Merge remote-tracking branch 'sfallah/master' into sf/deepseek-ocr

# Conflicts:
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py
#	tools/mtmd/clip-impl.h
#	tools/mtmd/clip.cpp
#	tools/mtmd/models/models.h
This commit is contained in:
Saba Fallah 2025-12-16 12:16:25 +01:00
commit 51c3de6887
35 changed files with 1197 additions and 107 deletions

View File

@ -107,7 +107,7 @@ ENTRYPOINT ["/app/tools.sh"]
# ENTRYPOINT ["/app/llama-server"]
### Target: light
# Lightweight image containing only llama-cli
# Lightweight image containing only llama-cli and llama-completion
# ==============================================================================
FROM base AS light

View File

@ -23,11 +23,12 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
RUN echo "Building with static libs" && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF -DLLAMA_BUILD_TESTS=OFF && \
cmake --build build --config Release --target llama-cli
cmake --build build --config Release --target llama-cli && \
cmake --build build --config Release --target llama-completion
# TODO: use image with NNRT
FROM ascendai/cann:$ASCEND_VERSION AS runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli
COPY --from=build /app/build/bin/llama-cli /app/build/bin/llama-completion /
ENV LC_ALL=C.utf8

View File

@ -37,6 +37,7 @@ make -j GGML_CUDA=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cuda-cli
cp -p llama-completion %{buildroot}%{_bindir}/llama-cuda-completion
cp -p llama-server %{buildroot}%{_bindir}/llama-cuda-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-cuda-simple
@ -68,6 +69,7 @@ rm -rf %{_builddir}/*
%files
%{_bindir}/llama-cuda-cli
%{_bindir}/llama-cuda-completion
%{_bindir}/llama-cuda-server
%{_bindir}/llama-cuda-simple
/usr/lib/systemd/system/llamacuda.service

View File

@ -39,6 +39,7 @@ make -j
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cli
cp -p llama-completion %{buildroot}%{_bindir}/llama-completion
cp -p llama-server %{buildroot}%{_bindir}/llama-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-simple
@ -70,6 +71,7 @@ rm -rf %{_builddir}/*
%files
%{_bindir}/llama-cli
%{_bindir}/llama-completion
%{_bindir}/llama-server
%{_bindir}/llama-simple
/usr/lib/systemd/system/llama.service

View File

@ -68,3 +68,6 @@ Please disclose it as a private [security advisory](https://github.com/ggml-org/
Please note that using AI to identify vulnerabilities and generate reports is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before submitting the report.
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
> [!IMPORTANT]
> For collaborators: if you are interested in helping out with reviewing privting security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080

View File

@ -4,9 +4,14 @@
using json = nlohmann::json;
static std::string_view trim_trailing_space(std::string_view sv) {
static std::string_view trim_trailing_space(std::string_view sv, int max = -1) {
int count = 0;
while (!sv.empty() && std::isspace(static_cast<unsigned char>(sv.back()))) {
if (max != -1 && count <= max) {
break;
}
sv.remove_suffix(1);
count++;
}
return sv;
}
@ -93,7 +98,7 @@ void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
if (is_arg_string && current_tool) {
// Serialize to JSON, but exclude the end quote
std::string dumped = json(node.text).dump();
std::string dumped = json(trim_trailing_space(node.text)).dump();
current_tool->arguments += dumped.substr(0, dumped.size() - 1);
needs_closing_quote = true;
}
@ -101,6 +106,7 @@ void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
if (is_arg_close && current_tool) {
if (needs_closing_quote) {
current_tool->arguments += "\"";
needs_closing_quote = false;
}
}
@ -109,6 +115,10 @@ void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
}
if (is_tool_close && current_tool) {
if (needs_closing_quote) {
current_tool->arguments += "\"";
needs_closing_quote = false;
}
current_tool->arguments += "}";
}
}

View File

@ -711,6 +711,25 @@ static void foreach_function(const json & tools, const std::function<void(const
}
}
static void foreach_parameter(const json & function, const std::function<void(const std::string &, const json &, bool)> & fn) {
if (!function.contains("parameters") || !function.at("parameters").is_object()) {
return;
}
const auto & params = function.at("parameters");
if (!params.contains("properties") || !params.at("properties").is_object()) {
return;
}
const auto & props = params.at("properties");
std::set<std::string> required;
if (params.contains("required") && params.at("required").is_array()) {
params.at("required").get_to(required);
}
for (const auto & [name, prop] : props.items()) {
bool is_required = (required.find(name) != required.end());
fn(name, prop, is_required);
}
}
static std::string apply(
const common_chat_template & tmpl,
const struct templates_params & inputs,
@ -1409,6 +1428,123 @@ static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_
return data;
}
static common_chat_params common_chat_params_init_nemotron_v3(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_PEG_CONSTRUCTED;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<think>\n")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
}
}
data.preserved_tokens = {
"<think>",
"</think>",
"<tool_call>",
"</tool_call>",
};
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
auto extract_reasoning = inputs.reasoning_format != COMMON_REASONING_FORMAT_NONE;
auto include_grammar = true;
auto parser = build_chat_peg_constructed_parser([&](auto & p) {
auto reasoning = p.eps();
if (inputs.enable_thinking && extract_reasoning) {
auto reasoning_content = p.reasoning(p.until("</think>")) + ("</think>" | p.end());
if (data.thinking_forced_open) {
reasoning = reasoning_content;
}
}
// Response format parser
if (inputs.json_schema.is_object() && !inputs.json_schema.empty()) {
return reasoning << p.content(p.schema(p.json(), "response-format", inputs.json_schema));
}
// Tool call parser
if (has_tools && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
auto tool_choice = p.choice();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
auto schema_info = common_schema_info();
schema_info.resolve_refs(parameters);
auto tool_open = "<function=" + p.tool_name(p.literal(name)) + ">\n";
auto tool_close = p.literal("</function>\n");
auto args = p.sequence();
auto arg_string = p.rule("xml-arg-string", p.until_one_of({
"\n</parameter>",
"\n<parameter=",
"\n</function>"
}));
foreach_parameter(function, [&](const auto & param_name, const json & param_schema, bool is_required) {
auto rule_name = "tool-" + name + "-arg-" + param_name;
auto arg_open = "<parameter=" + p.tool_arg_name(p.literal(param_name)) + ">\n";
auto arg_close = p.literal("</parameter>\n");
auto arg_value = p.eps();
if (schema_info.resolves_to_string(param_schema)) {
arg_value = p.tool_arg_string_value(arg_string) + "\n";
} else {
arg_value = p.tool_arg_json_value(p.schema(p.json(), rule_name + "-schema", param_schema));
}
// Model may or my not close with </parameter>
auto arg_rule = p.rule(rule_name, p.tool_arg_open(arg_open) + arg_value + p.optional(p.tool_arg_close(arg_close)));
args += p.repeat(arg_rule, /* min = */ is_required ? 1 : 0, /* max = */ 1);
});
tool_choice |= p.rule("tool-" + name, p.tool_open(tool_open) + args + p.tool_close(tool_close));
});
auto min_calls = inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_REQUIRED ? 1 : 0;
auto max_calls = inputs.parallel_tool_calls ? -1 : 1;
auto tool_call = p.rule("tool-call", "<tool_call>\n" + tool_choice + "</tool_call>" + p.space());
auto tool_calls = p.trigger_rule("tool-call-root", p.repeat(tool_call, /* min = */ min_calls, /* max = */ max_calls));
return reasoning << p.content(p.until("<tool_call>")) << tool_calls;
}
// Content only parser
include_grammar = false;
return reasoning << p.content(p.rest());
});
data.parser = parser.save();
if (include_grammar) {
data.grammar_lazy = has_tools && inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_AUTO;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
auto schema = function.at("parameters");
builder.resolve_refs(schema);
});
parser.build_grammar(builder, data.grammar_lazy);
});
data.grammar_triggers = {
{COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool_call>"}
};
}
return data;
}
static common_chat_params common_chat_params_init_apertus(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
@ -2534,6 +2670,10 @@ static common_chat_params common_chat_templates_apply_jinja(
src.find("<function=") != std::string::npos &&
src.find("<parameters>") != std::string::npos &&
src.find("<parameter=") != std::string::npos) {
// Nemotron 3 Nano 30B A3B
if (src.find("<think>") != std::string::npos) {
return common_chat_params_init_nemotron_v3(tmpl, params);
}
return common_chat_params_init_qwen3_coder_xml(tmpl, params);
}

