Fix NPU
This commit is contained in:
parent
ae404f7cbb
commit
531941b348
|
|
@ -311,6 +311,11 @@ void GgmlOvDecoder::set_llm_params() {
|
|||
} else {
|
||||
m_attention_size = mask->ne[0];
|
||||
}
|
||||
if (m_is_static) {
|
||||
m_attention_size = m_ctx_per_seq;
|
||||
m_attention_size_swa = m_ctx_per_seq_swa;
|
||||
m_token_len_per_seq = 1;
|
||||
}
|
||||
|
||||
} else if (node->op == GGML_OP_ROPE) {
|
||||
if (name.find("Qcur-0") == 0 || std::string(node->src[0]->name).find("Qcur-0") == 0) {
|
||||
|
|
@ -330,7 +335,7 @@ void GgmlOvDecoder::set_llm_params() {
|
|||
|
||||
void GgmlOvDecoder::validate_cgraph() const {
|
||||
if (m_n_seq > 1 && m_is_static == true) {
|
||||
throw std::runtime_error("n_seq > 1 is not supported on NPU");
|
||||
throw std::runtime_error("n_seq > 1 is not supported on NPU. Try setting -np 1.");
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -371,18 +376,24 @@ void GgmlOvDecoder::add_extra_inputs() {
|
|||
// Extra inputs:
|
||||
// 1. `attention_size`, used in FLASH_ATTN where the shape of the matmul's are 256 aligned,
|
||||
// see llama_kv_cache_unified::get_n_kv and llama_kv_cache_unified::get_padding.
|
||||
// Not used for NPU.
|
||||
// 2. `n_seq_active` and `seq_active_start`, used in FLASH_ATTN_EXT to indicate the active sequences in the batch
|
||||
|
||||
auto create_1d_input = [this](const std::string & name, int64_t size) {
|
||||
auto param_node = std::make_shared<ov::op::v0::Parameter>(ov::element::i64, ov::Shape{1});
|
||||
param_node->set_friendly_name(name);
|
||||
param_node->output(0).get_tensor().set_names({name});
|
||||
m_model_extra_inputs[name] = param_node;
|
||||
auto create_1d_input = [this](const std::string & name, int64_t value) {
|
||||
if (m_is_static) {
|
||||
auto constant =
|
||||
std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{value});
|
||||
constant->set_friendly_name(name);
|
||||
m_model_extra_inputs[name] = constant;
|
||||
} else {
|
||||
auto param_node = std::make_shared<ov::op::v0::Parameter>(ov::element::i64, ov::Shape{1});
|
||||
param_node->set_friendly_name(name);
|
||||
param_node->output(0).get_tensor().set_names({name});
|
||||
m_model_extra_inputs[name] = param_node;
|
||||
|
||||
auto tensor = std::make_shared<ov::Tensor>(ov::element::i64, ov::Shape{1});
|
||||
*tensor->data<int64_t>() = size;
|
||||
m_model_extra_input_values[name] = tensor;
|
||||
auto tensor = std::make_shared<ov::Tensor>(ov::element::i64, ov::Shape{1});
|
||||
*tensor->data<int64_t>() = value;
|
||||
m_model_extra_input_values[name] = tensor;
|
||||
}
|
||||
};
|
||||
|
||||
create_1d_input("attention_size", m_attention_size);
|
||||
|
|
|
|||
|
|
@ -56,9 +56,7 @@ OutputVector translate_permute(const NodeContext & context) {
|
|||
int64_t n_seq = cache_shape[1].get_length();
|
||||
|
||||
Output<Node> attention_size;
|
||||
if (context.is_static()) {
|
||||
attention_size = ov::op::v0::Constant::create(ov::element::i64, {1}, {INT_MAX});
|
||||
} else if (op_case == 2) {
|
||||
if (op_case == 2) {
|
||||
attention_size = context.get_input("attention_size");
|
||||
} else {
|
||||
attention_size = context.get_input("attention_size_swa");
|
||||
|
|
|
|||
|
|
@ -154,7 +154,9 @@ std::shared_ptr<Model> TranslateSession::translate_graph(const frontend::InputMo
