minor update and add direct conv in benchmarking

This commit is contained in:
bssrdf 2025-09-24 21:48:20 -04:00
parent 2ec76aa8f3
commit 53a2ccbe12
2 changed files with 79 additions and 11 deletions

View File

@ -185,9 +185,10 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
#pragma unroll
for (int i = 0; i < 8; ++i){
auto weight_frag_i = ggml_cuda_cast<float>(weight_frag[subcrs % 2][i]);
#pragma unroll
for (int j = 0; j < 8; ++j){
output_frag[i][j] += ggml_cuda_cast<float>(weight_frag[subcrs % 2][i]) * input_frag[subcrs % 2][j];
output_frag[i][j] += weight_frag_i * input_frag[subcrs % 2][j];
}
}
}

View File

@ -52,8 +52,8 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
}
// Convert adata to fp16 format
// std::vector<ggml_fp16_t> hadata(KW * KH * IC * OC);
// ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * IC * OC);
std::vector<ggml_fp16_t> hadata(KW * KH * IC * OC);
ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * IC * OC);
// Initialize bdata
std::vector<float> bdata(IW * IH * IC * N);
@ -63,7 +63,8 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
size_t buffer_size = 0;
{
buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a
// buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a
buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F16); // tensor a
buffer_size += IW * IH * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b
buffer_size += 1024; // overhead
}
@ -111,7 +112,7 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
model.ctx = ggml_init(params);
// create tensors
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, KW, KH, IC, OC);
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F16, KW, KH, IC, OC);
model.b = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, IW, IH, IC, N);
// create a allocator
@ -122,9 +123,9 @@ void load_model(test_model & model, int ic, int oc, int iw, int ih, bool use_gpu
// load data to buffer
if(ggml_backend_is_cpu(model.backend)) {
memcpy(model.a->data, adata.data(), ggml_nbytes(model.a));
memcpy(model.a->data, hadata.data(), ggml_nbytes(model.a));
} else {
ggml_backend_tensor_set(model.a, adata.data(), 0, ggml_nbytes(model.a));
ggml_backend_tensor_set(model.a, hadata.data(), 0, ggml_nbytes(model.a));
}
// alloc memory
@ -208,6 +209,48 @@ struct ggml_cgraph * build_graph_1(const test_model& model) {
// recalculate for avoid fragmentation
// struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
// ggml_set_name(conv2d_res, "conv2d_res");
// ggml_build_forward_expand(gf, conv2d_res);
// int64_t *ne = conv2d_res->ne;
// printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
// struct ggml_tensor* wino_res = ggml_conv_2d_implicitgemm(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
struct ggml_tensor* wino_res = ggml_conv_2d_direct(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
ggml_set_name(wino_res, "wino_res");
ggml_build_forward_expand(gf, wino_res);
// ne = wino_res->ne;
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
ggml_free(ctx0);
return gf;
}
struct ggml_cgraph * build_graph_2(const test_model& model) {
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params0 = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
// create a temporally context to build the graph
struct ggml_context * ctx0 = ggml_init(params0);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
int s0 = 1;
int s1 = 1;
int p0 = 1;
int p1 = 1;
int d0 = 1;
int d1 = 1;
// recalculate for avoid fragmentation
// struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
// ggml_set_name(conv2d_res, "conv2d_res");
@ -217,6 +260,7 @@ struct ggml_cgraph * build_graph_1(const test_model& model) {
struct ggml_tensor* wino_res = ggml_conv_2d_implicitgemm(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
// struct ggml_tensor* wino_res = ggml_conv_2d_direct(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
ggml_set_name(wino_res, "wino_res");
ggml_build_forward_expand(gf, wino_res);
// ne = wino_res->ne;
@ -353,16 +397,39 @@ int main(void)
double run_time1;
std::vector<float> wino_data = compute_graph(model, allocr, build_graph_1, iterations, &run_time1);
ggml_gallocr_free(allocr);
allocr = NULL;
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
//create the worst case graph for memory usage estimation
gf = build_graph_2(model);
// compute the required memory
ggml_gallocr_reserve(allocr, gf);
size_t mem_size2 = ggml_gallocr_get_buffer_size(allocr, 0);
// fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
struct ggml_cgraph * gf_res_2 = NULL;
double run_time2;
wino_data = compute_graph(model, allocr, build_graph_2, iterations, &run_time2);
if(k==0) {
k = 1;
fprintf(stderr, "| (IC, OC, IW, IH) | im2col+GEMM TIME | im2col+GEMM VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
fprintf(stderr, "| --- | --- | --- | --- | --- \n");
fprintf(stderr, "| (IC, OC, IW, IH) | im2col+GEMM TIME | im2col+GEMM VRAM | direct TIME | direct VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
fprintf(stderr, "| --- | --- | --- | --- | --- | --- | --- \n");
}
fprintf(stderr, " | (%d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
fprintf(stderr, " | (%d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
std::get<0>(c), std::get<1>(c), std::get<2>(c), std::get<3>(c),
run_time0, mem_size0/1024.0f/1024.0f,
run_time1, mem_size1/1024.0f/1024.0f);
run_time1, mem_size1/1024.0f/1024.0f,
run_time2, mem_size2/1024.0f/1024.0f);
// for(int i = 0; i < ggml_nelements(wino_res); i++) {