Simplify tensor selection
This commit is contained in:
parent
8da14c0fc8
commit
5303212324
|
|
@ -11,11 +11,12 @@
|
||||||
#include <csignal>
|
#include <csignal>
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
|
#include <numeric>
|
||||||
|
#include <optional>
|
||||||
#include <random>
|
#include <random>
|
||||||
#include <regex>
|
#include <regex>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <optional>
|
|
||||||
#include <unordered_set>
|
#include <unordered_set>
|
||||||
|
|
||||||
// Quantization types. Changes to this struct must be replicated in quantize.cpp
|
// Quantization types. Changes to this struct must be replicated in quantize.cpp
|
||||||
|
|
@ -1151,7 +1152,7 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
||||||
|
|
||||||
const auto bpw_data = load_bpw_state();
|
const auto bpw_data = load_bpw_state();
|
||||||
|
|
||||||
// Reduce compute time by parallelising tensor processing - courtesy of https://github.com/ddh0
|
// Parallelize tensor processing - courtesy of https://github.com/ddh0
|
||||||
auto process_tensor = [&](const llama_model_loader::llama_tensor_weight * tw,
|
auto process_tensor = [&](const llama_model_loader::llama_tensor_weight * tw,
|
||||||
std::vector<no_init<uint8_t>> & thread_local_buffer,
|
std::vector<no_init<uint8_t>> & thread_local_buffer,
|
||||||
std::mutex & loader_mutex,
|
std::mutex & loader_mutex,
|
||||||
|
|
@ -1569,93 +1570,15 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
||||||
return emit_overrides();
|
return emit_overrides();
|
||||||
}
|
}
|
||||||
|
|
||||||
auto tensor_depth = [&](const std::string & name) -> float {
|
// Certain tensors have a higher impact on model quality, so we apply a lower penalty to them
|
||||||
static const std::regex layer_pattern(R"(blk\.(\d+)\.)");
|
|
||||||
std::smatch match;
|
|
||||||
|
|
||||||
// Depth component: output, embeddings & early/late layers are important
|
|
||||||
if (name == "output.weight" || name == "token_embd.weight") {
|
|
||||||
return 1.0f;
|
|
||||||
}
|
|
||||||
if (std::regex_search(name, match, layer_pattern)) {
|
|
||||||
const int layer = std::stoi(match[1]);
|
|
||||||
const float normalized_layer = (float)layer / (float)std::max(1, (int)model.hparams.n_layer - 1);
|
|
||||||
const float center_dist = std::abs(normalized_layer - 0.5f) * 2.0f;
|
|
||||||
return 0.01f + 0.9f * center_dist;
|
|
||||||
}
|
|
||||||
|
|
||||||
return 0.0f;
|
|
||||||
};
|
|
||||||
|
|
||||||
auto tensor_importance = [&](const std::vector<tensor_info> & all_tensors) -> std::unordered_map<std::string, float> {
|
|
||||||
std::unordered_map<std::string, float> scores;
|
|
||||||
for (const auto & t : all_tensors) {
|
|
||||||
const std::string name = ggml_get_name(t.w->tensor);
|
|
||||||
float total_score = 0.0f;
|
|
||||||
float depth_score = 0.0f;
|
|
||||||
float type_score = 0.0f;
|
|
||||||
|
|
||||||
// Type component: certain tensor types have more impact on model quality
|
|
||||||
const std::vector<std::pair<float, std::vector<const char*>>> tensor_scores = {
|
|
||||||
{0.9f, {".ffn_down.weight", ".ffn_down_exps.weight"}},
|
|
||||||
{0.89f, {".attn_output.weight", ".time_mix_output.weight", ".attn_o.weight"}},
|
|
||||||
{0.3f, {".ffn_up.weight", ".ffn_gate.weight", ".ffn_up_exps.weight", ".ffn_gate_exps.weight"}},
|
|
||||||