View File

@ -305,8 +305,9 @@ static std::string format_literal(const std::string & literal) {
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); }
class SchemaConverter {
class common_schema_converter {
private:
friend class common_schema_info;
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
@ -729,7 +730,7 @@ private:
}
public:
SchemaConverter(
common_schema_converter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
@ -990,6 +991,134 @@ public:
}
};
// common_schema_info implementation (pimpl)
common_schema_info::common_schema_info()
: impl_(std::make_unique<common_schema_converter>(
[](const std::string &) { return json(); },
false)) {}
common_schema_info::~common_schema_info() = default;
common_schema_info::common_schema_info(common_schema_info &&) noexcept = default;
common_schema_info & common_schema_info::operator=(common_schema_info &&) noexcept = default;
void common_schema_info::resolve_refs(nlohmann::ordered_json & schema) {
impl_->resolve_refs(schema, "");
}
// Determines if a JSON schema can resolve to a string type through any path.
// Some models emit raw string values rather than JSON-encoded strings for string parameters.
// If any branch of the schema (via oneOf, anyOf, $ref, etc.) permits a string, this returns
// true, allowing callers to handle the value as a raw string for simplicity.
bool common_schema_info::resolves_to_string(const nlohmann::ordered_json & schema) {
std::unordered_set<std::string> visited_refs;
std::function<bool(const json &)> check = [&](const json & s) -> bool {
if (!s.is_object()) {
return false;
}
// Handle $ref
if (s.contains("$ref")) {
const std::string & ref = s["$ref"];
if (visited_refs.find(ref) != visited_refs.end()) {
// Circular reference, assume not a string to be safe
return false;
}
visited_refs.insert(ref);
auto it = impl_->_refs.find(ref);
if (it != impl_->_refs.end()) {
return check(it->second);
}
return false;
}
// Check type field
if (s.contains("type")) {
const json & schema_type = s["type"];
if (schema_type.is_string()) {
if (schema_type == "string") {
return true;
}
} else if (schema_type.is_array()) {
// Type can be an array like ["string", "null"]
for (const auto & t : schema_type) {
if (t == "string") {
return true;
}
}
}
}
// Check oneOf/anyOf - if any alternative can be a string
if (s.contains("oneOf")) {
for (const auto & alt : s["oneOf"]) {
if (check(alt)) {
return true;
}
}
}
if (s.contains("anyOf")) {
for (const auto & alt : s["anyOf"]) {
if (check(alt)) {
return true;
}
}
}
// Check allOf - all components must be compatible with string type
if (s.contains("allOf")) {
bool all_string = true;
for (const auto & component : s["allOf"]) {
if (!check(component)) {
all_string = false;
break;
}
}
if (all_string) {
return true;
}
}
// Check const - if the constant value is a string
if (s.contains("const")) {
if (s["const"].is_string()) {
return true;
}
}
// Check enum - if any enum value is a string
if (s.contains("enum")) {
for (const auto & val : s["enum"]) {
if (val.is_string()) {
return true;
}
}
}
// String-specific keywords imply string type
if (s.contains("pattern") || s.contains("minLength") || s.contains("maxLength")) {
return true;
}
// Check format - many formats imply string
if (s.contains("format")) {
const std::string & fmt = s["format"];
if (fmt == "date" || fmt == "time" || fmt == "date-time" ||
fmt == "uri" || fmt == "email" || fmt == "hostname" ||
fmt == "ipv4" || fmt == "ipv6" || fmt == "uuid" ||
fmt.find("uuid") == 0) {
return true;
}
}
return false;
};
return check(schema);
}
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
@ -1006,7 +1135,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_schema_converter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);

View File

@ -3,11 +3,31 @@
#include <nlohmann/json_fwd.hpp>
#include <functional>
#include <memory>
#include <string>
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
class common_schema_converter;
// Probes a JSON schema to extract information about its structure and type constraints.
class common_schema_info {
std::unique_ptr<common_schema_converter> impl_;
public:
common_schema_info();
~common_schema_info();
common_schema_info(const common_schema_info &) = delete;
common_schema_info & operator=(const common_schema_info &) = delete;
common_schema_info(common_schema_info &&) noexcept;
common_schema_info & operator=(common_schema_info &&) noexcept;
void resolve_refs(nlohmann::ordered_json & schema);
bool resolves_to_string(const nlohmann::ordered_json & schema);
};
struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;

View File

@ -425,7 +425,7 @@ struct parser_executor {
if (result.need_more_input()) {
// Propagate - need to know what child would match before negating
return result;
return common_peg_parse_result(COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT, start_pos);
}
// Child failed, so negation succeeds

View File

@ -865,6 +865,14 @@ class TextModel(ModelBase):
logger.warning(f"Unknown RoPE type: {rope_type}")
logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
if "mrope_section" in self.rope_parameters:
mrope_section = self.rope_parameters["mrope_section"]
# Pad to 4 dimensions [time, height, width, extra]
while len(mrope_section) < 4:
mrope_section.append(0)
self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
if (rope_theta := rope_params.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
logger.info(f"gguf: rope theta = {rope_theta}")
@ -3742,9 +3750,6 @@ class Qwen2VLModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
mrope_section = self.hparams["rope_scaling"]["mrope_section"]
mrope_section += [0] * max(0, 4 - len(mrope_section))
self.gguf_writer.add_rope_dimension_sections(mrope_section)
def set_vocab(self):
try:
@ -4380,6 +4385,30 @@ class Qwen3VLVisionModel(MmprojModel):
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
class Glm4VVisionModel(Qwen3VLVisionModel):
def set_gguf_parameters(self):
MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
assert self.hparams_vision is not None
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
if hidden_act == "gelu":
self.gguf_writer.add_vision_use_gelu(True)
elif hidden_act == "silu":
self.gguf_writer.add_vision_use_silu(True)
rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("model.visual."):
name = name.replace("model.visual.", "visual.")
if name.startswith("visual.merger."):
return [(self.map_tensor_name(name), data_torch)]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen3VLForConditionalGeneration")
class Qwen3VLTextModel(Qwen3Model):
model_arch = gguf.MODEL_ARCH.QWEN3VL
@ -4388,20 +4417,6 @@ class Qwen3VLTextModel(Qwen3Model):
super().set_gguf_parameters()
# Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
text_config = self.hparams.get("text_config", {})
# rope_scaling is deprecated in V5, use rope_parameters instead
rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
if rope_scaling.get("mrope_section"):
# mrope_section contains [time, height, width] dimensions
mrope_section = rope_scaling["mrope_section"]
# Pad to 4 dimensions [time, height, width, extra]
while len(mrope_section) < 4:
mrope_section.append(0)
self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
logger.info(f"MRoPE sections: {mrope_section[:4]}")
vision_config = self.hparams.get("vision_config", {})
deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
@ -4420,22 +4435,6 @@ class Qwen3VLMoeTextModel(Qwen3MoeModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
# Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
text_config = self.hparams.get("text_config", {})
# rope_scaling is deprecated in V5, use rope_parameters instead
rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
if rope_scaling.get("mrope_section"):
# mrope_section contains [time, height, width] dimensions
mrope_section = rope_scaling["mrope_section"]
# Pad to 4 dimensions [time, height, width, extra]
while len(mrope_section) < 4:
mrope_section.append(0)
self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
logger.info(f"MRoPE sections: {mrope_section[:4]}")
vision_config = self.hparams.get("vision_config", {})
deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
@ -7885,6 +7884,15 @@ class JaisModel(TextModel):
@ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
class Glm4Model(TextModel):
model_arch = gguf.MODEL_ARCH.GLM4
use_mrope = False
partial_rotary_factor = 0.5
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
if "mrope_section" in self.rope_parameters:
self.use_mrope = True
logger.info("Q/K weight will need to be permuted for M-RoPE")
def set_vocab(self):
from transformers import AutoTokenizer
@ -7906,17 +7914,49 @@ class Glm4Model(TextModel):
super().set_gguf_parameters()
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
@staticmethod
def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
orig_shape = weights.shape
if len(orig_shape) == 1:
weights = weights.unsqueeze(1) # [out_dim, 1]
if len(weights.shape) != 2:
raise ValueError("Only 1D and 2D tensors are supported.")
n_effective_heads = weights.shape[0] // head_dim
if n_head_kv is not None and n_effective_heads != n_head:
if n_effective_heads != n_head_kv:
raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
rotary_dim = int(head_dim * partial_rotary_factor)
if rotary_dim % 2 != 0:
raise ValueError("rotary_dim must be even.")
reshaped = weights.reshape(n_effective_heads, head_dim, -1)
rot_part = reshaped[:, :rotary_dim, :]
non_rot_part = reshaped[:, rotary_dim:, :]
permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
combined = torch.cat((permuted_rot, non_rot_part), dim=1)
result = combined.reshape(weights.shape)
return result if len(orig_shape) != 1 else result.squeeze(1)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("model.visual."): # ignore visual part of Glm4v
return []
elif name.startswith("model.language_model."):
name = name.replace("language_model.", "") # for Glm4v
if self.use_mrope:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams["num_key_value_heads"]
n_embd = self.hparams["hidden_size"]
head_dim = n_embd // n_head
# because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Glm4MoeForCausalLM")
@ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
class Glm4MoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.GLM4_MOE
@ -7983,6 +8023,7 @@ class Glm4MoeModel(TextModel):
_experts: list[dict[str, Tensor]] | None = None
# note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
) -> Iterable[tuple[str, Tensor]]:

View File

@ -103,6 +103,8 @@ SYCL backend supports Intel GPU Family:
- Intel Built-in Arc GPU
- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)).
On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the performance is not optimal, and some GPUs may not support OpenCL nor have any GPGPU capabilities.
#### Verified devices
| Intel GPU | Status | Verified Model |

