MIMO2: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_SINKS, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; + case LLM_ARCH_GPTJ: + case LLM_ARCH_UNKNOWN: + return { + LLM_TENSOR_TOKEN_EMBD, + }; + case LLM_ARCH_MAINCODER: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + }; + case LLM_ARCH_KIMI_LINEAR: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + // Dense FFN (layer 0 only) + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + // MoE FFN (layers 1+) + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + // Shared experts + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + // KDA (using SSM_ enum prefix, keeping GGUF names for backward compat) + LLM_TENSOR_SSM_CONV1D_Q, + LLM_TENSOR_SSM_CONV1D_K, + LLM_TENSOR_SSM_CONV1D_V, + LLM_TENSOR_SSM_F_A, + LLM_TENSOR_SSM_F_B, + LLM_TENSOR_SSM_BETA, + LLM_TENSOR_SSM_A_LOG, + LLM_TENSOR_SSM_DT_B, + LLM_TENSOR_SSM_G_A, + LLM_TENSOR_SSM_G_B, + LLM_TENSOR_SSM_NORM, + // MLA + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_K_B, + LLM_TENSOR_ATTN_V_B, + LLM_TENSOR_ATTN_KV_A_NORM, + }; + default: + GGML_ABORT("unknown architecture for tensor mapping"); + } +} + +// declare information about the model weight tensors: +// - the layer in which the tensor is going to be used. this is needed in order to assign the correct buffer type for the weight +// - the operator which is going to use the weight. this is needed to determine if the respective backend supports the operator +// +// for example, input layers are usually assigned to CPU/host buffer types +// +// a mismatch between the declared information and the actual layer/op in which the tensor is used can lead to sub-optimal +// assignment of the buffer types and extra overhead during computation +// example: https://github.com/ggml-org/llama.cpp/pull/17548 +// +static const std::map LLM_TENSOR_INFOS = { + {LLM_TENSOR_TOKEN_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_POS_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_TOKEN_TYPES, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_TOKEN_EMBD_NORM, {LLM_TENSOR_LAYER_INPUT, GGML_OP_MUL}}, + {LLM_TENSOR_OUTPUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CLS, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CLS_OUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DENSE_2_OUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, // Dense layer output + {LLM_TENSOR_DENSE_3_OUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, // Dense layer output + {LLM_TENSOR_OUTPUT_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_OUTPUT_NORM_LFM2, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_OUTPUT_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_ENC_OUTPUT_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_ROPE_FREQS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ROPE}}, + {LLM_TENSOR_ROPE_FACTORS_LONG, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ROPE}}, + {LLM_TENSOR_ROPE_FACTORS_SHORT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ROPE}}, + {LLM_TENSOR_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_DOWN_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_UP_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_Q_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_KV_A_MQA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_KV_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_K_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_V_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_SINKS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SCALE}}, + {LLM_TENSOR_DEC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE_INP_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE_INP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_IN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_DT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_BETA_ALPHA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_W1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_W2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_A1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_A2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_V1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_V2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_G1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_G2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_DECAY_W1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_DECAY_W2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_KEY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_VALUE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_RECEPTANCE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_OUTPUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CHANNEL_MIX_KEY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CHANNEL_MIX_VALUE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_ACT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_DIV}}, + {LLM_TENSOR_SSM_CONV1D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}}, + {LLM_TENSOR_SSM_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_SCAN}}, + {LLM_TENSOR_SSM_A_NOSCAN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, // a version of SSM_A used for MUL instead of SSM_SCAN + {LLM_TENSOR_SSM_DT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_B_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + // Kimi KDA - Conv tensors are 4D [d_conv, 1, d_inner, 1], reshaped to 2D at runtime + {LLM_TENSOR_SSM_CONV1D_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_F_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_F_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_BETA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_A_LOG, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_DT_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_SSM_G_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_G_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_CHANNEL_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_K_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_K_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_R_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_LERP_W, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_G, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_FUSED, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_DECAY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_W0, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_A0, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_V0, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_FIRST, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_RWKV_WKV6}}, + {LLM_TENSOR_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_NORM_2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_OUT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_NORM_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_LAYER_OUT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_Q_A_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_KV_A_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_SUB_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_SUB_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_CROSS_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_FFN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ENC_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ENC_FFN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_ENC_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_FFN_DOWN_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_GATE_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_UP_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_DOWN_CHEXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_GATE_CHEXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_UP_CHEXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + // altup / laurel (gemma 3n) + {LLM_TENSOR_PER_LAYER_TOKEN_EMBD, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_PER_LAYER_MODEL_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_PER_LAYER_PROJ_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_ALTUP_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ALTUP_UNEMBD_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_PER_LAYER_INP_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_PER_LAYER_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_PER_LAYER_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ALTUP_CORRECT_COEF, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ALTUP_CORRECT_SCALE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ALTUP_PREDICT_COEF, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ALTUP_ROUTER, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ALTUP_ROUTER_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_LAUREL_L, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_LAUREL_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_LAUREL_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + // this tensor is loaded for T5, but never used + {LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}}, + {LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}}, + {LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_NORM2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_CONV1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_IM2COL}}, + {LLM_TENSOR_POS_NET_CONV2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_IM2COL}}, + {LLM_TENSOR_POS_NET_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_POS_NET_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_POS_NET_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_POS_NET_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_POS_NET_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CONVNEXT_DW, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_IM2COL}}, + {LLM_TENSOR_CONVNEXT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_CONVNEXT_PW1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CONVNEXT_PW2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}}, + {LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_VISEXP_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_VISEXP_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_VISEXP_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_VISEXP_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + // NextN/MTP tensors are currently ignored (reserved for future MTP support) + // These tensors only exist in the last layer(s) and are treated as output tensors + {LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_NEXTN_EMBED_TOKENS, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_NEXTN_ENORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_NEXTN_HNORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, +}; + +LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {} + +std::string LLM_KV::operator()(llm_kv kv) const { + std::string name = ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); + + if (suffix != nullptr) { + name += "."; + name += suffix; + } + + return name; +} + +LLM_TN_IMPL::LLM_TN_IMPL(llm_arch arch, llm_tensor tensor, const char * suffix, int bid, int xid) + : arch(arch), tensor(tensor), suffix(suffix), bid(bid), xid(xid), + model_tensors(llm_get_tensor_names(arch)) {} + +std::string LLM_TN_IMPL::str() const { + if (LLM_TENSOR_NAMES.find(tensor) == LLM_TENSOR_NAMES.end()) { + GGML_ABORT("unknown tensor name for tensor id %d", static_cast(tensor)); + } + + if (model_tensors.find(tensor) == model_tensors.end()) { + return LLM_TENSOR_NAMES.at(tensor); + } + + std::string name = ::format(LLM_TENSOR_NAMES.at(tensor), bid, xid); + if (suffix != nullptr) { + name += "."; + name += suffix; + } + + return name; +} + +const char * llm_arch_name(llm_arch arch) { + auto it = LLM_ARCH_NAMES.find(arch); + if (it == LLM_ARCH_NAMES.end()) { + return "unknown"; + } + return it->second; +} + +llm_arch llm_arch_from_string(const std::string & name) { + for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT + if (kv.second == name) { + return kv.first; + } + } + + return LLM_ARCH_UNKNOWN; +} + +const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor) { + return LLM_TENSOR_INFOS.at(tensor); +} + +bool llm_arch_is_recurrent(const llm_arch & arch) { + switch (arch) { + case LLM_ARCH_MAMBA: + case LLM_ARCH_MAMBA2: + case LLM_ARCH_RWKV6: + case LLM_ARCH_RWKV6QWEN2: + case LLM_ARCH_RWKV7: + case LLM_ARCH_ARWKV7: + return true; + default: + return