llama: offload output layer to GPU first (#18148)

This commit is contained in:
Johannes Gäßler 2025-12-18 08:12:18 +01:00 committed by GitHub
parent 9cff4cc554
commit 57c1e05643
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 27 additions and 37 deletions

View File

@ -2378,10 +2378,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
const int i_gpu_start = std::max(int(hparams.n_layer) + 1 - n_gpu_layers, 0);
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, int(n_layer) + 1);
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
const bool is_swa = il < int(hparams.n_layer) && hparams.is_swa(il);
if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
return {cpu_dev, &pimpl->cpu_buft_list};
@ -6693,10 +6693,12 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
if (llama_supports_gpu_offload()) {
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) {
int n_repeating = n_gpu;
if (n_repeating > 0) {
LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
n_repeating--;
}
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_repeating);
const int max_backend_supported_layers = hparams.n_layer + 1;
const int max_offloadable_layers = hparams.n_layer + 1;

View File

@ -292,10 +292,6 @@ static void llama_params_fit_impl(
if (mparams->split_mode == LLAMA_SPLIT_MODE_ROW) {
throw std::runtime_error("changing weight allocation for LLAMA_SPLIT_MODE_ROW not implemented, abort");
}
if (hp_ngl < 2*nd) {
throw std::runtime_error("model has only " + std::to_string(hp_ngl) + " layers but need at least "
+ std::to_string(2*nd) + " to fit memory for " + std::to_string(nd) + " devices, abort");
}
}
if (!tensor_buft_overrides) {
throw std::runtime_error("did not provide buffer to set tensor_buft_overrides, abort");
@ -362,8 +358,7 @@ static void llama_params_fit_impl(
auto set_ngl_tensor_split_tbo = [&](
const std::vector<ngl_t> & ngl_per_device,
const std::vector<ggml_backend_buffer_type_t> & overflow_bufts,
llama_model_params & mparams,
const bool add_nonrepeating) {
llama_model_params & mparams) {
mparams.n_gpu_layers = 0;
for (size_t id = 0; id < nd; id++) {
mparams.n_gpu_layers += ngl_per_device[id].n_layer;
@ -371,13 +366,9 @@ static void llama_params_fit_impl(
tensor_split[id] = ngl_per_device[id].n_layer;
}
}
assert(uint32_t(mparams.n_gpu_layers) <= hp_ngl);
uint32_t il0 = hp_ngl - mparams.n_gpu_layers; // start index for tensor buft overrides
assert(uint32_t(mparams.n_gpu_layers) <= hp_ngl + 1);
uint32_t il0 = hp_ngl + 1 - mparams.n_gpu_layers; // start index for tensor buft overrides
if (add_nonrepeating) {
mparams.n_gpu_layers += 1;
tensor_split[nd - 1] += 1;
}
mparams.tensor_split = tensor_split;
size_t itbo = 0;
@ -408,10 +399,9 @@ static void llama_params_fit_impl(
auto get_memory_for_layers = [&](
const char * func_name,
const std::vector<ngl_t> & ngl_per_device,
const std::vector<ggml_backend_buffer_type_t> & overflow_bufts,
const bool add_nonrepeating) -> std::vector<int64_t> {
const std::vector<ggml_backend_buffer_type_t> & overflow_bufts) -> std::vector<int64_t> {
llama_model_params mparams_copy = *mparams;
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, mparams_copy, add_nonrepeating);
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, mparams_copy);
const dmds_t dmd_nl = llama_get_device_memory_data(
path_model, &mparams_copy, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level);
@ -469,9 +459,6 @@ static void llama_params_fit_impl(
LLAMA_LOG_DEBUG("%s: id=%zu, target=%" PRId64 " MiB\n", __func__, id, targets[id]/MiB);
}
// whether for the optimal memory use we expect to load at least some MoE tensors:
const bool partial_moe = hp_nex > 0 && global_surplus_cpu_moe > 0;
std::vector<ggml_backend_buffer_type_t> overflow_bufts; // which bufts the partial layers of a device overflow to:
overflow_bufts.reserve(nd);
for (size_t id = 0; id < nd - 1; ++id) {
@ -480,7 +467,7 @@ static void llama_params_fit_impl(
overflow_bufts.push_back(ggml_backend_cpu_buffer_type());
std::vector<ngl_t> ngl_per_device(nd);
std::vector<int64_t> mem = get_memory_for_layers(__func__, ngl_per_device, overflow_bufts, partial_moe);
std::vector<int64_t> mem = get_memory_for_layers(__func__, ngl_per_device, overflow_bufts);
if (hp_nex > 0) {
for (size_t id = 0; id < nd; id++) {
ngl_per_device[id].overflow_type = LAYER_FRACTION_MOE;
@ -493,13 +480,14 @@ static void llama_params_fit_impl(
// - interpolate the memory use / layer between low and high linearly to get a guess where it meets our target
// - check memory use of our guess, replace either the low or high bound