View File

@ -7,9 +7,9 @@
## Images
We have three Docker images available for this project:
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the `llama-cli` and `llama-completion` executables. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the `llama-server` executable. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
Additionally, there the following images, similar to the above:
@ -44,13 +44,15 @@ docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --all-in-o
On completion, you are ready to play!
```bash
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run-legacy -m /models/32B/ggml-model-q8_0.gguf -no-cnv -p "Building a mobile app can be done in 15 steps:" -n 512
```
or with a light image:
```bash
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models --entrypoint /app/llama-cli ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf
docker run -v /path/to/models:/models --entrypoint /app/llama-completion ghcr.io/ggml-org/llama.cpp:light -m /models/32B/ggml-model-q8_0.gguf -no-cnv -p "Building a mobile app can be done in 15 steps:" -n 512
```
or with a server image:
@ -59,6 +61,8 @@ or with a server image:
docker run -v /path/to/models:/models -p 8080:8080 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8080 --host 0.0.0.0 -n 512
```
In the above examples, `--entrypoint /app/llama-cli` is specified for clarity, but you can safely omit it since it's the default entrypoint in the container.
## Docker With CUDA
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
@ -80,9 +84,9 @@ The defaults are:
The resulting images, are essentially the same as the non-CUDA images:
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
1. `local/llama.cpp:full-cuda`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the `llama-cli` and `llama-completion` executables.
3. `local/llama.cpp:server-cuda`: This image only includes the `llama-server` executable.
## Usage
@ -114,9 +118,9 @@ The defaults are:
The resulting images, are essentially the same as the non-MUSA images:
1. `local/llama.cpp:full-musa`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-musa`: This image only includes the main executable file.
3. `local/llama.cpp:server-musa`: This image only includes the server executable file.
1. `local/llama.cpp:full-musa`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-musa`: This image only includes the `llama-cli` and `llama-completion` executables.
3. `local/llama.cpp:server-musa`: This image only includes the `llama-server` executable.
## Usage

View File

@ -10,6 +10,13 @@ and in some cases perplexity checked of the quantized model. And finally the
model/models need to the ggml-org on Hugging Face. This tool/example tries to
help with this process.
> 📝 **Note:** When adding a new model from an existing family, verify the
> previous version passes logits verification first. Existing models can have
> subtle numerical differences that don't affect generation quality but cause
> logits mismatches. Identifying these upfront whether they exist in llama.cpp,
> the conversion script, or in an upstream implementation, can save significant
> debugging time.
### Overview
The idea is that the makefile targets and scripts here can be used in the
development/conversion process assisting with things like:

View File

@ -34,8 +34,11 @@ done
MODEL_PATH="${MODEL_PATH:-"$EMBEDDING_MODEL_PATH"}"
MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
CONVERTED_MODEL_PATH="${CONVERTED_EMBEDDING_PATH:-"$CONVERTED_EMBEDDING_MODEL"}"
CONVERTED_MODEL_NAME="${CONVERTED_MODEL_NAME:-$(basename "$CONVERTED_MODEL_PATH" .gguf)}"
if [ -t 0 ]; then
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
CPP_EMBEDDINGS="data/llamacpp-${CONVERTED_MODEL_NAME}-embeddings.bin"
else
# Process piped JSON data and convert to binary (matching logits.cpp format)
TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)

View File

@ -650,6 +650,7 @@ class MODEL_TENSOR(IntEnum):
V_MMPROJ_PEG = auto()
V_ENC_EMBD_CLS = auto()
V_ENC_EMBD_PATCH = auto()
V_ENC_EMBD_NORM = auto()
V_ENC_EMBD_POS = auto()
V_ENC_INPUT_NORM = auto()
V_ENC_ATTN_QKV = auto()
@ -668,6 +669,7 @@ class MODEL_TENSOR(IntEnum):
V_LAYER_SCALE_2 = auto()
V_PRE_NORM = auto()
V_POST_NORM = auto()
V_MM_POST_NORM = auto()
V_MM_INP_NORM = auto()
V_MM_INP_PROJ = auto() # gemma3
V_MM_SOFT_EMB_NORM = auto() # gemma3
@ -1040,6 +1042,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_MMPROJ_PEG: "mm.model.peg.{bid}",
MODEL_TENSOR.V_ENC_EMBD_CLS: "v.class_embd",
MODEL_TENSOR.V_ENC_EMBD_PATCH: "v.patch_embd",
MODEL_TENSOR.V_ENC_EMBD_NORM: "v.norm_embd",
MODEL_TENSOR.V_ENC_EMBD_POS: "v.position_embd",
MODEL_TENSOR.V_ENC_ATTN_QKV: "v.blk.{bid}.attn_qkv",
MODEL_TENSOR.V_ENC_ATTN_Q: "v.blk.{bid}.attn_q",
@ -1058,6 +1061,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_LAYER_SCALE_2: "v.blk.{bid}.ls2",
MODEL_TENSOR.V_PRE_NORM: "v.pre_ln",
MODEL_TENSOR.V_POST_NORM: "v.post_ln",
MODEL_TENSOR.V_MM_POST_NORM: "mm.post_norm",
MODEL_TENSOR.V_MM_INP_PROJ: "mm.input_projection",
MODEL_TENSOR.V_MM_INP_NORM: "mm.input_norm",
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: "mm.soft_emb_norm",
@ -1134,6 +1138,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_MMPROJ_PEG,
MODEL_TENSOR.V_ENC_EMBD_CLS,
MODEL_TENSOR.V_ENC_EMBD_PATCH,
MODEL_TENSOR.V_ENC_EMBD_NORM,
MODEL_TENSOR.V_ENC_EMBD_POS,
MODEL_TENSOR.V_ENC_EMBD_IMGNL,
MODEL_TENSOR.V_ENC_EMBD_VSEP,
@ -1154,6 +1159,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_LAYER_SCALE_2,
MODEL_TENSOR.V_PRE_NORM,
MODEL_TENSOR.V_POST_NORM,
MODEL_TENSOR.V_MM_POST_NORM,
MODEL_TENSOR.V_MM_INP_PROJ,
MODEL_TENSOR.V_MM_INP_NORM,
MODEL_TENSOR.V_MM_SOFT_EMB_NORM,
@ -3451,6 +3457,7 @@ class VisionProjectorType:
COGVLM = "cogvlm"
JANUS_PRO = "janus_pro"
DEEPSEEKOCR = "deepseekocr"
GLM4V = "glm4v"
# Items here are (block size, type size)

View File

@ -1213,6 +1213,7 @@ class TensorNameMap:
"model.connector.modality_projection.proj", # SmolVLM
"model.vision.linear_proj.linear_proj", # cogvlm
"model.projector.layers", # Deepseek-OCR
"visual.merger.proj", # glm4v
),
MODEL_TENSOR.V_MMPROJ_MLP: (
@ -1248,6 +1249,10 @@ class TensorNameMap:
"model.vision_model.embeddings.patch_embedding", # Deepseek-OCR CLIP
),
MODEL_TENSOR.V_ENC_EMBD_NORM: (
"visual.post_conv_layernorm", # glm4v
),
MODEL_TENSOR.V_ENC_EMBD_POS: (
"vision_tower.vision_model.embeddings.position_embedding",
"model.vision_tower.embeddings.position_embeddings", # Intern-S1
@ -1257,6 +1262,7 @@ class TensorNameMap:
"vision_tower.patch_embed.pos_emb", # kimi-vl
"visual.pos_embed", # qwen3vl
"model.vision.patch_embedding.position_embedding", # cogvlm