false; + } +} + +bool llm_arch_is_hybrid(const llm_arch & arch) { + switch (arch) { + case LLM_ARCH_JAMBA: + case LLM_ARCH_FALCON_H1: + case LLM_ARCH_PLAMO2: + case LLM_ARCH_GRANITE_HYBRID: + case LLM_ARCH_LFM2: + case LLM_ARCH_LFM2MOE: + case LLM_ARCH_NEMOTRON_H: + case LLM_ARCH_NEMOTRON_H_MOE: + case LLM_ARCH_QWEN3NEXT: + case LLM_ARCH_KIMI_LINEAR: + return true; + default: + return false; + } +} + +bool llm_arch_is_diffusion(const llm_arch & arch) { + switch (arch) { + case LLM_ARCH_DREAM: + case LLM_ARCH_LLADA: + case LLM_ARCH_LLADA_MOE: + case LLM_ARCH_RND1: + return true; + default: + return false; + } +} diff --git a/src/llama-arch.h b/src/llama-arch.h index 270d28b16a..f092f72834 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -124,6 +124,7 @@ enum llm_arch { LLM_ARCH_MIMO2, LLM_ARCH_LLAMA_EMBED, LLM_ARCH_MAINCODER, + LLM_ARCH_KIMI_LINEAR, LLM_ARCH_UNKNOWN, }; @@ -250,6 +251,8 @@ enum llm_kv { LLM_KV_SSM_GROUP_COUNT, LLM_KV_SSM_DT_B_C_RMS, + LLM_KV_KDA_HEAD_DIM, + LLM_KV_WKV_HEAD_SIZE, LLM_KV_TOKENIZER_MODEL, @@ -398,6 +401,15 @@ enum llm_tensor { LLM_TENSOR_SSM_NORM, LLM_TENSOR_SSM_OUT, LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next + // Kimi Linear KDA (using SSM_ prefix for consistency) + LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight + LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight + LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight + LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A + LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B + LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient + LLM_TENSOR_SSM_G_A, // kimi: output gate projection A + LLM_TENSOR_SSM_G_B, // kimi: output gate projection B LLM_TENSOR_TIME_MIX_W0, LLM_TENSOR_TIME_MIX_W1, LLM_TENSOR_TIME_MIX_W2, diff --git a/src/llama-arch.h.orig b/src/llama-arch.h.orig new file mode 100644 index 0000000000..e5816acee1 --- /dev/null +++ b/src/llama-arch.h.orig @@ -0,0 +1,601 @@ +#pragma once + +#include "ggml.h" // ggml_op + +#include +#include + +// +// gguf constants (sync with gguf.py) +// + +enum llm_arch { + LLM_ARCH_CLIP, + LLM_ARCH_LLAMA, + LLM_ARCH_LLAMA4, + LLM_ARCH_DECI, + LLM_ARCH_FALCON, + LLM_ARCH_BAICHUAN, + LLM_ARCH_GROK, + LLM_ARCH_GPT2, + LLM_ARCH_GPTJ, + LLM_ARCH_GPTNEOX, + LLM_ARCH_MPT, + LLM_ARCH_STARCODER, + LLM_ARCH_REFACT, + LLM_ARCH_BERT, + LLM_ARCH_MODERN_BERT, + LLM_ARCH_NOMIC_BERT, + LLM_ARCH_NOMIC_BERT_MOE, + LLM_ARCH_NEO_BERT, + LLM_ARCH_JINA_BERT_V2, + LLM_ARCH_JINA_BERT_V3, + LLM_ARCH_BLOOM, + LLM_ARCH_STABLELM, + LLM_ARCH_QWEN, + LLM_ARCH_QWEN2, + LLM_ARCH_QWEN2MOE, + LLM_ARCH_QWEN2VL, + LLM_ARCH_QWEN3, + LLM_ARCH_QWEN3MOE, + LLM_ARCH_QWEN3NEXT, + LLM_ARCH_QWEN3VL, + LLM_ARCH_QWEN3VLMOE, + LLM_ARCH_PHI2, + LLM_ARCH_PHI3, + LLM_ARCH_PHIMOE, + LLM_ARCH_PLAMO, + LLM_ARCH_PLAMO2, + LLM_ARCH_PLAMO3, + LLM_ARCH_CODESHELL, + LLM_ARCH_ORION, + LLM_ARCH_INTERNLM2, + LLM_ARCH_MINICPM, + LLM_ARCH_MINICPM3, + LLM_ARCH_GEMMA, + LLM_ARCH_GEMMA2, + LLM_ARCH_GEMMA3, + LLM_ARCH_GEMMA3N, + LLM_ARCH_GEMMA_EMBEDDING, + LLM_ARCH_STARCODER2, + LLM_ARCH_MAMBA, + LLM_ARCH_MAMBA2, + LLM_ARCH_JAMBA, + LLM_ARCH_FALCON_H1, + LLM_ARCH_XVERSE, + LLM_ARCH_COMMAND_R, + LLM_ARCH_COHERE2, + LLM_ARCH_DBRX, + LLM_ARCH_OLMO, + LLM_ARCH_OLMO2, + LLM_ARCH_OLMOE, + LLM_ARCH_OPENELM, + LLM_ARCH_ARCTIC, + LLM_ARCH_DEEPSEEK, + LLM_ARCH_DEEPSEEK2, + LLM_ARCH_CHATGLM, + LLM_ARCH_GLM4, + LLM_ARCH_GLM4_MOE, + LLM_ARCH_BITNET, + LLM_ARCH_T5, + LLM_ARCH_T5ENCODER, + LLM_ARCH_JAIS, + LLM_ARCH_NEMOTRON, + LLM_ARCH_NEMOTRON_H, + LLM_ARCH_NEMOTRON_H_MOE, + LLM_ARCH_EXAONE, + LLM_ARCH_EXAONE4, + LLM_ARCH_EXAONE_MOE, + LLM_ARCH_RWKV6, + LLM_ARCH_RWKV6QWEN2, + LLM_ARCH_RWKV7, + LLM_ARCH_ARWKV7, + LLM_ARCH_GRANITE, + LLM_ARCH_GRANITE_MOE, + LLM_ARCH_GRANITE_HYBRID, + LLM_ARCH_CHAMELEON, + LLM_ARCH_WAVTOKENIZER_DEC, + LLM_ARCH_PLM, + LLM_ARCH_BAILINGMOE, + LLM_ARCH_BAILINGMOE2, + LLM_ARCH_DOTS1, + LLM_ARCH_ARCEE, + LLM_ARCH_AFMOE, + LLM_ARCH_ERNIE4_5, + LLM_ARCH_ERNIE4_5_MOE, + LLM_ARCH_HUNYUAN_MOE, + LLM_ARCH_HUNYUAN_DENSE, + LLM_ARCH_SMOLLM3, + LLM_ARCH_OPENAI_MOE, + LLM_ARCH_LFM2, + LLM_ARCH_LFM2MOE, + LLM_ARCH_DREAM, + LLM_ARCH_SMALLTHINKER, + LLM_ARCH_LLADA, + LLM_ARCH_LLADA_MOE, + LLM_ARCH_SEED_OSS, + LLM_ARCH_GROVEMOE, + LLM_ARCH_APERTUS, + LLM_ARCH_MINIMAX_M2, + LLM_ARCH_COGVLM, + LLM_ARCH_RND1, + LLM_ARCH_PANGU_EMBED, + LLM_ARCH_MISTRAL3, + LLM_ARCH_MIMO2, + LLM_ARCH_LLAMA_EMBED, + LLM_ARCH_MAINCODER, + LLM_ARCH_KIMI_LINEAR, + LLM_ARCH_UNKNOWN, +}; + +enum llm_kv { + LLM_KV_GENERAL_TYPE, + LLM_KV_GENERAL_ARCHITECTURE, + LLM_KV_GENERAL_QUANTIZATION_VERSION, + LLM_KV_GENERAL_ALIGNMENT, + LLM_KV_GENERAL_FILE_TYPE, + LLM_KV_GENERAL_SAMPLING_SEQUENCE, + LLM_KV_GENERAL_SAMPLING_TOP_K, + LLM_KV_GENERAL_SAMPLING_TOP_P, + LLM_KV_GENERAL_SAMPLING_MIN_P, + LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY, + LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD, + LLM_KV_GENERAL_SAMPLING_TEMP, + LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N, + LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT, + LLM_KV_GENERAL_SAMPLING_MIROSTAT, + LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU, + LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA, + LLM_KV_GENERAL_NAME, + LLM_KV_GENERAL_AUTHOR, + LLM_KV_GENERAL_VERSION, + LLM_KV_GENERAL_URL, + LLM_KV_GENERAL_DESCRIPTION, + LLM_KV_GENERAL_LICENSE, + LLM_KV_GENERAL_SOURCE_URL, + LLM_KV_GENERAL_SOURCE_HF_REPO, + + LLM_KV_VOCAB_SIZE, + LLM_KV_CONTEXT_LENGTH, + LLM_KV_EMBEDDING_LENGTH, + LLM_KV_EMBEDDING_LENGTH_OUT, + LLM_KV_FEATURES_LENGTH, + LLM_KV_BLOCK_COUNT, + LLM_KV_LEADING_DENSE_BLOCK_COUNT, + LLM_KV_FEED_FORWARD_LENGTH, + LLM_KV_EXPERT_FEED_FORWARD_LENGTH, + LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, + LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, + LLM_KV_USE_PARALLEL_RESIDUAL, + LLM_KV_TENSOR_DATA_LAYOUT, + LLM_KV_EXPERT_COUNT, + LLM_KV_EXPERT_USED_COUNT, + LLM_KV_EXPERT_SHARED_COUNT, + LLM_KV_EXPERT_GROUP_COUNT, + LLM_KV_EXPERT_GROUP_USED_COUNT, + LLM_KV_EXPERT_WEIGHTS_SCALE, + LLM_KV_EXPERT_WEIGHTS_NORM, + LLM_KV_EXPERT_GATING_FUNC, + LLM_KV_EXPERT_GROUP_SCALE, + LLM_KV_EXPERTS_PER_GROUP, + LLM_KV_MOE_EVERY_N_LAYERS, + LLM_KV_NEXTN_PREDICT_LAYERS, + LLM_KV_NUM_DEEPSTACK_LAYERS, + LLM_KV_POOLING_TYPE, + LLM_KV_LOGIT_SCALE, + LLM_KV_DECODER_START_TOKEN_ID, + LLM_KV_DECODER_BLOCK_COUNT, + LLM_KV_ATTN_LOGIT_SOFTCAPPING, + LLM_KV_ROUTER_LOGIT_SOFTCAPPING, + LLM_KV_FINAL_LOGIT_SOFTCAPPING, + LLM_KV_SWIN_NORM, + LLM_KV_RESCALE_EVERY_N_LAYERS, + LLM_KV_TIME_MIX_EXTRA_DIM, + LLM_KV_TIME_DECAY_EXTRA_DIM, + LLM_KV_RESIDUAL_SCALE, + LLM_KV_EMBEDDING_SCALE, + LLM_KV_TOKEN_SHIFT_COUNT, + LLM_KV_INTERLEAVE_MOE_LAYER_STEP, + + LLM_KV_ATTENTION_HEAD_COUNT, + LLM_KV_ATTENTION_HEAD_COUNT_KV, + LLM_KV_ATTENTION_MAX_ALIBI_BIAS, + LLM_KV_ATTENTION_CLAMP_KQV, + LLM_KV_ATTENTION_KEY_LENGTH, + LLM_KV_ATTENTION_VALUE_LENGTH, + LLM_KV_ATTENTION_LAYERNORM_EPS, + LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, + LLM_KV_ATTENTION_GROUPNORM_EPS, + LLM_KV_ATTENTION_GROUPNORM_GROUPS, + LLM_KV_ATTENTION_CAUSAL, + LLM_KV_ATTENTION_Q_LORA_RANK, + LLM_KV_ATTENTION_KV_LORA_RANK, + LLM_KV_ATTENTION_DECAY_LORA_RANK, + LLM_KV_ATTENTION_ICLR_LORA_RANK, + LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, + LLM_KV_ATTENTION_GATE_LORA_RANK, + LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, + LLM_KV_ATTENTION_SLIDING_WINDOW, + LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, + LLM_KV_ATTENTION_SCALE, + LLM_KV_ATTENTION_OUTPUT_SCALE, + LLM_KV_ATTENTION_TEMPERATURE_LENGTH, + LLM_KV_ATTENTION_TEMPERATURE_SCALE, + LLM_KV_ATTENTION_KEY_LENGTH_MLA, + LLM_KV_ATTENTION_VALUE_LENGTH_MLA, + + LLM_KV_ROPE_DIMENSION_COUNT, + LLM_KV_ROPE_DIMENSION_SECTIONS, + LLM_KV_ROPE_FREQ_BASE, + LLM_KV_ROPE_FREQ_BASE_SWA, + LLM_KV_ROPE_SCALE_LINEAR, + LLM_KV_ROPE_SCALING_TYPE, + LLM_KV_ROPE_SCALING_FACTOR, + LLM_KV_ROPE_SCALING_ATTN_FACTOR, + LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, + LLM_KV_ROPE_SCALING_FINETUNED, + LLM_KV_ROPE_SCALING_YARN_LOG_MUL, + LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, + LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, + LLM_KV_ROPE_SCALING_YARN_BETA_FAST, + LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, + + LLM_KV_SPLIT_NO, + LLM_KV_SPLIT_COUNT, + LLM_KV_SPLIT_TENSORS_COUNT, + + LLM_KV_SSM_INNER_SIZE, + LLM_KV_SSM_CONV_KERNEL, + LLM_KV_SSM_STATE_SIZE, + LLM_KV_SSM_TIME_STEP_RANK, + LLM_KV_SSM_GROUP_COUNT, + LLM_KV_SSM_DT_B_C_RMS, + + LLM_KV_KDA_HEAD_DIM, + + LLM_KV_WKV_HEAD_SIZE, + + LLM_KV_TOKENIZER_MODEL, + LLM_KV_TOKENIZER_PRE, + LLM_KV_TOKENIZER_LIST, + LLM_KV_TOKENIZER_TOKEN_TYPE, + LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, + LLM_KV_TOKENIZER_SCORES, + LLM_KV_TOKENIZER_MERGES, + LLM_KV_TOKENIZER_BOS_ID, + LLM_KV_TOKENIZER_EOS_ID, + LLM_KV_TOKENIZER_EOT_ID, + LLM_KV_TOKENIZER_EOM_ID, + LLM_KV_TOKENIZER_UNK_ID, + LLM_KV_TOKENIZER_SEP_ID, + LLM_KV_TOKENIZER_PAD_ID, + LLM_KV_TOKENIZER_CLS_ID, + LLM_KV_TOKENIZER_MASK_ID, + LLM_KV_TOKENIZER_ADD_BOS, + LLM_KV_TOKENIZER_ADD_EOS, + LLM_KV_TOKENIZER_ADD_SEP, + LLM_KV_TOKENIZER_ADD_PREFIX, + LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, + LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, + LLM_KV_TOKENIZER_HF_JSON, + LLM_KV_TOKENIZER_RWKV, + LLM_KV_TOKENIZER_CHAT_TEMPLATE, + LLM_KV_TOKENIZER_FIM_PRE_ID, + LLM_KV_TOKENIZER_FIM_SUF_ID, + LLM_KV_TOKENIZER_FIM_MID_ID, + LLM_KV_TOKENIZER_FIM_PAD_ID, + LLM_KV_TOKENIZER_FIM_REP_ID, + LLM_KV_TOKENIZER_FIM_SEP_ID, + + LLM_KV_ADAPTER_TYPE, + LLM_KV_ADAPTER_LORA_ALPHA, + LLM_KV_ADAPTER_LORA_TASK_NAME, + LLM_KV_ADAPTER_LORA_PROMPT_PREFIX, + LLM_KV_ADAPTER_ALORA_INVOCATION_TOKENS, + + LLM_KV_POSNET_EMBEDDING_LENGTH, + LLM_KV_POSNET_BLOCK_COUNT, + + LLM_KV_CONVNEXT_EMBEDDING_LENGTH, + LLM_KV_CONVNEXT_BLOCK_COUNT, + + LLM_KV_CLASSIFIER_OUTPUT_LABELS, + + LLM_KV_SHORTCONV_L_CACHE, + + LLM_KV_XIELU_ALPHA_N, + LLM_KV_XIELU_ALPHA_P, + LLM_KV_XIELU_BETA, + LLM_KV_XIELU_EPS, + + // deprecated: + LLM_KV_TOKENIZER_PREFIX_ID, + LLM_KV_TOKENIZER_SUFFIX_ID, + LLM_KV_TOKENIZER_MIDDLE_ID, + + // sentence-transformers dense layers in and out features + LLM_KV_DENSE_2_FEAT_IN, + LLM_KV_DENSE_2_FEAT_OUT, + LLM_KV_DENSE_3_FEAT_IN, + LLM_KV_DENSE_3_FEAT_OUT, +}; + +enum llm_tensor { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_POS_EMBD, + LLM_TENSOR_DENSE_2_OUT, + LLM_TENSOR_DENSE_3_OUT, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT_NORM_LFM2, // fix for wrong tensor name + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_NORM_2, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_ATTN_SINKS, + LLM_TENSOR_ATTN_GATE, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_POST_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_ACT, + LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility + LLM_TENSOR_FFN_GATE_EXP, + LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_NORM_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, // merged experts + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_DOWN_CHEXPS, + LLM_TENSOR_FFN_GATE_CHEXPS, + LLM_TENSOR_FFN_UP_CHEXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_POST_ATTN_NORM, + LLM_TENSOR_POST_MLP_NORM, + LLM_TENSOR_PER_LAYER_TOKEN_EMBD, // gemma3n + LLM_TENSOR_PER_LAYER_MODEL_PROJ, // gemma3n + LLM_TENSOR_PER_LAYER_INP_GATE, // gemma3n + LLM_TENSOR_PER_LAYER_PROJ, // gemma3n + LLM_TENSOR_PER_LAYER_PROJ_NORM, // gemma3n + LLM_TENSOR_PER_LAYER_POST_NORM, // gemma3n + LLM_TENSOR_ALTUP_PROJ, // gemma3n + LLM_TENSOR_ALTUP_UNEMBD_PROJ, // gemma3n + LLM_TENSOR_ALTUP_CORRECT_COEF, // gemma3n + LLM_TENSOR_ALTUP_CORRECT_SCALE, // gemma3n + LLM_TENSOR_ALTUP_PREDICT_COEF, // gemma3n + LLM_TENSOR_ALTUP_ROUTER, // gemma3n + LLM_TENSOR_ALTUP_ROUTER_NORM, // gemma3n + LLM_TENSOR_LAUREL_L, // gemma3n + LLM_TENSOR_LAUREL_R, // gemma3n + LLM_TENSOR_LAUREL_POST_NORM, // gemma3n + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_X, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_DT_NORM, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_A_NOSCAN, // qwen3next special case with MUL instead of SSM_SCAN + LLM_TENSOR_SSM_B_NORM, + LLM_TENSOR_SSM_C_NORM, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_NORM, + LLM_TENSOR_SSM_OUT, + LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next + // Kimi Linear KDA (using SSM_ prefix for consistency) + LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight + LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight + LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight + LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A + LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B + LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient + LLM_TENSOR_SSM_A_LOG, // kimi: A_log (pre-converted in GGUF) + LLM_TENSOR_SSM_DT_B, // kimi: dt bias + LLM_TENSOR_SSM_G_A, // kimi: output gate projection A + LLM_TENSOR_SSM_G_B, // kimi: output gate projection B + LLM_TENSOR_TIME_MIX_W0, + LLM_TENSOR_TIME_MIX_W1, + LLM_TENSOR_TIME_MIX_W2, + LLM_TENSOR_TIME_MIX_A0, + LLM_TENSOR_TIME_MIX_A1, + LLM_TENSOR_TIME_MIX_A2, + LLM_TENSOR_TIME_MIX_V0, + LLM_TENSOR_TIME_MIX_V1, + LLM_TENSOR_TIME_MIX_V2, + LLM_TENSOR_TIME_MIX_G1, + LLM_TENSOR_TIME_MIX_G2, + LLM_TENSOR_TIME_MIX_K_K, + LLM_TENSOR_TIME_MIX_K_A, + LLM_TENSOR_TIME_MIX_R_K, + LLM_TENSOR_TIME_MIX_LERP_X, + LLM_TENSOR_TIME_MIX_LERP_W, + LLM_TENSOR_TIME_MIX_LERP_K, + LLM_TENSOR_TIME_MIX_LERP_V, + LLM_TENSOR_TIME_MIX_LERP_R, + LLM_TENSOR_TIME_MIX_LERP_G, + LLM_TENSOR_TIME_MIX_LERP_FUSED, + LLM_TENSOR_TIME_MIX_FIRST, + LLM_TENSOR_TIME_MIX_DECAY, + LLM_TENSOR_TIME_MIX_DECAY_W1, + LLM_TENSOR_TIME_MIX_DECAY_W2, + LLM_TENSOR_TIME_MIX_KEY, + LLM_TENSOR_TIME_MIX_VALUE, + LLM_TENSOR_TIME_MIX_RECEPTANCE, + LLM_TENSOR_TIME_MIX_GATE, + LLM_TENSOR_TIME_MIX_LN, + LLM_TENSOR_TIME_MIX_OUTPUT, + LLM_TENSOR_CHANNEL_MIX_LERP_K, + LLM_TENSOR_CHANNEL_MIX_LERP_R, + LLM_TENSOR_CHANNEL_MIX_KEY, + LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, + LLM_TENSOR_CHANNEL_MIX_VALUE, + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_K_B, + LLM_TENSOR_ATTN_V_B, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_NORM, + LLM_TENSOR_ATTN_SUB_NORM, + LLM_TENSOR_FFN_SUB_NORM, + LLM_TENSOR_DEC_ATTN_NORM, + LLM_TENSOR_DEC_ATTN_Q, + LLM_TENSOR_DEC_ATTN_K, + LLM_TENSOR_DEC_ATTN_V, + LLM_TENSOR_DEC_ATTN_OUT, + LLM_TENSOR_DEC_ATTN_REL_B, + LLM_TENSOR_DEC_CROSS_ATTN_NORM, + LLM_TENSOR_DEC_CROSS_ATTN_Q, + LLM_TENSOR_DEC_CROSS_ATTN_K, + LLM_TENSOR_DEC_CROSS_ATTN_V, + LLM_TENSOR_DEC_CROSS_ATTN_OUT, + LLM_TENSOR_DEC_CROSS_ATTN_REL_B, + LLM_TENSOR_DEC_FFN_NORM, + LLM_TENSOR_DEC_FFN_GATE, + LLM_TENSOR_DEC_FFN_DOWN, + LLM_TENSOR_DEC_FFN_UP, + LLM_TENSOR_DEC_OUTPUT_NORM, + LLM_TENSOR_ENC_ATTN_NORM, + LLM_TENSOR_ENC_ATTN_Q, + LLM_TENSOR_ENC_ATTN_K, + LLM_TENSOR_ENC_ATTN_V, + LLM_TENSOR_ENC_ATTN_OUT, + LLM_TENSOR_ENC_ATTN_REL_B, + LLM_TENSOR_ENC_FFN_NORM, + LLM_TENSOR_ENC_FFN_GATE, + LLM_TENSOR_ENC_FFN_DOWN, + LLM_TENSOR_ENC_FFN_UP, + LLM_TENSOR_ENC_OUTPUT_NORM, + LLM_TENSOR_CLS, + LLM_TENSOR_CLS_OUT, + LLM_TENSOR_CONV1D, + LLM_TENSOR_CONVNEXT_DW, + LLM_TENSOR_CONVNEXT_NORM, + LLM_TENSOR_CONVNEXT_PW1, + LLM_TENSOR_CONVNEXT_PW2, + LLM_TENSOR_CONVNEXT_GAMMA, + LLM_TENSOR_POS_NET_CONV1, + LLM_TENSOR_POS_NET_CONV2, + LLM_TENSOR_POS_NET_NORM, + LLM_TENSOR_POS_NET_NORM1, + LLM_TENSOR_POS_NET_NORM2, + LLM_TENSOR_POS_NET_ATTN_NORM, + LLM_TENSOR_POS_NET_ATTN_Q, + LLM_TENSOR_POS_NET_ATTN_K, + LLM_TENSOR_POS_NET_ATTN_V, + LLM_TENSOR_POS_NET_ATTN_OUT, + LLM_TENSOR_SHORTCONV_CONV, + LLM_TENSOR_SHORTCONV_INPROJ, + LLM_TENSOR_SHORTCONV_OUTPROJ, + LLM_TENSOR_VISEXP_ATTN_QKV, + LLM_TENSOR_VISEXP_ATTN_OUT, + LLM_TENSOR_VISEXP_FFN_GATE, + LLM_TENSOR_VISEXP_FFN_DOWN, + LLM_TENSOR_VISEXP_FFN_UP, + LLM_TENSOR_NEXTN_EH_PROJ, + LLM_TENSOR_NEXTN_EMBED_TOKENS, + LLM_TENSOR_NEXTN_ENORM, + LLM_TENSOR_NEXTN_HNORM, + LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, + LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, +}; + +enum llm_tensor_layer { + LLM_TENSOR_LAYER_INPUT, + LLM_TENSOR_LAYER_REPEATING, + LLM_TENSOR_LAYER_OUTPUT, +}; + +struct LLM_KV { + LLM_KV(llm_arch arch, const char * suffix = nullptr); + + llm_arch arch; + const char * suffix; + + std::string operator()(llm_kv kv) const; +}; + +// helper to handle gguf constants +// usage: +// +// const auto tn = LLM_TN(LLM_ARCH_LLAMA); +// +// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" +// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" +// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" +// +struct LLM_TN_IMPL { + const llm_arch arch; + const llm_tensor tensor; + const char * const suffix; + const int bid; + const int xid; + + const std::set model_tensors; + + LLM_TN_IMPL(llm_arch arch, llm_tensor tensor, const char * suffix, int bid, int xid); + + std::string str() const; + + operator std::string() const { + return str(); + } + + friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) { + return str == tn.str(); + } + + friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) { + return str != tn.str(); + } +}; + +struct LLM_TN { + LLM_TN(llm_arch arch) : arch(arch) {} + + llm_arch arch; + + LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const { + return LLM_TN_IMPL(arch, tensor, suffix, bid, xid); + } + + LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const { + return LLM_TN_IMPL(arch, tensor, nullptr, bid, xid); + } +}; + + +struct llm_tensor_info { + llm_tensor_layer layer; + ggml_op op; +}; + +const char * llm_arch_name(llm_arch arch); + +llm_arch llm_arch_from_string(const std::string & name); + +const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor); + +bool llm_arch_is_recurrent(const llm_arch & arch); +bool llm_arch_is_hybrid (const llm_arch & arch); +bool llm_arch_is_diffusion(const llm_arch & arch); diff --git a/src/llama-context.cpp b/src/llama-context.cpp index a35cf5a94b..2aef1fa0a0 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -2037,7 +2037,7 @@ void llama_context::output_reorder() { // uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const { - if (model.arch == LLM_ARCH_QWEN3NEXT) { + if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) { return std::max(n_tokens * 40, 32u * model.n_tensors()); } uint32_t res = std::max(1024u, 8u*model.n_tensors()); diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index f9ed87cce1..531fe1a14b 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -2058,7 +2058,6 @@ ggml_tensor * llm_graph_context::build_rs( ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main); ggml_build_forward_expand(gf, output_states); - // copy extra states which won't be changed further (between n_seqs and n_rs) ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra); ggml_build_forward_expand(gf, ggml_cpy(ctx0, diff --git a/src/llama-model.cpp b/src/llama-model.cpp index b58b35a426..a1a2e31276 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -125,6 +125,7 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_21B_A3B: return "21B.A3B"; case LLM_TYPE_30B_A3B: return "30B.A3B"; case LLM_TYPE_31B_A3_5B: return "31B.A3.5B"; + case LLM_TYPE_48B_A3B: return "48B.A3B"; case LLM_TYPE_80B_A3B: return "80B.A3B"; case LLM_TYPE_100B_A6B: return "100B.A6B"; case LLM_TYPE_102B_A12B: return "102B.A12B"; @@ -2448,6 +2449,38 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_KIMI_LINEAR: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false); + ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false); + ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv, false); + ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); + ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv, false); + ml.get_key(LLM_KV_KDA_HEAD_DIM, hparams.kda_head_dim, false); + + // MLA qk_rope_head_dim (for reference) + // qk_rope_head_dim = 64, qk_nope_head_dim = 128, qk_head_dim = 192 + + // Mark KDA layers as recurrent using n_head_kv pattern (like Jamba) + // Set n_head_kv = 0 for KDA layers (recurrent), n_head_kv = n_head for MLA layers (attention) + for (uint32_t i = 0; i < hparams.n_layer; ++i) { + hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; // KDA layers are recurrent + } + + // MoE parameters - Kimi uses moe_intermediate_size = 1024 + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func); + + switch (hparams.n_layer) { + case 27: type = LLM_TYPE_48B_A3B; break; // Kimi-Linear-48B-A3B + default: type = LLM_TYPE_UNKNOWN; + } + } break; default: throw std::runtime_error("unsupported model architecture"); } @@ -6753,6 +6786,144 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0); } } break; + case LLM_ARCH_KIMI_LINEAR: + { + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + // Check for KDA specific tensors to determine layer type or if it's a mixed model + // Assuming KDA layer if KDA tensors are present + + // KDA uses head_dim = 128 (from linear_attn_config.head_dim) + const int64_t n_embd_head_k_kda = hparams.kda_head_dim; + const int64_t n_embd_head_v_kda = hparams.kda_head_dim; + const int64_t ssm_d_conv = hparams.ssm_d_conv; + + // Try loading KDA specific tensors (using SSM_ prefix) + // Conv1d weights: try 4D first, then 3D (quantization may remove trailing 1) + // 4D: [d_conv, 1, d_inner, 1], 3D: [d_conv, 1, d_inner] + layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_q_conv) { + layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED); + } + + if (layer.ssm_q_conv) { + // KDA Layer - Conv1d weights may be 3D or 4D + layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_k_conv) { + layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, 0); + } + layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_v_conv) { + layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head}, 0); + } + + // q, k, v projections + // Python: q_proj, k_proj, v_proj + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_v_kda * n_head}, 0); + + // KDA specific projections + // f_a_proj, f_b_proj + layer.ssm_f_a = create_tensor(tn(LLM_TENSOR_SSM_F_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); // head_dim + layer.ssm_f_b = create_tensor(tn(LLM_TENSOR_SSM_F_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); // projection_size + + // b_proj (beta mixing coefficient) + layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), {n_embd, n_head}, 0); + + // A_log - Shape in GGUF: [1, num_heads, 1, 1] (4D) or [1, num_heads] (2D after quantization) Note: -exp(A_log) is applied in convert_hf_to_gguf.py + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head, 1, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_a) { + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0); + } + + // dt_bias - shape [n_embd_head_k_kda * n_head] = [4096] + layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_embd_head_k_kda * n_head}, 0); + + // g_a_proj, g_b_proj (output gate) + layer.ssm_g_a = create_tensor(tn(LLM_TENSOR_SSM_G_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); + layer.ssm_g_b = create_tensor(tn(LLM_TENSOR_SSM_G_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); + + // o_norm (reusing SSM_NORM) + layer.ssm_o_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {n_embd_head_k_kda}, 0); // FusedRMSNormGated + + // o_proj + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v_kda * n_head, n_embd}, 0); + + } else { + // MLA Layer - use MLA-specific head dimensions + const int64_t q_lora_rank = hparams.n_lora_q; + const int64_t kv_lora_rank = hparams.n_lora_kv; + const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla; + const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla; + + layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, TENSOR_NOT_REQUIRED); + layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); + + if (layer.attn_q_a_norm) { + layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); + layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0); + } else { + // Kimi MLA without Q compression: wq = [n_embd, n_head * n_embd_head_k_mla] + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0); + } + + // Kimi: qk_rope_head_dim = 64 (actual RoPE dimension for MLA) + // Note: hparams.n_rot may be 72 (from conversion) but actual is 64 + const int64_t qk_rope_head_dim = hparams.n_rot; // From config: qk_rope_head_dim + layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + qk_rope_head_dim}, 0); + // Support Legacy GGUFs that don't split wkv_b (MLA KV cache disabled) + layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_k_mla - qk_rope_head_dim + n_embd_head_v_mla)}, TENSOR_NOT_REQUIRED); + if (!layer.wkv_b) { // MLA KV cache enabled + layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_k_mla - qk_rope_head_dim, kv_lora_rank, n_head}, 0); + layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0); + } + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0); + } + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + // MoE intermediate size (different from dense FFN) + const