{0.29f, {".attn_q.weight", ".attn_k.weight", ".attn_v.weight", ".attn_qkv.weight"}},
|
|
||||||
{0.2f, {"token_embd.weight"}}
|
|
||||||
};
|
|
||||||
if (name == "output.weight") {
|
|
||||||
type_score = 1.0f;
|
|
||||||
} else {
|
|
||||||
for (const auto& ts : tensor_scores) {
|
|
||||||
const bool found = std::any_of(ts.second.begin(), ts.second.end(), [&](const char* pattern) {
|
|
||||||
return name.find(pattern) != std::string::npos;
|
|
||||||
});
|
|
||||||
if (found) {
|
|
||||||
type_score = ts.first;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (type_score > 0.0f) {
|
|
||||||
depth_score = tensor_depth(name);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Weighted combination
|
|
||||||
total_score = 0.90f * type_score + 0.10f * depth_score; // 90% type + 10% depth
|
|
||||||
if (total_score != 0.0f) {
|
|
||||||
scores[name] = total_score;
|
|
||||||
LLAMA_LOG_DEBUG("\t%s: \t %45s \t depth score %.4f \t type score %.4f \t total score %.4f\n", func, name.c_str(), depth_score, type_score, total_score);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return scores;
|
|
||||||
};
|
|
||||||
|
|
||||||
auto select_tensors = [&](const std::vector<tensor_info> & all_vec) -> std::unordered_set<std::string> {
|
|
||||||
const auto scores = tensor_importance(all_vec);
|
|
||||||
|
|
||||||
// Sort by score
|
|
||||||
std::vector<std::pair<std::string, float>> sorted_scores(scores.begin(), scores.end());
|
|
||||||
std::sort(sorted_scores.begin(), sorted_scores.end(), [](const auto & a, const auto & b) { return a.second > b.second; });
|
|
||||||
|
|
||||||
// Select top percentile
|
|
||||||
const size_t n_important = std::max<size_t>(1, std::llround((double)sorted_scores.size() * 0.29f)); // 29% seems to be the pareto front
|
|
||||||
|
|
||||||
std::unordered_set<std::string> important;
|
|
||||||
for (size_t i = 0; i < std::min(n_important, sorted_scores.size()); ++i) {
|
|
||||||
important.insert(sorted_scores[i].first);
|
|
||||||
LLAMA_LOG_DEBUG("\t%s: important tensor %s (score %.4f)\n", func, sorted_scores[i].first.c_str(), sorted_scores[i].second);
|
|
||||||
}
|
|
||||||
|
|
||||||
const auto pct = 100.0 * (double)important.size() / (double)sorted_scores.size();
|
|
||||||
LLAMA_LOG_INFO("%s: prioritizing %zu out of %zu tensors (%.2f%%)\n", func, important.size(), sorted_scores.size(), pct);
|
|
||||||
return important;
|
|
||||||
};
|
|
||||||
|
|
||||||
const auto important_set = select_tensors(all);
|
|
||||||
|
|
||||||
auto is_important = [&](const std::string & tensor_name) -> bool {
|
auto is_important = [&](const std::string & tensor_name) -> bool {
|
||||||
return important_set.count(tensor_name) > 0;
|
const auto important = tensor_name == "output.weight" ||
|
||||||
|
tensor_name.find(".ffn_down.weight") != std::string::npos ||
|
||||||
|
tensor_name.find(".ffn_down_exps.weight") != std::string::npos ||
|
||||||
|
tensor_name.find(".attn_output.weight") != std::string::npos ||
|
||||||
|
tensor_name.find(".time_mix_output.weight") != std::string::npos ||
|
||||||
|
tensor_name.find(".attn_o.weight") != std::string::npos;
|
||||||
|
return important;
|
||||||
};
|
};
|
||||||
|
|
||||||
// Lagrangian relaxation to minimise error subject to a bpw target constraint
|
// Lagrangian relaxation to minimise error subject to a bpw target constraint
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue