additional tuning for qwen models

This commit is contained in:
jiachengjason 2026-01-19 12:31:42 -05:00
parent b2d628dc51
commit 57e1eaf716
2 changed files with 32 additions and 4 deletions

View File

@ -2141,6 +2141,27 @@ static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) {
return use_mul_mat_vec_f;
}
static bool ggml_cuda_should_use_mmvq(ggml_type type, int cc, int64_t ncols_dst) {
if (ncols_dst > MMVQ_MAX_BATCH_SIZE) {
return false;
}
if (GGML_CUDA_CC_IS_RDNA4(cc)) {
switch (type) {
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
return ncols_dst <= 4;
default:
break;
}
}
return true;
}
static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) {
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
@ -2150,11 +2171,11 @@ static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) {
ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) &&
src0->view_src;
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
dst->type == GGML_TYPE_F32 && ggml_cuda_should_use_mmvq(src0->type, cc, src1->ne[1]);
// fusion is not universally faster on Pascal
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (cc <= GGML_CUDA_CC_PASCAL) {
return false;
}
@ -2211,6 +2232,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
const int cc = ggml_cuda_info().devices[id].cc;
const int warp_size = ggml_cuda_info().devices[id].warp_size;
use_mul_mat_vec_q = use_mul_mat_vec_q && ggml_cuda_should_use_mmvq(src0->type, cc, src1->ne[1]);
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1], /*n_experts=*/0);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);
@ -2219,6 +2241,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
} else {
const int cc = ggml_cuda_info().devices[ctx.device].cc;
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
use_mul_mat_vec_q = use_mul_mat_vec_q && ggml_cuda_should_use_mmvq(src0->type, cc, src1->ne[1]);
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1], /*n_experts=*/0);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);

View File

@ -357,8 +357,12 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11, int64_t
}
if (GGML_CUDA_CC_IS_RDNA4(cc)){
if (type == GGML_TYPE_IQ2_S || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS) {
return ne11 <= 128;
}
if (type == GGML_TYPE_MXFP4) return ne11 <= 256;
if (n_experts > 64 || ne11 <= 128) {
if (n_experts >= 64) {
return true;
}
@ -366,7 +370,8 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11, int64_t
return true;
}
if (ne11 <= 256 && (type == GGML_TYPE_Q4_K || type == GGML_TYPE_Q5_K)) {
if (ne11 <= 256 && (type == GGML_TYPE_Q4_K || type == GGML_TYPE_Q5_K ||
type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S)) {
return true;
}