int64_t n_ff_exp = hparams.n_ff_exp; + + // Kimi uses n_layer_dense_lead to determine which layers use dense FFN vs MoE + // first_k_dense_replace = 1 means layer 0 uses dense FFN, layers 1+ use MoE + if (i < (int) hparams.n_layer_dense_lead) { + // Dense FFN layer - use normal n_ff + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + } else { + // MoE layer - use n_ff_exp (1024) instead of n_ff (9216) + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); + + // Shared experts use moe_intermediate_size * num_shared_experts + // Kimi: shared_expert_intermediate_size = 1024 * 1 = 1024 + // Tensors are 2D: [n_embd, n_ff_shexp] or [n_ff_shexp, n_embd] + const int64_t n_ff_shexp_actual = n_ff_exp * (hparams.n_expert_shared > 0 ? hparams.n_expert_shared : 1); + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp_actual, n_embd}, TENSOR_NOT_REQUIRED); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED); + + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); + if (!layer.ffn_exp_probs_b) { + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "weight", i), {n_expert}, TENSOR_NOT_REQUIRED); + } + } + } + } break; case LLM_ARCH_COGVLM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -8087,6 +8258,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { { llm = std::make_unique(*this, params); } break; + case LLM_ARCH_KIMI_LINEAR: + { + llm = std::make_unique(*this, params); + } break; default: GGML_ABORT("fatal error"); } @@ -8236,6 +8411,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_WAVTOKENIZER_DEC: case LLM_ARCH_NEMOTRON_H: case LLM_ARCH_NEMOTRON_H_MOE: + case LLM_ARCH_KIMI_LINEAR: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values diff --git a/src/llama-model.h b/src/llama-model.h index d1de16e3f2..5b408bcea2 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -118,6 +118,7 @@ enum llm_type { LLM_TYPE_21B_A3B, // Ernie MoE small LLM_TYPE_30B_A3B, LLM_TYPE_31B_A3_5B, + LLM_TYPE_48B_A3B, // Kimi Linear LLM_TYPE_80B_A3B, // Qwen3 Next LLM_TYPE_100B_A6B, LLM_TYPE_102B_A12B, // Solar-Open @@ -411,6 +412,18 @@ struct llama_layer { struct ggml_tensor * ffn_act_beta = nullptr; struct ggml_tensor * ffn_act_eps = nullptr; + // Kimi Linear KDA (using ssm_ prefix for consistency) + // Note: ssm_dt_b already exists above (mamba bias), reused for Kimi dt_bias + struct ggml_tensor * ssm_q_conv = nullptr; + struct ggml_tensor * ssm_k_conv = nullptr; + struct ggml_tensor * ssm_v_conv = nullptr; + struct ggml_tensor * ssm_f_a = nullptr; + struct ggml_tensor * ssm_f_b = nullptr; + struct ggml_tensor * ssm_beta = nullptr; + struct ggml_tensor * ssm_g_a = nullptr; + struct ggml_tensor * ssm_g_b = nullptr; + struct ggml_tensor * ssm_o_norm = nullptr; + struct llama_layer_posnet posnet; struct llama_layer_convnext convnext; diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp index a2b8d4e56c..e0198d2d6a 100644 --- a/src/llama-quant.cpp +++ b/src/llama-quant.cpp @@ -787,9 +787,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std:: quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); - // do not quantize Mamba's small yet 2D weights + // do not quantize Mamba /Kimi's small conv1d weights // NOTE: can't use LLM_TN here because the layer number is not known - quantize &= name.find("ssm_conv1d.weight") == std::string::npos; + quantize &= name.find("ssm_conv1d") == std::string::npos; quantize &= name.find("shortconv.conv.weight") == std::string::npos; // do not quantize RWKV's small yet 2D weights diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index a23950d007..af2e1dfde3 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1752,26 +1752,33 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); + // Kimi-K2 uses custom tokenization without traditional BPE merges + const bool is_kimi_k2 = (tokenizer_pre == "kimi-k2"); + if (merges_keyidx == -1) { - throw std::runtime_error("cannot find tokenizer merges in model file\n"); - } - - const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); - for (int i = 0; i < n_merges; i++) { - const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); - //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - - std::string first; - std::string second; - - const size_t pos = word.find(' ', 1); - - if (pos != std::string::npos) { - first = word.substr(0, pos); - second = word.substr(pos + 1); + if (!is_kimi_k2) { + throw std::runtime_error("cannot find tokenizer merges in model file\n"); } + // Kimi-K2 doesn't need merges, skip + LLAMA_LOG_INFO("%s: Kimi-K2 tokenizer detected, skipping BPE merges\n", __func__); + } else { + const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); + for (int i = 0; i < n_merges; i++) { + const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); + //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - bpe_ranks.emplace(std::make_pair(first, second), i); + std::string first; + std::string second; + + const size_t pos = word.find(' ', 1); + + if (pos != std::string::npos) { + first = word.substr(0, pos); + second = word.substr(pos + 1); + } + + bpe_ranks.emplace(std::make_pair(first, second), i); + } } // default special tokens @@ -2226,6 +2233,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "<|end_of_text|>" // granite || t.first == "" || t.first == "_" + || t.first == "_" + || t.first == "[EOT]" // Kimi-K2 || t.first == "<|end▁of▁sentence|>" // DeepSeek || t.first == "" // smoldocling ) { @@ -2319,6 +2328,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "" || t.first == "" // Granite || t.first == "" + || t.first == "[PAD]" // Kimi-K2 ) { special_fim_pad_id = t.second; if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { @@ -2421,6 +2431,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "<|eom_id|>" || t.first == "" || t.first == "_" + || t.first == "[EOT]" // Kimi-K2 + || t.first == "[EOS]" // Kimi-K2 || t.first == "<|end_of_text|>" || t.first == "" // smoldocling ) { diff --git a/src/models/graph-context-delta.cpp b/src/models/graph-context-delta.cpp new file mode 100644 index 0000000000..637bddb7d9 --- /dev/null +++ b/src/models/graph-context-delta.cpp @@ -0,0 +1,574 @@ +#include "models.h" +#include "ggml.h" +#include +#include +#include + +llm_graph_context_delta::llm_graph_context_delta(const llm_graph_params & params) : llm_graph_context_mamba(params) {} + +/** + * Unified Delta Net implementation supporting both GDA and KDA modes. + * + * GDA (Gated Delta Attention): g has shape [H, T, B] in GGML (PyTorch: [B, T, H]) + * - Per-head gating, broadcasts over K dimension + * + * KDA (Key-wise Delta Attention): g has shape [K, H, T, B] in GGML (PyTorch: [B, T, H, K]) + * - Per-key gating + * + * The mode is auto-detected based on g's dimensionality. + * + * Tensor dimension convention: + * GGML: ne[0] is innermost (fastest varying), ne[3] is outermost + * PyTorch: dim 0 is outermost, dim -1 is innermost + * So GGML [A, B, C, D] corresponds to PyTorch [D, C, B, A] + */ + +// Helper to get a slice along dimension 2 (n_chunks dimension) +static ggml_tensor * get_slice_2d(ggml_context * ctx, ggml_tensor * t, int64_t chunk) { + return ggml_view_4d(ctx, t, + t->ne[0], t->ne[1], 1, t->ne[3], + t->nb[1], t->nb[2], t->nb[3], + chunk * t->nb[2]); +} + +/** + * Unified chunked Delta Net implementation. + * + * Input tensor format matches qwen3next conventions: + * @param q Query tensor [S_k, H_k, n_tokens, n_seqs] + * @param k Key tensor [S_k, H_k, n_tokens, n_seqs] + * @param v Value tensor [S_v, H_v, n_tokens, n_seqs] + * @param g Gate tensor: + * GDA: [H_v, n_tokens, n_seqs] + * KDA: [S_k, H_v, n_tokens, n_seqs] + * @param beta Beta tensor [H_v, 1, n_tokens, n_seqs] + * @param state State tensor [S_v, S_v * H_v, 1, n_seqs] + * @param causal_mask Lower triangular mask [chunk_size, chunk_size] + * @param identity Identity matrix [chunk_size, chunk_size] + * @param diag_mask Diagonal mask [chunk_size, chunk_size] + * @param il Layer index (for debugging callbacks) + * @param chunk_size Chunk size for chunked processing + * @param eps_norm Epsilon for L2 normalization + * + * @return Pair of (output_tokens, new_state) + */ +std::pair llm_graph_context_delta::build_delta_net_unified_chunking( + ggml_context * ctx0, + ggml_tensor * q, + ggml_tensor * k, + ggml_tensor * v, + ggml_tensor * g, + ggml_tensor * beta, + ggml_tensor * state_reshaped, + ggml_tensor * causal_mask, + ggml_tensor * identity, + ggml_tensor * diag_mask, + int il, + int64_t chunk_size, + float eps_norm) { + + // Input format: [S, H, n_tokens, n_seqs] (matching qwen3next convention) + const int64_t S_k = q->ne[0]; + const int64_t H_k = q->ne[1]; + const int64_t n_tokens = q->ne[2]; + const int64_t n_seqs = q->ne[3]; + + const int64_t S_v = v->ne[0]; + const int64_t H_v = v->ne[1]; + + // Detect KDA vs GDA based on g's shape + // GDA: g has shape [H_v, n_tokens, n_seqs] + // KDA: g has shape [S_k, H_v, n_tokens, n_seqs] (4D with ne[0]=S_k) + const bool is_kda = (g->ne[0] == S_k && g->ne[1] == H_v); + + // Validate tensor shapes + GGML_ASSERT(v->ne[2] == n_tokens); + GGML_ASSERT(k->ne[2] == n_tokens); + GGML_ASSERT(state_reshaped->ne[0] == S_v && state_reshaped->ne[1] == S_v && state_reshaped->ne[2] == H_v && state_reshaped->ne[3] == n_seqs); + GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs); + GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs); + GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs); + GGML_ASSERT(H_k == H_v); + + if (is_kda) { + // KDA: g shape [S_k, H_v, n_tokens, n_seqs] + GGML_ASSERT(g->ne[0] == S_k && g->ne[1] == H_v && g->ne[2] == n_tokens && g->ne[3] == n_seqs); + } else { + // GDA: g shape [H_v, n_tokens, n_seqs] + GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs); + } + + // L2 normalize q and k + q = ggml_l2_norm(ctx0, q, eps_norm); + k = ggml_l2_norm(ctx0, k, eps_norm); + + const float scale = 1.0f / sqrtf((float)S_v); + q = ggml_scale(ctx0, q, scale); + + beta = ggml_sigmoid(ctx0, beta); + + cb(q, "q_in", il); + cb(k, "k_in", il); + cb(v, "v_in", il); + cb(beta, "beta_in", il); + cb(g, "g_in", il); + + // Permute tensors to working format [S, n_tokens, H, n_seqs] + // Input: [S, H, n_tokens, n_seqs] -> permute(0, 2, 1, 3) -> [S, n_tokens, H, n_seqs] + q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs); + k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs); + v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs); + g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 0, 2, 1, 3), is_kda ? S_k : 1, n_tokens, H_k, n_seqs); + beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3)); + + cb(q, "q_perm", il); + cb(k, "k_perm", il); + cb(v, "v_perm", il); + cb(beta, "beta_perm", il); + cb(g, "g_perm", il); + cb(state_reshaped, "state_in", il); + + // Padding for chunk processing + const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size; + const int64_t n_chunks = (n_tokens + pad) / chunk_size; + + q = ggml_pad(ctx0, q, 0, pad, 0, 0); + k = ggml_pad(ctx0, k, 0, pad, 0, 0); + v = ggml_pad(ctx0, v, 0, pad, 0, 0); + beta = ggml_pad(ctx0, beta, 0, pad, 0, 0); + g = ggml_pad(ctx0, g, 0, pad, 0, 0); + + + cb(q, "q_pad", il); + cb(k, "k_pad", il); + cb(v, "v_pad", il); + cb(beta, "beta_pad", il); + cb(g, "g_pad", il); + + ggml_tensor * v_beta = ggml_mul(ctx0, v, beta); + ggml_tensor * k_beta = ggml_mul(ctx0, k, beta); + + cb(v_beta, "v_beta", il); + cb(k_beta, "k_beta", il); + + // Reshape to chunks + q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs); + k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs); + k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs); + v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs); + v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs); + beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs); + + // Reshape g for chunks + ggml_tensor * g_cumsum; + ggml_tensor * g_cumsum_t; + if (is_kda) { + // KDA: g [S_k, n_tokens+pad, H_k, n_seqs] -> [S_k, chunk_size, n_chunks, H_k * n_seqs] + g = ggml_reshape_4d(ctx0, g, S_k, chunk_size, n_chunks, H_k * n_seqs); + // Cumsum along chunk_size dimension (ne[1]) + // GGML cumsum operates on ne[0], so we need to transpose, cumsum, transpose back + g = ggml_cont(ctx0, ggml_transpose(ctx0, g)); // [chunk_size, S_k, n_chunks, H_k * n_seqs] + g_cumsum_t = ggml_cumsum(ctx0, g); + g_cumsum = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum_t)); // [S_k, chunk_size, n_chunks, H_k * n_seqs] + } else { + // GDA: g [n_tokens+pad, 1, H_k, n_seqs] -> [chunk_size, 