"visual.embeddings.position_embedding", # glm4v
),
MODEL_TENSOR.V_ENC_EMBD_IMGNL: (
@ -1430,6 +1436,11 @@ class TensorNameMap:
"vision_model.layernorm_post", # llama4
"visual.merger.ln_q", # qwen2vl
"vision_tower.encoder.final_layernorm", # kimi-vl
"visual.post_layernorm", # glm4v
),
MODEL_TENSOR.V_MM_POST_NORM: (
"visual.merger.post_projection_norm", # glm4v
),
MODEL_TENSOR.V_MM_INP_PROJ: (
@ -1499,6 +1510,7 @@ class TensorNameMap:
MODEL_TENSOR.V_MM_PATCH_MERGER: (
"multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
"patch_merger.merging_layer", # mistral
"visual.downsample", # glm4v
),
MODEL_TENSOR.V_DS_NORM: (
@ -1571,14 +1583,17 @@ class TensorNameMap:
MODEL_TENSOR.V_MM_UP: (
"model.vision.linear_proj.dense_h_to_4h", # cogvlm
"visual.merger.up_proj", # glm4v
),
MODEL_TENSOR.V_MM_DOWN: (
"model.vision.linear_proj.dense_4h_to_h", # cogvlm
"visual.merger.down_proj", # glm4v
),
MODEL_TENSOR.V_MM_GATE: (
"model.vision.linear_proj.gate_proj", # cogvlm
"visual.merger.gate_proj", # glm4v
),
MODEL_TENSOR.V_TOK_BOI: (

View File

@ -0,0 +1,204 @@
{% macro render_extra_keys(json_dict, handled_keys) %}
{%- if json_dict is mapping %}
{%- for json_key in json_dict if json_key not in handled_keys %}
{%- if json_dict[json_key] is mapping or (json_dict[json_key] is sequence and json_dict[json_key] is not string) %}
{{- '\n<' ~ json_key ~ '>' ~ (json_dict[json_key] | tojson | safe) ~ '</' ~ json_key ~ '>' }}
{%- else %}
{{-'\n<' ~ json_key ~ '>' ~ (json_dict[json_key] | string) ~ '</' ~ json_key ~ '>' }}
{%- endif %}
{%- endfor %}
{%- endif %}
{% endmacro %}
{%- set enable_thinking = enable_thinking if enable_thinking is defined else True %}
{%- set truncate_history_thinking = truncate_history_thinking if truncate_history_thinking is defined else True %}
{%- set ns = namespace(last_user_idx = -1) %}
{%- set loop_messages = messages %}
{%- for m in loop_messages %}
{%- if m["role"] == "user" %}
{%- set ns.last_user_idx = loop.index0 %}
{%- endif %}
{%- endfor %}
{%- if messages[0]["role"] == "system" %}
{%- set system_message = messages[0]["content"] %}
{%- set loop_messages = messages[1:] %}
{%- else %}
{%- set system_message = "" %}
{%- set loop_messages = messages %}
{%- endif %}
{%- if not tools is defined %}
{%- set tools = [] %}
{%- endif %}
{# Recompute last_user_idx relative to loop_messages after handling system #}
{%- set ns = namespace(last_user_idx = -1) %}
{%- for m in loop_messages %}
{%- if m["role"] == "user" %}
{%- set ns.last_user_idx = loop.index0 %}
{%- endif %}
{%- endfor %}
{%- if system_message is defined %}
{{- "<|im_start|>system\n" + system_message }}
{%- else %}
{%- if tools is iterable and tools | length > 0 %}
{{- "<|im_start|>system\n" }}
{%- endif %}
{%- endif %}
{%- if tools is iterable and tools | length > 0 %}
{%- if system_message is defined and system_message | length > 0 %}
{{- "\n\n" }}
{%- endif %}
{{- "# Tools\n\nYou have access to the following functions:\n\n" }}
{{- "<tools>" }}
{%- for tool in tools %}
{%- if tool.function is defined %}
{%- set tool = tool.function %}
{%- endif %}
{{- "\n<function>\n<name>" ~ tool.name ~ "</name>" }}
{%- if tool.description is defined %}
{{- '\n<description>' ~ (tool.description | trim) ~ '</description>' }}
{%- endif %}
{{- '\n<parameters>' }}
{%- if tool.parameters is defined and tool.parameters is mapping and tool.parameters.properties is defined and tool.parameters.properties is mapping %}
{%- for param_name, param_fields in tool.parameters.properties|items %}
{{- '\n<parameter>' }}
{{- '\n<name>' ~ param_name ~ '</name>' }}
{%- if param_fields.type is defined %}
{{- '\n<type>' ~ (param_fields.type | string) ~ '</type>' }}
{%- endif %}
{%- if param_fields.description is defined %}
{{- '\n<description>' ~ (param_fields.description | trim) ~ '</description>' }}
{%- endif %}
{%- if param_fields.enum is defined %}
{{- '\n<enum>' ~ (param_fields.enum | tojson | safe) ~ '</enum>' }}
{%- endif %}
{%- set handled_keys = ['name', 'type', 'description', 'enum'] %}
{{- render_extra_keys(param_fields, handled_keys) }}
{{- '\n</parameter>' }}
{%- endfor %}
{%- endif %}
{% set handled_keys = ['type', 'properties', 'required'] %}
{{- render_extra_keys(tool.parameters, handled_keys) }}
{%- if tool.parameters is defined and tool.parameters.required is defined %}
{{- '\n<required>' ~ (tool.parameters.required | tojson | safe) ~ '</required>' }}
{%- endif %}
{{- '\n</parameters>' }}
{%- set handled_keys = ['type', 'name', 'description', 'parameters'] %}
{{- render_extra_keys(tool, handled_keys) }}
{{- '\n</function>' }}
{%- endfor %}
{{- "\n</tools>" }}
{{- '\n\nIf you choose to call a function ONLY reply in the following format with NO suffix:\n\n<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n- Required parameters MUST be specified\n- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n</IMPORTANT>' }}
{%- endif %}
{%- if system_message is defined %}
{{- '<|im_end|>\n' }}
{%- else %}
{%- if tools is iterable and tools | length > 0 %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- for message in loop_messages %}
{%- if message.role == "assistant" %}
{# Add reasoning content in to content field for unified processing below. #}
{%- if message.reasoning_content is defined and message.reasoning_content is string and message.reasoning_content | trim | length > 0 %}
{%- set content = "<think>\n" ~ message.reasoning_content ~ "\n</think>\n" ~ (message.content | default('', true)) %}
{%- else %}
{%- set content = message.content | default('', true) %}
{%- if content is string -%}
{# Allow downstream logic to to take care of broken thought, only handle coherent reasoning here. #}
{%- if '<think>' not in content and '</think>' not in content -%}
{%- set content = "<think></think>" ~ content -%}
{%- endif -%}
{%- else -%}
{%- set content = content -%}
{%- endif -%}
{%- endif %}
{%- if message.tool_calls is defined and message.tool_calls is iterable and message.tool_calls | length > 0 %}
{# Assistant message has tool calls. #}
{{- '<|im_start|>assistant\n' }}
{%- set include_content = not (truncate_history_thinking and loop.index0 < ns.last_user_idx) %}
{%- if content is string and content | trim | length > 0 %}
{%- if include_content %}
{{- (content | trim) ~ '\n' -}}
{%- else %}
{%- set c = (content | string) %}
{%- if '</think>' in c %}
{# Keep only content after the last closing think. Also generation prompt causes this. #}
{%- set c = c.split('</think>')[-1] %}
{%- elif '<think>' in c %}
{# If <think> was opened but never closed, drop the trailing think segment #}
{%- set c = c.split('<think>')[0] %}