// - once we only have a difference of a single layer, stop and return the lower bound that just barely still fits
// - the last device has the output layer, which cannot be a partial layer
if (hp_nex == 0) {
LLAMA_LOG_INFO("%s: filling dense layers back-to-front:\n", __func__);
} else {
LLAMA_LOG_INFO("%s: filling dense-only layers back-to-front:\n", __func__);
}
for (int id = nd - 1; id >= 0; id--) {
uint32_t n_unassigned = hp_ngl;
uint32_t n_unassigned = hp_ngl + 1;
for (size_t jd = id + 1; jd < nd; ++jd) {
assert(n_unassigned >= ngl_per_device[jd].n_layer);
n_unassigned -= ngl_per_device[jd].n_layer;
@ -508,10 +496,10 @@ static void llama_params_fit_impl(
std::vector<ngl_t> ngl_per_device_high = ngl_per_device;
ngl_per_device_high[id].n_layer = n_unassigned;
if (hp_nex > 0) {
ngl_per_device_high[id].n_part = ngl_per_device_high[id].n_layer;
ngl_per_device_high[id].n_part = size_t(id) < nd - 1 ? ngl_per_device_high[id].n_layer : ngl_per_device_high[id].n_layer - 1;
}
if (ngl_per_device_high[id].n_layer > 0) {
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts, partial_moe);
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts);
if (mem_high[id] > targets[id]) {
assert(ngl_per_device_high[id].n_layer > ngl_per_device[id].n_layer);
uint32_t delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer;
@ -526,7 +514,7 @@ static void llama_params_fit_impl(
if (hp_nex) {
ngl_per_device_test[id].n_part += step_size;
}
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
if (mem_test[id] <= targets[id]) {
ngl_per_device = ngl_per_device_test;
@ -553,7 +541,7 @@ static void llama_params_fit_impl(
__func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, mem[id]/MiB, projected_margin/MiB);
}
if (hp_nex == 0 || global_surplus_cpu_moe <= 0) {
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams, partial_moe);
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams);
return;
}
@ -576,13 +564,13 @@ static void llama_params_fit_impl(
for (size_t id = 0; id <= id_dense_start; id++) {
std::vector<ngl_t> ngl_per_device_high = ngl_per_device;
for (size_t jd = id_dense_start; jd < nd; jd++) {
const uint32_t n_layer_move = ngl_per_device_high[jd].n_layer;
const uint32_t n_layer_move = jd < nd - 1 ? ngl_per_device_high[jd].n_layer : ngl_per_device_high[jd].n_layer - 1;
ngl_per_device_high[id].n_layer += n_layer_move;
ngl_per_device_high[jd].n_layer -= n_layer_move;
ngl_per_device_high[jd].n_part = 0;
}
size_t id_dense_start_high = nd - 1;
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts, partial_moe);
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts);
if (mem_high[id] > targets[id]) {
assert(ngl_per_device_high[id].n_layer >= ngl_per_device_high[id].n_part);
@ -610,7 +598,7 @@ static void llama_params_fit_impl(
break;
}
}
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
if (mem_test[id] <= targets[id]) {
ngl_per_device = ngl_per_device_test;
@ -637,7 +625,7 @@ static void llama_params_fit_impl(
}
// try to fit at least part of one more layer
if (ngl_per_device[id_dense_start].n_layer > 0) {
if (ngl_per_device[id_dense_start].n_layer > (id < nd - 1 ? 0 : 1)) {
std::vector<ngl_t> ngl_per_device_test = ngl_per_device;
size_t id_dense_start_test = id_dense_start;
ngl_per_device_test[id_dense_start_test].n_layer--;
@ -649,7 +637,7 @@ static void llama_params_fit_impl(
}
ngl_per_device_test[id].overflow_type = LAYER_FRACTION_UP;
LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_UP\n", __func__);
std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
if (mem_test[id] < targets[id]) {
ngl_per_device = ngl_per_device_test;
mem = mem_test;
@ -659,7 +647,7 @@ static void llama_params_fit_impl(
ngl_per_device_test[id].overflow_type = LAYER_FRACTION_GATE;
LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_GATE\n", __func__);
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
if (mem_test[id] < targets[id]) {
ngl_per_device = ngl_per_device_test;
mem = mem_test;
@ -670,7 +658,7 @@ static void llama_params_fit_impl(
} else {
ngl_per_device_test[id].overflow_type = LAYER_FRACTION_ATTN;
LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_ATTN\n", __func__);
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
if (mem_test[id] < targets[id]) {
ngl_per_device = ngl_per_device_test;
mem = mem_test;
@ -687,7 +675,7 @@ static void llama_params_fit_impl(
__func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB);
}
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams, partial_moe);
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams);
}
bool llama_params_fit(