1, n_chunks, H_k * n_seqs] + g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs); + g_cumsum = ggml_cumsum(ctx0, g); + g_cumsum_t = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_k * n_seqs); + } + + cb(g_cumsum, "g_cumsum", il); + + // Build attention matrix A for the WY representation solve + // For GDA: A[j,i] = sum_k(k[j,k] * exp(g[j] - g[i]) * k[i,k]) = (k @ k^T) * exp(g[j] - g[i]) + // For KDA: A[j,i] = sum_k(k_beta[j,k] * exp(g[j,k] - g[i,k]) * k[i,k]) + // KDA uses decay mask with S_k packed into batch to compute exp(g[j,k] - g[i,k]) per-key + + ggml_tensor * k_decay; + ggml_tensor * decay_mask = nullptr; + ggml_tensor * g_exp_pos = nullptr; + + // Attention scores q @ k^T with decay + // For GDA: attn_kq[j,i] = sum_k(q[j,k] * exp(g[j] - g[i]) * k[i,k]) + // For KDA: attn_kq[j,i] = sum_k(q[j,k] * exp(g[j,k] - g[i,k]) * k[i,k]) + ggml_tensor * attn_kq; + if (is_kda) { + // KDA: Use decay mask with S_k in leading dimension for efficient mul_mat reduction + // A[j,i] = sum_k(k_beta[j,k] * exp(g[j,k] - g[i,k]) * k[i,k]) + // By putting S_k in dim 0, mul_mat implicitly sums over it + + const int64_t CHB = n_chunks * H_k * n_seqs; + + // g_cumsum_t is [chunk_size, S_k, n_chunks, H_k * n_seqs] + // Reshape to [chunk_size, S_k, CHB] then build decay mask + ggml_tensor * gcs_i = ggml_reshape_4d(ctx0, g_cumsum_t, chunk_size, 1, S_k, CHB); + ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum_t, 1, chunk_size, S_k, CHB); + + // Build decay mask: [chunk_size, chunk_size, S_k, CHB] + ggml_tensor * gcs_j_bc = ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, S_k, CHB); + decay_mask = ggml_sub(ctx0, gcs_j_bc, gcs_i); + + cb(decay_mask, "decay_mask_kda", il); + + decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); + decay_mask = ggml_exp(ctx0, decay_mask); + decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); + + // Permute to [S_k, chunk_size_j, chunk_size_i, CHB] for mul_mat reduction over S_k + decay_mask = ggml_cont_4d(ctx0, ggml_permute(ctx0, decay_mask, 2, 1, 0, 3), S_k, chunk_size, chunk_size, CHB); + + // Reshape k and k_beta for broadcasting with decay_mask + // k_i: indexed at position i (dim 2 of decay_mask) + // k_beta_j: indexed at position j (dim 1 of decay_mask) + ggml_tensor * k_i = ggml_reshape_4d(ctx0, k, S_k, 1, chunk_size, CHB); + ggml_tensor * k_beta_j = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, 1, CHB); + // q_j: indexed at position j, k_i: indexed at position i + ggml_tensor * q_j = ggml_reshape_4d(ctx0, q, S_k, chunk_size, 1, CHB); + + // decay_k_beta_j[s,j,i,b] = decay[s,j,i,b] * k_beta[s,j,b] + ggml_tensor * decay_k_beta_j = ggml_mul(ctx0, decay_mask, k_beta_j); + // decay_q_j[s,j,i,b] = decay[s,j,i,b] * q[s,j,b] + ggml_tensor * decay_q_j = ggml_mul(ctx0, decay_mask, q_j); + + // mul_mat sums over S_k: result[j,1,i,CHB] = sum_s decay_k_beta_j[s,j,i,b] * k_i[s,1,i,b] + k_decay = ggml_mul_mat(ctx0, decay_k_beta_j, k_i); + k_decay = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, k_decay, chunk_size, chunk_size, n_chunks, H_k * n_seqs))); + + // mul_mat sums over S_k + attn_kq = ggml_mul_mat(ctx0, decay_q_j, k_i); + attn_kq = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, attn_kq, chunk_size, chunk_size, n_chunks, H_k * n_seqs))); + + // g_exp_pos is still needed for later (kbeta_gexp, etc.) + g_exp_pos = ggml_exp(ctx0, g_cumsum); + } else { + // GDA: Use decay mask approach (g broadcasts over K dimension) + // g_cumsum [chunk_size, 1, n_chunks, H_v * n_seqs] + ggml_tensor * gcs_i = g_cumsum; + ggml_tensor * gcs_j = g_cumsum_t; + g_exp_pos = ggml_exp(ctx0, g_cumsum_t); + ggml_tensor * gcs_j_broadcast = ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs); + decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i); + + cb(decay_mask, "decay_mask", il); + + decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); + decay_mask = ggml_exp(ctx0, decay_mask); + decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); + + ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta); + k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask); + + // GDA: Use decay mask + attn_kq = ggml_mul_mat(ctx0, k, q); + attn_kq = ggml_mul(ctx0, attn_kq, decay_mask); + } + attn_kq = ggml_mul(ctx0, attn_kq, diag_mask); + cb(attn_kq, "attn_kq", il); + + ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask)); + + cb(attn, "attn_pre_solve", il); + + // Solve triangular system: (I + L) @ X = I, where L is strictly lower triangular + ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask); + ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower); + ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false); + attn = ggml_mul(ctx0, lin_solve, causal_mask); + attn = ggml_add(ctx0, attn, identity); + + cb(attn, "attn_solved", il); + + // Compute u = A @ v and w = A @ (g.exp() * k) + v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn); + + ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, g_exp_pos); + cb(kbeta_gexp, "kbeta_gexp", il); + + ggml_tensor * k_cumdecay = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)), attn); +// ggml_tensor * k_cumdecay = ggml_cont(ctx0, ggml_transpose(ctx0, +// ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp))))); + cb(k_cumdecay, "k_cumdecay", il); + + // Compute g_last and g_diff for state updates + ggml_tensor * g_last; + ggml_tensor * g_diff_exp; + ggml_tensor * g_last_exp; + + if (is_kda) { + // KDA: g_cumsum [S_k, chunk_size, n_chunks, H_k * n_seqs] + // Get last element along chunk_size dimension (ne[1]) + // when g_last_exp is ggml_mul with new_state, S_k *must* match with ne[1] of new_state + g_last = ggml_cont(ctx0, ggml_view_4d(ctx0, g_cumsum, + g_cumsum->ne[0], 1, g_cumsum->ne[2], g_cumsum->ne[3], + g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3], + (g_cumsum->ne[1] - 1) * g_cumsum->nb[1])); + // g_last_exp [1, S_k, n_chunks, H_k * n_seqs] + g_last_exp = ggml_exp(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, g_last))); + + // g_diff = g_last - g_cumsum + // g_last [S_k, 1, n_chunks, H_k * n_seqs] + // g_cumsum [S_k, chunk_size, n_chunks, H_k * n_seqs] + // g_diff [S_k, chunk_size, n_chunks, H_k * n_seqs] + ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last)); + g_diff_exp = ggml_exp(ctx0, g_diff); + } else { + // GDA: g_cumsum [chunk_size, 1, n_chunks, H_k * n_seqs] + g_last = ggml_view_4d(ctx0, g_cumsum, + 1, 1, g_cumsum->ne[2], g_cumsum->ne[3], + g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3], + (g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum)); + g_last = ggml_cont(ctx0, g_last); + g_last_exp = ggml_exp(ctx0, g_last); + + ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last)); + g_diff_exp = ggml_exp(ctx0, g_diff); + } + + cb(g_last, "g_last", il); + cb(g_last_exp, "g_last_exp", il); + + ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp); + cb(key_gdiff, "key_gdiff", il); + + // Process chunks + ggml_tensor * new_state = state_reshaped; + ggml_tensor * core_attn_out = nullptr; + + for (int64_t chunk = 0; chunk < n_chunks; chunk++) { + ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk); + ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk); + ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk); + ggml_tensor * attn_kq_chunk = get_slice_2d(ctx0, attn_kq, chunk); + ggml_tensor * gexp_chunk = get_slice_2d(ctx0, g_exp_pos, chunk); + ggml_tensor * k_gdiff = get_slice_2d(ctx0, key_gdiff, chunk); + ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk)); + + cb(attn_kq_chunk, "attn_kq_chunk", il); + + ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), + S_v, S_v, 1, H_v * n_seqs); + + // v_prime = k_cumdecay @ state + ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk); + cb(v_prime, "v_prime_chunk", il); + + // v_new = v - v_prime + ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime); + ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new)); + cb(v_new, "v_new_chunk", il); + + // attn_inter = (q * g.exp()) @ state + ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk); + ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp); + cb(attn_inter, "attn_inter_chunk", il); + + // output = attn_inter + attn @ v_new + ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_kq_chunk); + cb(v_attn, "v_attn_chunk", il); + + ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn); + cb(core_attn_out_chunk, "core_attn_out_chunk", il); + + core_attn_out = core_attn_out == nullptr + ? core_attn_out_chunk + : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2); + + // State update: state = state * g_last_exp + key_gdiff^T @ v_new + // v_new_t [S_k, chunk_size, 1, H_k * n_seqs] + // k_gdiff [chunk_size, S_k, 1, H_k * n_seqs] + ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, k_gdiff))); + + gexp_last_chunk = ggml_reshape_4d(ctx0, gexp_last_chunk, + gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs); // [chunk_size, S_k, H_v, n_seqs] + + new_state = ggml_add(ctx0, + ggml_mul(ctx0, new_state, gexp_last_chunk), + ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs)); + } + + // Truncate padding and permute back + ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out, + S_v, n_tokens, H_v, n_seqs, + ggml_row_size(core_attn_out->type, S_v), + ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks), + ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0); + output_tokens = ggml_cont(ctx0, output_tokens); + + cb(output_tokens, "output_tokens", il); + + output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3); + output_tokens = ggml_cont(ctx0, output_tokens); + + return {output_tokens, new_state}; +} + + +/** + * Unified autoregressive Delta Net implementation (single token processing). + * + * This implementation uses matrix multiplication instead of elementwise operations + summation, + * which is more efficient and mathematically equivalent. See inline comments for equivalences. + * + * Input tensor format matches qwen3next conventions: + * @param q Query tensor [S_k, H_k, 1, n_seqs] + * @param k Key tensor [S_k, H_k, 1, n_seqs] + * @param v Value tensor [S_v, H_v, 1, n_seqs] + * @param g Gate tensor: + * GDA: [H_v, 1, n_seqs] + * KDA: [S_k, H_v, 1, n_seqs] + * @param beta Beta tensor [H_v, 1, 1, n_seqs] + * @param state State tensor [S_v, S_v * H_v, 1, n_seqs] + * @param il Layer index (for debugging callbacks) + * @param eps_norm Epsilon for L2 normalization + * + * @return Pair of (output_tokens, new_state) + */ +std::pair llm_graph_context_delta::build_delta_net_unified_autoregressive( + ggml_context * ctx0, + ggml_tensor * q, + ggml_tensor * k, + ggml_tensor * v, + ggml_tensor * g, + ggml_tensor * beta, + ggml_tensor * state, + int il, + float eps_norm) { + + // Input format: [S, H, n_tokens, n_seqs] (matching qwen3next convention) + const int64_t S_k = q->ne[0]; + const int64_t H_k = q->ne[1]; + const int64_t n_tokens = q->ne[2]; + const int64_t n_seqs = q->ne[3]; + + const int64_t S_v = v->ne[0]; + const int64_t H_v = v->ne[1]; + + GGML_ASSERT(n_tokens == 1); // Autoregressive mode is for single token + + // Detect KDA vs GDA based on g's shape + // GDA: g has shape [H_v, 1, n_seqs] or [H_v, n_tokens, n_seqs] + // KDA: g has shape [S_k, H_v, 1, n_seqs] or [S_k, H_v, n_tokens, n_seqs] + const bool is_kda = (g->ne[0] == S_k && g->ne[1] == H_v); + + // Validate shapes + GGML_ASSERT(v->ne[2] == n_tokens); + GGML_ASSERT(k->ne[2] == n_tokens); + GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v && state->ne[2] == H_v && state->ne[3] == n_seqs); + GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs); + GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs); + GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs); + GGML_ASSERT(H_k == H_v); + + if (is_kda) { + GGML_ASSERT(g->ne[0] == S_k && g->ne[1] == H_v); + } else { + GGML_ASSERT(g->ne[0] == H_v); + } + + // L2 normalize q and k + q = ggml_l2_norm(ctx0, q, eps_norm); + k = ggml_l2_norm(ctx0, k, eps_norm); + + const float scale = 1.0f / sqrtf((float)S_v); + q = ggml_scale(ctx0, q, scale); + beta = ggml_sigmoid(ctx0, beta); + + cb(q, "q_in", il); + cb(k, "k_in", il); + cb(v, "v_in", il); + cb(beta, "beta_in", il); + cb(g, "g_in", il); + + // Reshape g and beta for broadcasting + ggml_tensor * g_t; + ggml_tensor * beta_t; + + if (is_kda) { + // KDA: g [S_k, H_k, 1, n_seqs] -> [S_k, 1, H_k, n_seqs] -> [1, S_k, H_k, n_seqs] + // For state multiplication, need [1, S_k, H_v, n_seqs] to