{%- endif %}
{%- set c = "<think></think>" ~ c | trim %}
{%- if c | length > 0 %}
{{- c ~ '\n' -}}
{%- endif %}
{%- endif %}
{%- else %}
{{- "<think></think>" -}}
{%- endif %}
{%- for tool_call in message.tool_calls %}
{%- if tool_call.function is defined %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '<tool_call>\n<function=' ~ tool_call.name ~ '>\n' -}}
{%- if tool_call.arguments is defined %}
{%- for args_name, args_value in tool_call.arguments|items %}
{{- '<parameter=' ~ args_name ~ '>\n' -}}
{%- set args_value = args_value | tojson | safe if args_value is mapping or (args_value is sequence and args_value is not string) else args_value | string %}
{{- args_value ~ '\n</parameter>\n' -}}
{%- endfor %}
{%- endif %}
{{- '</function>\n</tool_call>\n' -}}
{%- endfor %}
{{- '<|im_end|>\n' }}
{%- else %}
{# Assistant message doesn't have tool calls. #}
{%- if not (truncate_history_thinking and loop.index0 < ns.last_user_idx) %}
{{- '<|im_start|>assistant\n' ~ (content | default('', true) | string | trim) ~ '<|im_end|>\n' }}
{%- else %}
{%- set c = (content | default('', true) | string) %}
{%- if '<think>' in c and '</think>' in c %}
{%- set c = "<think></think>" ~ c.split('</think>')[-1] %}
{%- endif %}
{%- set c = c | trim %}
{%- if c | length > 0 %}
{{- '<|im_start|>assistant\n' ~ c ~ '<|im_end|>\n' }}
{%- else %}
{{- '<|im_start|>assistant\n<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endif %}
{%- elif message.role == "user" or message.role == "system" %}
{{- '<|im_start|>' + message.role + '\n' }}
{%- set content = message.content | string %}
{{- content }}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if loop.previtem and loop.previtem.role != "tool" %}
{{- '<|im_start|>user\n' }}
{%- endif %}
{{- '<tool_response>\n' }}
{{- message.content }}
{{- '\n</tool_response>\n' }}
{%- if not loop.last and loop.nextitem.role != "tool" %}
{{- '<|im_end|>\n' }}
{%- elif loop.last %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>\n' }}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{%- if enable_thinking %}
{{- '<|im_start|>assistant\n<think>\n' }}
{%- else %}
{{- '<|im_start|>assistant\n<think></think>' }}
{%- endif %}
{%- endif %}

View File

@ -231,3 +231,7 @@ bool llama_hparams::is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama
return false;
}
bool llama_hparams::use_mrope() const {
return rope_sections[0] > 0 && rope_sections[1] > 0;
}

View File

@ -270,6 +270,8 @@ struct llama_hparams {
// TODO: think of a better place for this function
// TODO: pack the SWA params in a struct?
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1);
bool use_mrope() const;
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");

View File

@ -1694,7 +1694,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
} break;
case LLM_ARCH_GLM4:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
switch (hparams.n_layer) {
case 40: type = LLM_TYPE_9B; break;
case 61: type = LLM_TYPE_32B; break;
@ -1703,8 +1704,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
} break;
case LLM_ARCH_GLM4_MOE:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
// MoE parameters
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
@ -7830,7 +7832,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_DEEPSEEK2OCR:
case LLM_ARCH_PLM:
case LLM_ARCH_CHATGLM:
case LLM_ARCH_GLM4:
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_GRANITE_HYBRID:
@ -7892,7 +7893,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_LFM2:
case LLM_ARCH_LFM2MOE:
case LLM_ARCH_SMALLTHINKER:
case LLM_ARCH_GLM4_MOE:
case LLM_ARCH_SEED_OSS:
case LLM_ARCH_GROVEMOE:
case LLM_ARCH_APERTUS:
@ -7909,6 +7909,11 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_QWEN3VLMOE:
return LLAMA_ROPE_TYPE_IMROPE;
case LLM_ARCH_GLM4:
return model->hparams.use_mrope() ? LLAMA_ROPE_TYPE_MROPE : LLAMA_ROPE_TYPE_NORM;
case LLM_ARCH_GLM4_MOE:
return model->hparams.use_mrope() ? LLAMA_ROPE_TYPE_MROPE : LLAMA_ROPE_TYPE_NEOX;
// all model arches should be listed explicitly here
case LLM_ARCH_UNKNOWN:
GGML_ABORT("unknown architecture");

View File

@ -5,11 +5,20 @@ llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_grap
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
bool use_mrope = hparams.use_mrope();
if (ubatch.embd && !use_mrope) {
// unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@ -60,17 +69,25 @@ llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_grap
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
if (use_mrope) {
Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
} else {
// Normal RoPE
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);

View File

@ -8,11 +8,20 @@ llm_build_glm4::llm_build_glm4(const llama_model & model, const llm_graph_params
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
bool use_mrope = hparams.use_mrope();
if (ubatch.embd && !use_mrope) {
// unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@ -63,11 +72,25 @@ llm_build_glm4::llm_build_glm4(const llama_model & model, const llm_graph_params
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
}
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
if (use_mrope) {
Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
} else {
// Normal RoPE
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);

View File

@ -3588,6 +3588,163 @@ static void test_template_output_peg_parsers() {
t.expect.content =R"({"amount": 123.45, "date": "2025-12-03"})";
});
}
{
// NVIDIA Nemotron-3 Nano
auto tmpls = read_templates("models/templates/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16.jinja");
// Test basic message
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input = "Hello, world!\nWhat's up?";
t.expect = message_assist;
});
// Test basic message and reasoning with reasoning_format = none
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input = "I'm\nthinking\n</think>\nHello, world!\nWhat's up?";
t.expect.content = "I'm\nthinking\n</think>\nHello, world!\nWhat's up?";
});
// Test basic message and reasoning with reasoning_format = auto
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input = "I'm\nthinking\n</think>\nHello, world!\nWhat's up?";
t.params.enable_thinking = true;
t.params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
t.expect = message_assist_thoughts;
});
// Test tool call
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input =
"<tool_call>\n"
"<function=special_function>\n"
"<parameter=arg1>\n"
"1\n"
"</parameter>\n"
"</function>\n"
"</tool_call>";
t.params.enable_thinking = false;
t.params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