|
|||
}
|
||||
|
||||
for (const auto & it : ggml_model_decoder->get_model_extra_inputs()) {
|
||||
params.push_back(std::dynamic_pointer_cast<ov::op::v0::Parameter>(it.second));
|
||||
if (std::dynamic_pointer_cast<ov::op::v0::Parameter>(it.second)) {
|
||||
params.push_back(std::dynamic_pointer_cast<ov::op::v0::Parameter>(it.second));
|
||||
}
|
||||
(*tensor_map)[it.first] = it.second;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -129,27 +129,22 @@ enum ggml_status openvino_frontend_compute(ggml_backend_t backend, ggml_cgraph *
|
|||
ov_input_names_cache[cgraph] = ov_input_names;
|
||||
ov_output_names_cache[cgraph] = ov_output_names;
|
||||
|
||||
// // Set output tensors (for NPU) and kvcache i/o tensors once and for all
|
||||
// // Note: does not seem to improve perf on CPU/GPU, but it breaks llama-bench, so disabled it
|
||||
// for (size_t i = 0; i < ov_output_names.size(); i++) {
|
||||
// auto output_name = ov_output_names[i];
|
||||
// if (is_static || output_name.find("cache") == 0) {
|
||||
// auto output_tensor = get_ov_output_tensor(ggml_decoder, ov_output_names[i]);
|
||||
// infer_request->set_output_tensor(i, output_tensor);
|
||||
// }
|
||||
// }
|
||||
// for (size_t i = 0; i < ov_input_names.size(); i++) {
|
||||
// auto param_name = ov_input_names[i];
|
||||
// if (param_name.find("cache") == 0) {
|
||||
// ov::Tensor input_tensor;
|
||||
// if (is_static) {
|
||||
// input_tensor = get_ov_input_tensor_static(ggml_decoder, param_name, 0, 0);
|
||||
// } else {
|
||||
// input_tensor = get_ov_input_tensor(ggml_decoder, param_name);
|
||||
// }
|
||||
// infer_request->set_input_tensor(i, input_tensor);
|
||||
// }
|
||||
// }
|
||||
// Set output tensors (for NPU) and kvcache i/o tensors once and for all
|
||||
// Note: does not seem to improve perf on CPU/GPU, but breaks llama-bench, so disabled it for CPU/GPU
|
||||
if (is_static) {
|
||||
for (size_t i = 0; i < ov_output_names.size(); i++) {
|
||||
auto output_name = ov_output_names[i];
|
||||
auto output_tensor = get_ov_output_tensor(ggml_decoder, ov_output_names[i]);
|
||||
infer_request->set_output_tensor(i, output_tensor);
|
||||
}
|
||||
for (size_t i = 0; i < ov_input_names.size(); i++) {
|
||||
auto param_name = ov_input_names[i];
|
||||
if (param_name.find("cache") == 0) {
|
||||
auto input_tensor = get_ov_input_tensor_static(ggml_decoder, param_name, 0, 0);
|
||||
infer_request->set_input_tensor(i, input_tensor);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -336,7 +331,8 @@ ov::Tensor get_ov_input_tensor_static(std::shared_ptr<GgmlOvDecoder> ggml_decode
|
|||
const auto * ggml_tensor = ggml_decoder->get_input_ggml_tensor(param_name);
|
||||
const auto * op = ggml_decoder->get_tensor_used_op(ggml_tensor);
|
||||
|
||||
if (param_name == "inp_pos" || param_name == "inp_tokens" || op->op == GGML_OP_SET_ROWS) {
|
||||
if (param_name == "inp_pos" || param_name == "inp_tokens" ||
|
||||
(op->op == GGML_OP_SET_ROWS && op->src[1] == ggml_tensor)) {
|
||||
ov::Shape input_shape = {1, 1, 1, 1};
|
||||
ov::Tensor input_tensor(ggml_decoder->get_input_type(param_name), input_shape);
|
||||
// copy the j-th value from ggml_tensor
|
||||
|
|
|
|||
Loading…
Reference in New Issue