broadcast over V only + g_t = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, g, S_k, 1, H_k, n_seqs))); + } else { + // GDA: g [H_v, 1, n_seqs] -> [1, 1, H_k, n_seqs] + // For state multiplication, broadcasts over both K and V + g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs); + } + + beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs); + + // Apply exponential to g_t + g_t = ggml_exp(ctx0, g_t); + + // State decay: state = state * exp(g) + state = ggml_mul(ctx0, state, g_t); + + // Equivalence to previous version: + // Previous: kv_mem = sum_k(state * k) using elementwise mult + sum_rows + // Current: k_state = state_t @ k_t using matrix multiplication + // These are equivalent because: sum_k(A * B) = A @ B when dimensions align + ggml_tensor * state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state)); + ggml_tensor * k_t = ggml_reshape_4d(ctx0, k, S_k, 1, H_k, n_seqs); + ggml_tensor * k_state = ggml_mul_mat(ctx0, state_t, k_t); + + // v_diff = v - k_state (equivalent to v - kv_mem in previous version) + ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs); + ggml_tensor * v_diff = ggml_sub(ctx0, v_t, k_state); + ggml_tensor * k_beta = ggml_mul(ctx0, k_t, beta_t); + + // Equivalence to previous version: + // Previous: state += k.unsqueeze(-1) * delta where delta = (v - kv_mem) * beta + // Current: state += v_diff^T @ k_beta^T using matrix multiplication + // These are equivalent because: outer_product(k, v_diff * beta) = v_diff^T @ k^T + state = ggml_add(ctx0, state, ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_diff)), ggml_cont(ctx0, ggml_transpose(ctx0, k_beta)))); + + // Equivalence to previous version: + // Previous: core_attn_out = sum_k(state * q) using elementwise mult + sum_rows + // Current: core_attn_out = state_t @ q using matrix multiplication + // These are equivalent because: sum_k(A * B) = A @ B when dimensions align + q = ggml_reshape_4d(ctx0, q, S_k, 1, H_k, n_seqs); + state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state)); + ggml_tensor * core_attn_out = ggml_mul_mat(ctx0, state_t, q); + // core_attn_out should be [S_v, 1, H_v, n_seqs] after this + cb(core_attn_out, "output_tokens", il); + cb(state, "new_state", il); + + return {core_attn_out, state}; +} + + +/** + * Main entry point that dispatches to chunked or autoregressive based on n_tokens. + * + * Input tensor format matches qwen3next conventions: + * @param q Query tensor [S_k, H_k, n_tokens, n_seqs] + * @param k Key tensor [S_k, H_k, n_tokens, n_seqs] + * @param v Value tensor [S_v, H_v, n_tokens, n_seqs] + * @param g Gate tensor (GDA: [H_v, n_tokens, n_seqs], KDA: [S_k, H_v, n_tokens, n_seqs]) + * @param beta Beta tensor [H_v, 1, n_tokens, n_seqs] + * @param state State tensor [S_v, S_v * H_v, 1, n_seqs] + */ +std::pair llm_graph_context_delta::build_delta_net_unified( + ggml_context * ctx0, + ggml_tensor * q, + ggml_tensor * k, + ggml_tensor * v, + ggml_tensor * g, + ggml_tensor * beta, + ggml_tensor * state, + ggml_tensor * causal_mask, + ggml_tensor * identity, + ggml_tensor * diag_mask, + int il, + int64_t chunk_size, + float eps_norm) { + + // Input format: [S, H, n_tokens, n_seqs] (matching qwen3next convention) + const int64_t n_tokens = q->ne[2]; + + if (n_tokens == 1) { + return build_delta_net_unified_autoregressive( + ctx0, q, k, v, g, beta, state, il, eps_norm); + } + return build_delta_net_unified_chunking( + ctx0, q, k, v, g, beta, state, causal_mask, identity, diag_mask, + il, chunk_size, eps_norm); +} diff --git a/src/models/kimi-linear.cpp b/src/models/kimi-linear.cpp new file mode 100644 index 0000000000..0e4b597e56 --- /dev/null +++ b/src/models/kimi-linear.cpp @@ -0,0 +1,386 @@ +#include "models.h" +#include "ggml.h" + +#define CHUNK_SIZE 64 + +// Causal Conv1d function for Q,K,V +// When qkv is 0, it is Q, 1 is K, 2 is V +static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_tensor * conv_states_all, ggml_tensor * conv_state_all, int64_t qkv, ggml_tensor * x, ggml_tensor * proj_w, ggml_tensor * conv_w, int64_t d_conv, int64_t head_dim, int64_t n_head, int64_t n_seq_tokens, int64_t n_seqs, int64_t n_tokens, int64_t kv_head) { + const int64_t d_inner = head_dim * n_head; + const int64_t conv_state_size = (d_conv - 1) * d_inner; + const int64_t n_embd_r_total = 3 * conv_state_size; // Q + K + V + + // conv_state_all is [n_embd_r_total, n_seqs], split into Q, K, V + // Each conv state is [(d_conv-1) * d_inner] per sequence, need to reshape to [d_conv-1, d_inner, n_seqs] + // Memory layout: for each seq, Q state is first conv_state_size elements, then K, then V + // conv_state_all has stride: nb[0] = element_size, nb[1] = n_embd_r_total * element_size + // View Q conv state: offset 0, size conv_state_size per seq + // conv_state_all is [n_embd_r_total, n_seqs] with memory layout: + // state[i + seq * n_embd_r_total] where i = conv_step + channel * (d_conv-1) + {0, conv_state_size, 2*conv_state_size} for Q/K/V + // We want [d_conv-1, d_inner, n_seqs] view: + // nb1 = (d_conv-1) * element_size (stride between channels) + // nb2 = n_embd_r_total * element_size (stride between seqs) + ggml_tensor * conv_state_x = ggml_view_3d(ctx0, conv_state_all, d_conv - 1, d_inner, n_seqs, + (d_conv - 1) * ggml_element_size(conv_state_all), // nb1: stride between channels + n_embd_r_total * ggml_element_size(conv_state_all), // nb2: stride between seqs + qkv * conv_state_size * ggml_element_size(conv_state_all)); + +// Causal Conv1d function for Q,K,V +// When qkv is 0, it is Q, 1 is K, 2 is V + // Step 1: Q, K, V projections -> [d_inner, n_tokens] + ggml_tensor * x_proj = ggml_mul_mat(ctx0, proj_w, x); + + // Reshape input: {d_inner, n_tokens} -> {d_inner, n_seq_tokens, n_seqs} + ggml_tensor * x_3d = ggml_reshape_3d(ctx0, x_proj, d_inner, n_seq_tokens, n_seqs); + + // Concat Q conv state and current input: {d_conv-1 + n_seq_tokens, d_inner, n_seqs} + ggml_tensor * conv_x = ggml_cont(ctx0, ggml_concat(ctx0, conv_state_x, ggml_transpose(ctx0, x_3d), 0)); + + // Save last (d_conv-1) columns back to Q conv state + ggml_tensor * last_conv_x = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, + conv_x->nb[1], conv_x->nb[2], n_seq_tokens * conv_x->nb[0]); + ggml_build_forward_expand(gf, + ggml_cpy(ctx0, last_conv_x, + ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs, + (kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all)))); + // Reshape conv weight: GGUF [d_conv, 1, d_inner, 1] -> ggml_ssm_conv expects [d_conv, d_inner] + // GGUF stores as [d_conv, 1, d_inner, 1] with memory layout w[conv_step + channel * d_conv] + // vLLM stores as [d_inner, d_conv] with memory layout w[channel * d_conv + conv_step] + // ggml_ssm_conv computes: c[conv_step + channel * d_conv] + // GGUF layout: [d_conv, 1, d_inner] or [d_conv, 1, d_inner, 1] -> reshape to [d_conv, d_inner] + // Reshape conv weight from [d_conv, 1, d_inner, 1] to [d_conv, d_inner] for ggml_ssm_conv + ggml_tensor * conv_weight = ggml_reshape_2d(ctx0, conv_w, d_conv, d_inner); + + // Apply conv1d + // ggml_ssm_conv output: {d_inner, n_seq_tokens, n_seqs} + ggml_tensor * Xcur = ggml_ssm_conv(ctx0, conv_x, conv_weight); + // Reshape to 2D for bias add: {d_inner, n_tokens} + Xcur = ggml_reshape_2d(ctx0, Xcur, d_inner, n_tokens); + Xcur = ggml_silu(ctx0, Xcur); + + return ggml_reshape_4d(ctx0, Xcur, head_dim, n_head, n_seq_tokens, n_seqs); +} + +llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) : + llm_graph_context_delta(params), model(model) { + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + cb(inpL, "model.embed_tokens", -1); + + // Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM) + // So we don't need inp_pos + + auto * inp = build_inp_mem_hybrid(); + auto * inp_rs = inp->get_recr(); + auto * inp_attn = inp->get_attn(); + + // Output ids for selecting which tokens to output + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + ggml_tensor * causal_mask = + ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f), + GGML_TRI_TYPE_LOWER); + + ggml_tensor * identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f)); + ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity); + + ggml_build_forward_expand(gf, causal_mask); + ggml_build_forward_expand(gf, identity); + ggml_build_forward_expand(gf, diag_mask); + + // Kimi dimension constants + const int64_t n_head = hparams.n_head(); + const int64_t head_dim = hparams.kda_head_dim; + const int64_t d_conv = hparams.ssm_d_conv; + const int64_t d_inner = n_head * head_dim; // 32 * 128 = 4096 + const int64_t n_seqs = ubatch.n_seqs; + const int64_t n_seq_tokens = ubatch.n_seq_tokens; + + // Verify batch consistency for recurrent layers + GGML_ASSERT(n_seqs != 0); + GGML_ASSERT(ubatch.equal_seqs()); + GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); + + // MLA params + const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla; + const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla; + const int64_t kv_lora_rank = hparams.n_lora_kv; + // qk_rope_head_dim = 64 (from Kimi config) which is hparams.n_rot + // Confirmed from tensor shape: wkv_a_mqa [2304, 576] = [n_embd, kv_lora_rank + qk_rope_head_dim] + const int64_t n_embd_head_qk_rope = hparams.n_rot; // config.qk_rope_head_dim + const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope; // 192 - 64 = 128 + // Attention scale for MLA + const float kq_scale_mla = 1.0f / sqrtf((float)n_embd_head_k_mla); + + for (int il = 0; il < n_layer; ++il) { + const auto & layer = model.layers[il]; + ggml_tensor * inpSA = inpL; + + // Attention Norm + cur = build_norm(inpL, layer.attn_norm, NULL, LLM_NORM_RMS, il); + cb(cur, "attn_norm", il); + + // Check layer type by checking which tensors exist + // KDA layers have ssm_a_log tensor, MLA layers have wkv_a_mqa tensor + bool is_kda = (layer.ssm_a != nullptr); + bool is_mla = (layer.wkv_a_mqa != nullptr); + + if (is_kda) { + // === KDA Layer (Kimi Delta Attention) with Recurrent State === + // Reference: vLLM kda.py + const auto * mctx_cur = inp_rs->mctx; + const auto kv_head = mctx_cur->get_head(); + + // Get conv states from r_l tensor (Q, K, V each have separate state) + ggml_tensor * conv_states_all = mctx_cur->get_r_l(il); + cb(conv_states_all, "conv_states_all", il); + ggml_tensor * conv_state_all = build_rs(inp_rs, conv_states_all, hparams.n_embd_r(), n_seqs); + ggml_tensor * Qcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 0, cur, layer.wq, layer.ssm_q_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head); + ggml_tensor * Kcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 1, cur, layer.wk, layer.ssm_k_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head); + ggml_tensor * Vcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 2, cur, layer.wv, layer.ssm_v_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head); + + // g1 = -exp(A_log) * softplus(f_b(f_a(x)) + dt_bias) + ggml_tensor * f_a = ggml_mul_mat(ctx0, layer.ssm_f_a, cur); + ggml_tensor * g1 = ggml_mul_mat(ctx0, layer.ssm_f_b, f_a); + cb(g1, "g1 f_b(f_a(cur))", il); + g1 = ggml_add(ctx0, g1, layer.ssm_dt_b); + g1 = ggml_softplus(ctx0, g1); + g1 = ggml_reshape_3d(ctx0, g1, head_dim, n_head, n_tokens); + + // A_log shape is [1, n_head] or [1, n_head, 1, 1], need to broadcast to [head_dim, n_head, n_tokens]. No need to -exp(a_log) because it was done in convert_hf_to_gguf.py + // Reshape to [1, n_head, 1] for broadcasting with g1 [head_dim, n_head, n_tokens] + ggml_tensor * A = ggml_reshape_3d(ctx0, layer.ssm_a, 1, n_head, 1); + g1 = ggml_mul(ctx0, g1, A); + cb(g1, "kda_g1", il); + + // Compute beta (mixing coefficient) + ggml_tensor * beta = ggml_mul_mat(ctx0, layer.ssm_beta, cur); + beta = ggml_reshape_4d(ctx0, beta, n_head, 1, n_seq_tokens, n_seqs); + cb(beta, "kda_beta", il); + + // Reshape for KDA recurrence + // {n_embd, n_tokens} -> {n_embd, n_seq_tokens, n_seqs} + cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs); + + g1 = ggml_reshape_4d(ctx0, g1, head_dim, n_head, n_seq_tokens, n_seqs); + + // Get SSM state and compute KDA recurrence using ggml_kda_scan + ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il); + ggml_tensor * state = build_rs(inp_rs, ssm_states_all, hparams.n_embd_s(), n_seqs); + state = ggml_reshape_4d(ctx0, state, head_dim, head_dim, n_head, n_seqs); + std::pair attn_out = build_delta_net_unified(ctx0, Qcur, Kcur, Vcur, g1, beta, state, causal_mask, identity, diag_mask, il, CHUNK_SIZE, hparams.f_norm_rms_eps); + + ggml_tensor * output = attn_out.first; + ggml_tensor * new_state = attn_out.second; + cb(output, "attn_output", il); + cb(new_state, "new_state", il); + + // Update the recurrent states + ggml_build_forward_expand(gf, + ggml_cpy(ctx0, new_state, + ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs, + kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all)))); + + // Output gating g2 = g_b(g_a(x)) + ggml_tensor * cur_2d = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs); + ggml_tensor * g_a = ggml_mul_mat(ctx0, layer.ssm_g_a, cur_2d); + ggml_tensor * g2 = ggml_mul_mat(ctx0, layer.ssm_g_b, g_a); + cb(g2, "g2 g_b(g_a(cur_2d))", il); + g2 = ggml_reshape_3d(ctx0, g2, head_dim, n_head, n_seq_tokens * n_seqs); + + // Apply o_norm with sigmoid gating + // Note: Kimi model uses sigmoid gating, not SiLU (despite FusedRMSNormGated default being swish) + // Formula: output = RMSNorm(x) * sigmoid(g) + ggml_tensor * attn_out_final = ggml_reshape_3d(ctx0, output, head_dim, n_head, n_seq_tokens * n_seqs); + ggml_tensor * normed = build_norm(attn_out_final, layer.ssm_o_norm, nullptr, LLM_NORM_RMS, il); + cb(normed, "kda_normed", il); + ggml_tensor * gate = ggml_sigmoid(ctx0, g2); + ggml_tensor * gated = ggml_mul(ctx0, normed, gate); + + // Output projection + gated = ggml_cont_2d(ctx0, gated, d_inner, n_tokens); + cur = ggml_mul_mat(ctx0, layer.wo, gated); + cb(cur, "kda_out", il); + + } else if (is_mla) { + // === MLA Layer (Multi-head Latent Attention) without KV Cache === + // Reference: vLLM mla.py + // Step 1: Q projection and reshape + // vLLM Kimi: q = q_proj(hidden_states), then view as [n_tokens, n_head, qk_head_dim] + // Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM) + ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.wq, cur); + + // Step 2: KV compression + // kv_cmpr_pe = kv_a_proj_with_mqa(hidden_states) -> [kv_lora_rank + qk_rope_head_dim, n_tokens] + ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, layer.wkv_a_mqa, cur); + + // Split: kv_cmpr = kv_lora[:kv_lora_rank], k_pe = kv_lora[kv_lora_rank:] + ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens, + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0); + ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens, + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), + ggml_row_size(kv_cmpr_pe->type, kv_lora_rank)); + // Note: Kimi MLA does NOT apply RoPE (rotary_emb=None in vLLM) + // k_pe is used directly without RoPE + // Normalize kv_c + kv_cmpr = build_norm(kv_cmpr, layer.attn_kv_a_norm, nullptr, LLM_NORM_RMS, il); + + if (layer.wk_b && layer.wv_b) { // MLA KV cache enabled + // extract q_nope + ggml_tensor * q_nope = + ggml_view_3d(ctx0, Qcur, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla), + ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, 0); + cb(q_nope, "q_nope", il); + + // and {n_embd_head_qk_rope, n_head, n_tokens} + ggml_tensor * q_pe = ggml_view_3d( + ctx0, Qcur, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla), + ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, ggml_row_size(Qcur->type, n_embd_head_qk_nope)); + cb(q_pe, "q_pe", il); + + // {n_embd_head_qk_nope, n_tokens, n_head} + q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3); + cb(q_nope, "q_nope_perm", il); + + // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head} + ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, layer.wk_b, q_nope); + cb(q_nope_absorbed, "q_nope_absorbed", il); + + // {kv_lora_rank, n_head, n_tokens} + q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3); + cb(q_nope_absorbed, "q_nope_absorbed_perm", il); + + // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens} + // note: rope must go first for in-place context shifting in build_rope_shift() + Qcur = ggml_concat(ctx0, q_nope_absorbed, q_pe, 0); + cb(Qcur, "Qcur", il); + + kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens); + cb(kv_cmpr, "kv_cmpr_reshape", il); + + // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens} + ggml_tensor * Kcur = ggml_concat(ctx0, kv_cmpr, k_pe, 0); + cb(Kcur, "Kcur", il); + + // {kv_lora_rank, 1, n_tokens} + ggml_tensor * Vcur = kv_cmpr; + cb(Vcur, "Vcur", il); + + cur = build_attn(inp_attn, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, layer.wv_b, kq_scale_mla, il); + cb(cur, "mla_out", il); + } else { // MLA KV cache disabled. Fall back to MHA KV cache. + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k_mla, n_head, n_tokens); + cb(Qcur, "mla_Q", il); + // KV decompression: kv = kv_b_proj(kv_c_normed) + ggml_tensor * kv = ggml_mul_mat(ctx0, layer.wkv_b, kv_cmpr); + const int64_t kv_per_head = n_embd_head_qk_nope + n_embd_head_v_mla; + + // Split kv into k_nope and v + ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, + ggml_row_size(kv->type, kv_per_head), + ggml_row_size(kv->type, kv_per_head * n_head), 0); + ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v_mla, n_head, n_tokens, + ggml_row_size(kv->type, kv_per_head), + ggml_row_size(kv->type, kv_per_head * n_head), + ggml_row_size(kv->type, n_embd_head_qk_nope)); + k_nope = ggml_cont(ctx0, k_nope); + Vcur = ggml_cont(ctx0, Vcur); + cb(Vcur, "mla_V", il); + + // Concatenate k_nope + k_pe (broadcast k_pe to all heads) + // K = [k_nope, k_pe] where k_nope is [qk_nope_head_dim, n_head, n_tokens] + // and k_pe is [qk_rope_head_dim, 1, n_tokens] broadcast to all heads + // Need to broadcast k_pe from [qk_rope, 1, n_tokens] to [qk_rope, n_head, n_tokens] + ggml_tensor * k_pe_target = ggml_new_tensor_3d(ctx0, k_pe->type, n_embd_head_qk_rope, n_head, n_tokens); + ggml_tensor * k_pe_repeated = ggml_repeat(ctx0, k_pe, k_pe_target); + ggml_tensor * Kcur = ggml_concat(ctx0, k_pe_repeated, k_nope, 0); + cb(Kcur, "mla_K", il); + + // Direct softmax attention (with MHA KV cache) + // Use build_attn with inp_attn for proper mask handling + cur = build_attn(inp_attn, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale_mla, il); + cb(cur, "mla_out", il); + } + } else { + // Unknown layer type - this should not happen + GGML_ABORT("Kimi layer is neither KDA nor MLA - missing required tensors"); + } + + // On last layer, select only the output tokens + if (il == n_layer - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // Residual + ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // FFN Norm + cur = build_norm(ffn_inp, layer.ffn_norm, NULL, LLM_NORM_RMS, il); + cb(cur, "ffn_norm", il); + + if ((uint32_t) il < hparams.n_layer_dense_lead) { + // Dense FFN layer + cur = build_ffn(cur, + layer.ffn_up, NULL, NULL, + layer.ffn_gate, NULL, NULL, + layer.ffn_down, NULL, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + } else { + // MoE layer + // Kimi uses moe_renormalize=True and routed_scaling_factor (stored as expert_weights_scale) = 2.446 + ggml_tensor * moe_out = build_moe_ffn(cur, + layer.ffn_gate_inp, + layer.ffn_up_exps, + layer.ffn_gate_exps, + layer.ffn_down_exps, + layer.ffn_exp_probs_b, + hparams.n_expert, + hparams.n_expert_used, + LLM_FFN_SILU, true, + true, hparams.expert_weights_scale, + (llama_expert_gating_func_type) hparams.expert_gating_func, + il); + cb(moe_out, "ffn_moe_out", il); + + // Shared expert + { + ggml_tensor * ffn_shexp = build_ffn(cur, + layer.ffn_up_shexp, NULL, NULL, + layer.ffn_gate_shexp, NULL, NULL, + layer.ffn_down_shexp, NULL, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(ffn_shexp, "ffn_shexp", il); + + cur = ggml_add(ctx0, moe_out, ffn_shexp); + cb(cur, "ffn_out", il); + } + } + // Residual + cur = ggml_add(ctx0, cur, ffn_inp); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + inpL = cur; + } + cur = inpL; + + // Final Norm + cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // Output + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); +} diff --git a/src/models/qwen3next.cpp b/src/models/qwen3next.cpp index 57b6659baf..d533e84ed8 100644 --- a/src/models/qwen3next.cpp +++ b/src/models/qwen3next.cpp @@ -4,7 +4,7 @@ #define CHUNK_SIZE 64 llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) : - llm_graph_context_mamba(params), model(model) { + llm_graph_context_delta(params), model(model) { ggml_tensor * cur; ggml_tensor * inpL; @@ -86,356 +86,6 @@ llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_gr ggml_build_forward_expand(gf, cur); } -// utility to get one slice from the third dimension -// input dim: [x, y, c, b] -// output dim: [x, y, 1, b] -static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) { - return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3], - t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c); -} - -std::pair llm_build_qwen3next::build_delta_net_chunking( - ggml_tensor * q, - ggml_tensor * k, - ggml_tensor * v, - ggml_tensor * g, - ggml_tensor * beta, - ggml_tensor * state, - ggml_tensor * causal_mask, - ggml_tensor * identity, - ggml_tensor * diag_mask, - int il) { - const int64_t S_k = q->ne[0]; - const int64_t H_k = q->ne[1]; - const int64_t n_tokens = q->ne[2]; - const int64_t n_seqs = q->ne[3]; - - const int64_t S_v = v->ne[0]; - const int64_t H_v = v->ne[1]; - - GGML_ASSERT(v->ne[2] == n_tokens); - GGML_ASSERT(k->ne[2] == n_tokens); - GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs); - GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs); - GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs); - - GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs); - GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs); - - GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case - - const float eps_norm = hparams.f_norm_rms_eps; - - q = ggml_l2_norm(ctx0, q, eps_norm); - k = ggml_l2_norm(ctx0, k, eps_norm); - - const float scale = 1.0f / sqrtf(S_v); - - q = ggml_scale(ctx0, q, scale); - - beta = ggml_sigmoid(ctx0, beta); - - cb(q, "q_in", il); - cb(k, "k_in", il); - cb(v, "v_in", il); - cb(beta, "beta_in", il); - cb(g, "g_in", il); - - q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs); - k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs); - v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs); - g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs); - - beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3)); - state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs); - - cb(q, "q_perm", il); - cb(k, "k_perm", il); - cb(v, "v_perm", il); - cb(beta, "beta_perm", il); - cb(g, "g_perm", il); - cb(state, "state_in", il); - - GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs); - GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs); - GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs); - GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs); - - // Do padding - const int64_t chunk_size = CHUNK_SIZE; - - const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size; - const int64_t n_chunks = (n_tokens + pad) / chunk_size; - - q = ggml_pad(ctx0, q, 0, pad, 0, 0); - k = ggml_pad(ctx0, k, 0, pad, 0, 0); - v = ggml_pad(ctx0, v, 0, pad, 0, 0); - g = ggml_pad(ctx0, g, pad, 0, 0, 0); - beta = ggml_pad(ctx0, beta, 0, pad, 0, 0); - - cb(q, "q_pad", il); - cb(k, "k_pad", il); - cb(v, "v_pad", il); - cb(beta, "beta_pad", il); - cb(g, "g_pad", il); - - ggml_tensor * v_beta = ggml_mul(ctx0, v, beta); - ggml_tensor * k_beta = ggml_mul(ctx0, k, beta); - - cb(v_beta, "v_beta", il); - cb(k_beta, "k_beta", il); - - q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs); - k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs); - k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs); - v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs); - v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs); - - g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs); - beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs); - - ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g); - cb(g_cumsum, "g_cumsum", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs) - - ggml_tensor * gcs_i = g_cumsum; // ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs); - ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs); - - ggml_tensor * gcs_j_broadcast = - ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs); - - ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i); - cb(decay_mask, "decay_mask", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs) - - decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); - decay_mask = ggml_exp(ctx0, decay_mask); - decay_mask = ggml_mul(ctx0, decay_mask, diag_mask); - - ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta); - - ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask); - ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask)); - cb(attn, "attn_pre_solve", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs) - - ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask); - ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower); - - ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false); - attn = ggml_mul(ctx0, lin_solve, causal_mask); - attn = ggml_add(ctx0, attn, identity); - cb(attn, "attn_solved", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs) - - v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn); - - ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum)); - ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t); - - ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp); - cb(kbeta_gexp, "kbeta_gexp", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs) - - ggml_tensor * k_cumdecay = - ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp))))); - cb(k_cumdecay, "k_cumdecay", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs) - - ggml_tensor * attn_kq = ggml_mul_mat(ctx0, k, q); - attn_kq = ggml_mul(ctx0, attn_kq, decay_mask); - attn_kq = ggml_mul(ctx0, attn_kq, diag_mask); - cb(attn_kq, "attn_kq", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs) - - - // vectorized calculation of key_gdiff - // improved from the chunked version: - // g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1) - // g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp() - // key_gdiff = key * g_diff.unsqueeze(-1) - // kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new - // last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew - - // get last element in g_cumsum along chunk_size dimension (ne0) - // example: [[x, y, z, ..., last], ...] -> [[last], ...] - ggml_tensor * g_last = ggml_view_4d(ctx0, g_cumsum, 1, 1, g_cumsum->ne[2], g_cumsum->ne[3], - g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3], - (g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum)); - g_last = ggml_cont(ctx0, g_last); - cb(g_last, "g_last", il); // shape: (1, 1, n_chunks, H_v * n_seqs) - - ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last); - cb(g_last_exp, "g_last_exp", il); // shape: (1, 1, n_chunks, H_v * n_seqs) - - ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last)); - cb(g_diff, "g_diff", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs) - - ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff); - ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp); - cb(key_gdiff, "key_gdiff", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs) - - - // state to be updated per chunk - ggml_tensor * new_state = state; // ggml_dup(ctx0, state); - cb(new_state, "new_state", il); // shape: (S_v, S_v, H_v, n_seqs) - - // shape after loop of chunks: (S_v, chunk_size, n_chunks, H_v * n_seqs) - ggml_tensor * core_attn_out = nullptr; - - for (int64_t chunk = 0; chunk < n_chunks; chunk++) { - // shape: (S_k, chunk_size, 1, H_k * n_seqs) - ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk); // (no cont), next op: ggml_mul - - // shape: (S_v, chunk_size, 1, H_v * n_seqs) - ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk); // (no cont), next op: ggml_repeat - - // shape: (chunk_size, 1, n_chunks, H_v * n_seqs) - ggml_tensor * gexp_chunk = get_slice_2d(ctx0, gexp, chunk); // (no cont), next op: ggml_mul - - // shape: (chunk_size, 1, H_v * n_seqs) - ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk); // (no cont), next op: ggml_mul_mat - - // attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0) - // replaced by precomputed attn_kq - ggml_tensor * attn_chunk = get_slice_2d(ctx0, attn_kq, chunk); - cb(attn_chunk, "attn_chunk", il); - - ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs); - - // v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state - ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk); - cb(v_prime, "v_prime_chunk", il); // shape: (S_v, 1, H_v * n_seqs) - - // v_new = v_i - v_prime - ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime); - ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new)); - cb(v_new, "v_new_chunk", il); - - // attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state - ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk); - ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp); - cb(attn_inter, "attn_inter_chunk", il); - - // core_attn_out[:, :, i] = attn_inter + attn @ v_new - ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_chunk); - cb(v_attn, "v_attn_chunk", il); - - ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn); - cb(core_attn_out_chunk, "core_attn_out_chunk", il); // shape: (S_v, chunk_size, 1, H_v * n_seqs) - - core_attn_out = core_attn_out == nullptr - ? core_attn_out_chunk - : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2); - - // kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new - ggml_tensor * k_gdiff = ggml_cont(ctx0, get_slice_2d(ctx0, key_gdiff, chunk)); - //ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, k_gdiff, v_new); // this is slower on metal, why? - ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, k_gdiff))); - - // last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew - ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk)); - new_state = ggml_add(ctx0, - ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last_chunk, gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs)), - ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs)); - } - - // truncate padded tokens - ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out, - S_v, n_tokens, H_v, n_seqs, - ggml_row_size(core_attn_out->type, S_v), - ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks), - ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0); - output_tokens = ggml_cont(ctx0, output_tokens); - cb(output_tokens, "output_tokens", il); - - // permute back to (S_v, H_v, n_tokens, n_seqs) - output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3); - output_tokens = ggml_cont(ctx0, output_tokens); - - return {output_tokens, new_state}; -} - -std::pair llm_build_qwen3next::build_delta_net_autoregressive( - ggml_tensor * q, - ggml_tensor * k, - ggml_tensor * v, - ggml_tensor * g, - ggml_tensor * beta, - ggml_tensor * state, - int il) { - const int64_t S_k = q->ne[0]; - const int64_t H_k = q->ne[1]; - const int64_t n_tokens = q->ne[2]; - const int64_t n_seqs = q->ne[3]; - - const int64_t S_v = v->ne[0]; - const int64_t H_v = v->ne[1]; - - GGML_ASSERT(n_tokens == 1); // This function is optimized for single token processing - GGML_ASSERT(v->ne[2] == n_tokens); - GGML_ASSERT(k->ne[2] == n_tokens); - GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs); - GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs); - GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs); - - GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs); - GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs); - - GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case - - const float eps_norm = hparams.f_norm_rms_eps; - - q = ggml_l2_norm(ctx0, q, eps_norm); - k = ggml_l2_norm(ctx0, k, eps_norm); - - const float scale = 1.0f / sqrtf(S_v); - - q = ggml_scale(ctx0, q, scale); - beta = ggml_sigmoid(ctx0, beta); - - cb(q, "q_in", il); - cb(k, "k_in", il); - cb(v, "v_in", il); - cb(beta, "beta_in", il); - cb(g, "g_in", il); - - state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs); - - ggml_tensor * g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs); - ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs); - - // Apply exponential to g_t - g_t = ggml_exp(ctx0, g_t); - - // Apply the gated delta rule for the single timestep - // last_recurrent_state = last_recurrent_state * g_t - state = ggml_mul(ctx0, state, g_t); - - // kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2) - ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs); - ggml_tensor * kv_mem = ggml_mul(ctx0, state, k_t_unsqueezed); - // we need to sum over dim=-2, so we transpose, sum, then transpose again - kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem)))); - - // v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v) - ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs); - // delta = (v_t - kv_mem) * beta_t - ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem); // both should be [S_v, 1, H_v, n_seqs] - ggml_tensor * delta = ggml_mul(ctx0, v_diff, beta_t); - - // last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta - ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta); - state = ggml_add(ctx0, state, k_t_delta); - - // Compute the attention output - // core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2) - ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs); // unsqueeze q_t - ggml_tensor * state_q = ggml_mul(ctx0, state, q_t_unsqueezed); - // again, since it's over dim = -2, transpose, sum, transpose back - ggml_tensor * core_attn_out = - ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q)))); - - // core_attn_out should be [S_v, 1, H_v, n_seqs] after this - cb(core_attn_out, "output_tokens", il); - cb(state, "new_state", il); - - return {core_attn_out, state}; -} - ggml_tensor * llm_build_qwen3next::build_norm_gated( ggml_tensor * input, ggml_tensor * weights, @@ -746,7 +396,7 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear( v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs); ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs); - state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim * num_v_heads, 1, n_seqs); + state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim, num_v_heads, n_seqs); cb(state, "state_predelta", il); // if head keys and value keys are different, repeat to force tensors into matching shapes @@ -775,13 +425,10 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear( cb(k_conv, "k_conv_predelta", il); cb(v_conv, "v_conv_predelta", il); - // Choose between build_delta_net_chunking, build_delta_net_recurrent, and build_delta_net_autoregressive based on n_tokens - std::pair attn_out; // pair of (output, new_state) - if (n_seq_tokens == 1) { - attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il); - } else { - attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il); - } + std::pair attn_out = build_delta_net_unified(ctx0, q_conv, k_conv, v_conv, + gate, beta, state, causal_mask, identity, diag_mask, + il, CHUNK_SIZE, hparams.f_norm_rms_eps); + ggml_tensor * output = attn_out.first; ggml_tensor * new_state = attn_out.second; cb(output, "attn_output", il); From 240bd4b29e309dfe564ceaa6e763d585a53cd45d Mon Sep 17 00:00:00 2001 From: Yee Man Chan Date: Tue, 27 Jan 2026 14:11:27 +0800 Subject: [PATCH 2/2] working unified delta net --- src/llama-hparams.cpp | 14 ++++++++++++++ src/llama-hparams.h | 3 +++ 2 files changed, 17 insertions(+) diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp index 5f1df995f3..d538c56216 100644 --- a/src/llama-hparams.cpp +++ b/src/llama-hparams.cpp @@ -139,6 +139,13 @@ uint32_t llama_hparams::n_embd_r() const { return n_embd * (n_shortconv_l_cache - 1); } + if (kda_head_dim != 0) { + // for Kimi KDA layers + // Conv state for Q, K, V: 3 * (d_conv - 1) * n_head * head_dim + const uint32_t d_inner = n_head() * kda_head_dim; // 32 * 128 = 4096 + return 3 * (ssm_d_conv > 0 ? ssm_d_conv - 1 : 3) * d_inner; + } + // TODO: maybe support other convolution strides than 1 // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed // Corresponds to Mamba's conv_states size @@ -151,6 +158,13 @@ uint32_t llama_hparams::n_embd_s() const { return n_embd * wkv_head_size; } + if (kda_head_dim != 0) { + // for Kimi KDA layers + // Full recurrent state: head_dim * head_dim * n_head + // h tensor shape for delta attention: [head_dim, head_dim, n_head] + return kda_head_dim * kda_head_dim * n_head(); // 128 * 128 * 32 = 524288 + } + // corresponds to Mamba's ssm_states size return ssm_d_state * ssm_d_inner; } diff --git a/src/llama-hparams.h b/src/llama-hparams.h index 2bf8665520..1876e294f6 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -137,6 +137,9 @@ struct llama_hparams { uint32_t ssm_dt_rank = 0; uint32_t ssm_n_group = 0; + // for Kimi Linear KDA + uint32_t kda_head_dim = 0; + // for hybrid state space models std::array recurrent_layer_arr;