t.params.tools = {special_function_tool};
t.expect = message_assist_call;
});
// Test tool call with reasoning
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input =
"I'm\nthinking\n</think>\n"
"<tool_call>\n"
"<function=special_function>\n"
"<parameter=arg1>\n"
"1\n"
"</parameter>\n"
"</function>\n"
"</tool_call>";
t.params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
t.params.tools = {special_function_tool};
t.expect = message_assist_call_thoughts;
});
// Test parallel tool calls
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input =
"<tool_call>\n"
"<function=special_function>\n"
"<parameter=arg1>\n"
"1\n"
"</parameter>\n"
"</function>\n"
"</tool_call>\n"
"<tool_call>\n"
"<function=special_function_with_opt>\n"
"<parameter=arg1>\n"
"1\n"
"</parameter>\n"
"<parameter=arg2>\n"
"2\n"
"</parameter>\n"
"</function>\n"
"</tool_call>";
t.params.enable_thinking = false;
t.params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
t.params.parallel_tool_calls = true;
t.params.tools = {special_function_tool, special_function_tool_with_optional_param};
t.expect.tool_calls = {{
/* .name = */ "special_function",
/* .arguments = */ R"({"arg1": 1})",
/* .id = */ {},
}, {
/* .name = */ "special_function_with_opt",
/* .arguments = */ R"({"arg1": 1, "arg2": 2})",
/* .id = */ {},
}};
});
// Test tool call with string parameter
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input =
"<tool_call>\n"
"<function=python>\n"
"<parameter=code>\n"
"def hello():\n"
" print(\"Hello, world!\")\n"
"\n"
"hello()\n"
"</parameter>\n"
"</function>\n"
"</tool_call>";
t.params.enable_thinking = false;
t.params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
t.params.tools = {python_tool};
t.expect.tool_calls = {{
/* .name = */ "python",
/* .arguments = */ "{\"code\": \"def hello():\\n print(\\\"Hello, world!\\\")\\n\\nhello()\"}",
/* .id = */ {},
}};
});
// Test tool call with string parameter and no closing </parameter> tag
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input =
"<tool_call>\n"
"<function=python>\n"
"<parameter=code>\n"
"def hello():\n"
" print(\"Hello, world!\")\n"
"\n"
"hello()\n"
"</function>\n"
"</tool_call>";
t.params.enable_thinking = false;
t.params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
t.params.tools = {python_tool};
t.expect.tool_calls = {{
/* .name = */ "python",
/* .arguments = */ "{\"code\": \"def hello():\\n print(\\\"Hello, world!\\\")\\n\\nhello()\"}",
/* .id = */ {},
}};
});
// Test response format
test_peg_parser(tmpls.get(), [&](auto & t) {
t.input =
"I need to output the invoice details in JSON\n"
"</think>\n"
R"({"amount": 123.45, "date": "2025-12-03"})";
t.params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
t.params.json_schema = invoice_schema;
t.expect.reasoning_content = "I need to output the invoice details in JSON";
t.expect.content = R"({"amount": 123.45, "date": "2025-12-03"})";
});
}
}
static void test_msg_diffs_compute() {

View File

@ -1367,10 +1367,85 @@ static void test_all(const std::string & lang, std::function<void(const TestCase
});
}
static void test_resolves_to_string() {
fprintf(stderr, "#\n# Testing resolves_to_string\n#\n");
auto test = [](const std::string & name, const std::string & schema_str, bool expected) {
fprintf(stderr, "- %s\n", name.c_str());
common_schema_info info;
auto schema = nlohmann::ordered_json::parse(schema_str);
info.resolve_refs(schema);
bool result = info.resolves_to_string(schema);
if (result != expected) {
fprintf(stderr, "#\n# Test '%s' failed.\n#\n", name.c_str());
fprintf(stderr, "Schema: %s\n", schema_str.c_str());
fprintf(stderr, "Expected: %s, Got: %s\n", expected ? "true" : "false", result ? "true" : "false");
assert(false);
}
};
// Basic type checks
test("type string", R"({"type": "string"})", true);
test("type integer", R"({"type": "integer"})", false);
test("type number", R"({"type": "number"})", false);
test("type boolean", R"({"type": "boolean"})", false);
test("type object", R"({"type": "object"})", false);
test("type array", R"({"type": "array"})", false);
// Type array (nullable string)
test("type array with string", R"({"type": ["string", "null"]})", true);
test("type array without string", R"({"type": ["integer", "null"]})", false);
// String-specific keywords
test("minLength implies string", R"({"minLength": 1})", true);
test("maxLength implies string", R"({"maxLength": 10})", true);
test("pattern implies string", R"({"pattern": "^[a-z]+$"})", true);
// Format
test("format date", R"({"format": "date"})", true);
test("format uuid", R"({"format": "uuid"})", true);
test("format email", R"({"format": "email"})", true);
// Const
test("const string", R"({"const": "hello"})", true);
test("const number", R"({"const": 123})", false);
// Enum
test("enum with strings", R"({"enum": ["a", "b", "c"]})", true);
test("enum with numbers", R"({"enum": [1, 2, 3]})", false);
test("enum mixed with string", R"({"enum": [1, "a", null]})", true);
// anyOf
test("anyOf with string", R"({"anyOf": [{"type": "string"}, {"type": "integer"}]})", true);
test("anyOf without string", R"({"anyOf": [{"type": "integer"}, {"type": "boolean"}]})", false);
// oneOf
test("oneOf with string", R"({"oneOf": [{"type": "string"}, {"type": "number"}]})", true);
test("oneOf without string", R"({"oneOf": [{"type": "object"}, {"type": "array"}]})", false);
// allOf - all must be strings
test("allOf all strings", R"({"allOf": [{"type": "string"}, {"minLength": 1}]})", true);
test("allOf mixed types", R"({"allOf": [{"type": "string"}, {"type": "integer"}]})", false);
// $ref
test("$ref to string",
R"({"$ref": "#/$defs/str", "$defs": {"str": {"type": "string"}}})", true);
test("$ref to integer",
R"({"$ref": "#/$defs/num", "$defs": {"num": {"type": "integer"}}})", false);
// Nested
test("nested anyOf with string",
R"({"anyOf": [{"anyOf": [{"type": "integer"}, {"type": "string"}]}, {"type": "boolean"}]})", true);
fprintf(stderr, "All resolves_to_string tests passed!\n");
}
int main() {
fprintf(stderr, "LLAMA_NODE_AVAILABLE = %s\n", getenv("LLAMA_NODE_AVAILABLE") ? "true" : "false");
fprintf(stderr, "LLAMA_PYTHON_AVAILABLE = %s\n", getenv("LLAMA_PYTHON_AVAILABLE") ? "true" : "false");
test_resolves_to_string();
test_all("C++", [](const TestCase & tc) {
try {
tc.verify(json_schema_to_grammar(nlohmann::ordered_json::parse(tc.schema), true));

View File

@ -15,6 +15,7 @@ add_library(mtmd
clip-graph.h
models/models.h
models/cogvlm.cpp
models/glm4v.cpp
models/internvl.cpp
models/kimivl.cpp
models/llama4.cpp

View File

@ -9,6 +9,8 @@
#include <vector>
#include <functional>
