graph : utilize `ggml_build_forward_select()` to avoid reallocations (#18898)

* graph : avoid branches between embedding and token inputs

* models : make deepstack graphs (e.g. Qwen3 VL) have constant topology

* ci : enable -DGGML_SCHED_NO_REALLOC=ON for server CI

* cont : pad token embeddings to n_embd_inp
This commit is contained in:
Georgi Gerganov 2026-01-23 18:22:34 +02:00 committed by GitHub
parent cb6caca191
commit 557515be1e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 69 additions and 53 deletions

View File

@ -72,7 +72,7 @@ jobs:
- name: Build
id: cmake_build
run: |
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
@ -108,7 +108,7 @@ jobs:
- name: Build
id: cmake_build
run: |
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup

View File

@ -2903,7 +2903,7 @@ void llama_context::opt_epoch_iter(
};
ctx_compute_opt = ggml_init(params);
}
ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits());
ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_inp_tokens(), res->get_logits());
ggml_opt_alloc(opt_ctx, train);
res->set_inputs(&ubatch);

View File

@ -23,7 +23,8 @@ void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
}
if (ubatch->embd) {
const int64_t n_embd = embd->ne[0];
GGML_ASSERT(n_embd == embd->ne[0]);
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
@ -33,8 +34,8 @@ void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
bool res = true;
res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[1] == params.ubatch.n_tokens);
res &= (!params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
res &= (!params.ubatch.embd) || (embd && embd->ne[1] == params.ubatch.n_tokens);
return res;
}
@ -634,7 +635,8 @@ int64_t llm_graph_result::get_max_nodes() const {
}
void llm_graph_result::reset() {
t_tokens = nullptr;
t_inp_tokens = nullptr;
t_inp_embd = nullptr;
t_logits = nullptr;
t_embd = nullptr;
t_embd_pooled = nullptr;
@ -1338,17 +1340,29 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd_inp();
const int64_t n_embd_inp = hparams.n_embd_inp();
const int64_t n_embd = hparams.n_embd;
auto inp = std::make_unique<llm_graph_input_embd>();
assert(n_embd_inp >= n_embd);
ggml_tensor * cur = nullptr;
auto inp = std::make_unique<llm_graph_input_embd>(n_embd_inp);
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_inp_tokens = inp->tokens;
inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd_inp, ubatch.n_tokens);
cb(inp->embd, "inp_embd", -1);
ggml_set_input(inp->embd);
// select one of the 2 inputs, based on the batch contents
// ref: https://github.com/ggml-org/llama.cpp/pull/18550
std::array<ggml_tensor *, 2> inps;
// token embeddings path (ubatch.token != nullptr)
{
auto & cur = inps[0];
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
@ -1369,19 +1383,36 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
cur = ggml_add(ctx0, cur, inpL_delta);
}
} else {
inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
ggml_set_input(inp->embd);
if (n_embd_inp != n_embd) {
cur = ggml_pad(ctx0, cur, hparams.n_embd_inp() - n_embd, 0, 0, 0);
}
}
// vector embeddings path (ubatch.embd != nullptr)
{
auto & cur = inps[1];
cur = inp->embd;
}
assert(ggml_are_same_shape (inps[0], inps[1]));
assert(ggml_are_same_stride(inps[0], inps[1]));
ggml_tensor * cur = ggml_build_forward_select(gf, inps.data(), inps.size(), ubatch.token ? 0 : 1);
if (n_embd_inp != n_embd) {
cur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0);
}
res->t_inp_embd = cur;
// For Granite architecture
if (hparams.f_embedding_scale != 0.0f) {
cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
}
cb(cur, "inp_embd", -1);
cb(cur, "embd", -1);
res->add_input(std::move(inp));
@ -1480,7 +1511,7 @@ ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
//}
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp();
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
ggml_set_input(cur);

View File

@ -106,7 +106,7 @@ using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
class llm_graph_input_embd : public llm_graph_input_i {
public:
llm_graph_input_embd() = default;
llm_graph_input_embd(int64_t n_embd) : n_embd(n_embd) {}
virtual ~llm_graph_input_embd() = default;
void set_input(const llama_ubatch * ubatch) override;
@ -115,6 +115,8 @@ public:
ggml_tensor * tokens = nullptr; // I32 [n_batch]
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
const int64_t n_embd = 0;
};
class llm_graph_input_pos : public llm_graph_input_i {
@ -566,7 +568,7 @@ public:
virtual ~llm_graph_result() = default;
ggml_tensor * get_tokens() const { return t_tokens; }
ggml_tensor * get_inp_tokens() const { return t_inp_tokens; }
ggml_tensor * get_logits() const { return t_logits; }
ggml_tensor * get_embd() const { return t_embd; }
ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }
@ -593,7 +595,8 @@ public:
void set_params(const llm_graph_params & params);
// important graph nodes
ggml_tensor * t_tokens = nullptr;
ggml_tensor * t_inp_tokens = nullptr;
ggml_tensor * t_inp_embd = nullptr; // [n_embd_inp, n_tokens]
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;

View File

@ -245,12 +245,12 @@ ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
// equivalent to get_per_layer_inputs() in python code
// output shape: [n_embd_altup, n_layer, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
auto inp = std::make_unique<llm_graph_input_embd>();
auto inp = std::make_unique<llm_graph_input_embd>(n_embd);
ggml_tensor * inp_per_layer;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
res->t_inp_tokens = inp->tokens;
inp_per_layer = ggml_get_rows(ctx0, model.tok_embd_per_layer, inp->tokens);
inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, n_tokens);
inp_per_layer = ggml_scale(ctx0, inp_per_layer, sqrtf((float) n_embd_altup));

View File

@ -2,7 +2,8 @@
llm_build_qwen3vlmoe::llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -16,17 +17,6 @@ llm_build_qwen3vlmoe::llm_build_qwen3vlmoe(const llama_model & model, const llm_
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
if (ubatch.embd) {
// Image input: split main embd and deepstack embds
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
for (size_t i = 0; i < n_deepstack_layers; i++) {
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
}
inpL = inpL_main;
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@ -120,8 +110,9 @@ llm_build_qwen3vlmoe::llm_build_qwen3vlmoe(const llama_model & model, const llm_
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
cur = ggml_add(ctx0, cur, deepstack_features[il]);
if (il < (int) n_deepstack_layers) {
ggml_tensor * ds = ggml_view_2d(ctx0, res->t_inp_embd, n_embd, n_tokens, res->t_inp_embd->nb[1], (il + 1) * n_embd * sizeof(float));
cur = ggml_add(ctx0, cur, ds);
cb(cur, "deepstack_out", il);
}

View File

@ -2,7 +2,8 @@
llm_build_qwen3vl::llm_build_qwen3vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -16,17 +17,6 @@ llm_build_qwen3vl::llm_build_qwen3vl(const llama_model & model, const llm_graph_
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
if (ubatch.embd) {
// Image input: split main embd and deepstack embds
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
for (size_t i = 0; i < n_deepstack_layers; i++) {
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
}
inpL = inpL_main;
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@ -113,8 +103,9 @@ llm_build_qwen3vl::llm_build_qwen3vl(const llama_model & model, const llm_graph_
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
cur = ggml_add(ctx0, cur, deepstack_features[il]);
if (il < (int) n_deepstack_layers) {
ggml_tensor * ds = ggml_view_2d(ctx0, res->t_inp_embd, n_embd, n_tokens, res->t_inp_embd->nb[1], (il + 1) * n_embd * sizeof(float));
cur = ggml_add(ctx0, cur, ds);
cb(cur, "deepstack_out", il);
}