#define DEFAULT_INTERPOLATION_MODE (GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS)
struct clip_graph {
const clip_model & model;
const clip_hparams & hparams;
@ -49,7 +51,7 @@ struct clip_graph {
void cb(ggml_tensor * cur0, const char * name, int il) const;
// siglip2 naflex
ggml_tensor * resize_position_embeddings();
ggml_tensor * resize_position_embeddings(uint32_t interpolation_mode = DEFAULT_INTERPOLATION_MODE);
// build vision transformer (ViT) cgraph
// this function should cover most of the models

View File

@ -71,6 +71,7 @@
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_NORM_EMBD "v.norm_embd.%s"
#define TN_ATTN_QKV "%s.blk.%d.attn_qkv.%s"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
@ -89,6 +90,10 @@
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MM_UP "mm.up.%s"
#define TN_MM_GATE "mm.gate.%s"
#define TN_MM_DOWN "mm.down.%s"
#define TN_MM_POST_NORM "mm.post_norm.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
@ -99,7 +104,7 @@
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MM_PROJECTOR "mm.model.fc.%s" // idefics3, deepseekocr
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
#define TN_MM_PATCH_MERGER "mm.patch_merger.%s" // mistral small 3.1, glm4v
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
#define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
#define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
@ -184,6 +189,7 @@ enum projector_type {
PROJECTOR_TYPE_COGVLM,
PROJECTOR_TYPE_JANUS_PRO,
PROJECTOR_TYPE_DEEPSEEKOCR,
PROJECTOR_TYPE_GLM4V,
PROJECTOR_TYPE_UNKNOWN,
};
@ -212,6 +218,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_COGVLM, "cogvlm"},
{ PROJECTOR_TYPE_JANUS_PRO, "janus_pro"},
{ PROJECTOR_TYPE_DEEPSEEKOCR,"deepseekocr"},
{ PROJECTOR_TYPE_GLM4V, "glm4v"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
@ -695,6 +702,8 @@ static void save_tensor_to_file(const struct ggml_tensor * tensor, const uint8_t
fprintf(stderr, "Tensor saved successfully\n");
}
void clip_debug_encode(clip_ctx * ctx, int h, int w, float fill_value);
//
// API used internally with mtmd
//

View File

@ -182,6 +182,8 @@ struct clip_model {
ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
ggml_tensor * patch_bias = nullptr;
ggml_tensor * position_embeddings = nullptr;
ggml_tensor * norm_embd_w = nullptr;
ggml_tensor * norm_embd_b = nullptr;
ggml_tensor * pre_ln_w = nullptr;
ggml_tensor * pre_ln_b = nullptr;
@ -197,6 +199,14 @@ struct clip_model {
ggml_tensor * fc_b;
ggml_tensor * mm_fc_w;
ggml_tensor * mm_fc_b;
ggml_tensor * mm_ffn_up_w = nullptr;
ggml_tensor * mm_ffn_up_b = nullptr;
ggml_tensor * mm_ffn_gate_w = nullptr;
ggml_tensor * mm_ffn_gate_b = nullptr;
ggml_tensor * mm_ffn_down_w = nullptr;
ggml_tensor * mm_ffn_down_b = nullptr;
ggml_tensor * mm_post_norm_w = nullptr;
ggml_tensor * mm_post_norm_b = nullptr;
// LLaVA projection
ggml_tensor * mm_input_norm_w = nullptr;
@ -280,9 +290,10 @@ struct clip_model {
ggml_tensor * mm_input_proj_w = nullptr;
ggml_tensor * mm_soft_emb_norm_w = nullptr;
// pixtral
// pixtral, glm4v
ggml_tensor * token_embd_img_break = nullptr;
ggml_tensor * mm_patch_merger_w = nullptr;
ggml_tensor * mm_patch_merger_b = nullptr;
// ultravox / whisper encoder
ggml_tensor * conv1d_1_w = nullptr;

View File

@ -265,11 +265,11 @@ void clip_graph::cb(ggml_tensor * cur0, const char * name, int il) const {
}
// siglip2 naflex
ggml_tensor * clip_graph::resize_position_embeddings() {
ggml_tensor * clip_graph::resize_position_embeddings(uint32_t interpolation_mode) {
ggml_tensor * pos_embd = model.position_embeddings;
const int height = img.ny / patch_size;
const int width = img.nx / patch_size;
const uint32_t mode = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
const uint32_t mode = interpolation_mode;
const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
GGML_ASSERT(pos_embd);
@ -453,11 +453,9 @@ ggml_tensor * clip_graph::build_vit(
return inpL;
}
// build the input after conv2d (inp_raw --> patches)
// returns tensor with shape [n_embd, n_patches]
ggml_tensor * clip_graph::build_inp() {
// build the input after conv2d (inp_raw --> patches)
// returns tensor with shape [n_embd, n_patches]
ggml_tensor * clip_graph::build_inp() {
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
@ -488,19 +486,14 @@ ggml_tensor * clip_graph::build_norm(
? ggml_rms_norm(ctx0, cur, norm_eps)
: ggml_norm(ctx0, cur, norm_eps);
if (mw || mb) {
cb(cur, "norm", il);
}
if (mw) {
cur = ggml_mul(ctx0, cur, mw);
if (mb) {
cb(cur, "norm_w", il);
}
cb(cur, "norm_w", il);
}
if (mb) {
cur = ggml_add(ctx0, cur, mb);
cb(cur, "norm_b", il);
}
return cur;
@ -846,6 +839,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{
builder = std::make_unique<clip_graph_deepseekocr>(ctx, img);
} break;
case PROJECTOR_TYPE_GLM4V:
{
builder = std::make_unique<clip_graph_glm4v>(ctx, img);
} break;
default:
GGML_ABORT("missing cgraph builder");
}
@ -1159,6 +1156,14 @@ struct clip_model_loader {
LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
}
} break;
case PROJECTOR_TYPE_GLM4V:
{
hparams.rope_theta = 10000.0f;
hparams.n_merge = 2; // default value for GLM4-V
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
hparams.set_limit_image_tokens(8, 4096);
hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
} break;
case PROJECTOR_TYPE_LLAMA4:
{
hparams.rope_theta = 10000.0f;
@ -1297,6 +1302,9 @@ struct clip_model_loader {
model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
model.norm_embd_w = get_tensor(string_format(TN_NORM_EMBD, "weight"), false);
model.norm_embd_b = get_tensor(string_format(TN_NORM_EMBD, "bias"), false);
model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
// layers
@ -1485,6 +1493,20 @@ struct clip_model_loader {
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_GLM4V:
{
model.projection = get_tensor(TN_MM_PROJECTOR);
model.mm_ffn_up_w = get_tensor(string_format(TN_MM_UP, "weight"));
model.mm_ffn_up_b = get_tensor(string_format(TN_MM_UP, "bias"), false);
model.mm_ffn_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
model.mm_ffn_gate_b = get_tensor(string_format(TN_MM_GATE, "bias"), false);
model.mm_ffn_down_w = get_tensor(string_format(TN_MM_DOWN, "weight"));
model.mm_ffn_down_b = get_tensor(string_format(TN_MM_DOWN, "bias"), false);
model.mm_post_norm_w = get_tensor(string_format(TN_MM_POST_NORM, "weight"));
model.mm_post_norm_b = get_tensor(string_format(TN_MM_POST_NORM, "bias"), false);
model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"));
model.mm_patch_merger_b = get_tensor(string_format(TN_MM_PATCH_MERGER, "bias"));
} break;
case PROJECTOR_TYPE_GEMMA3:
{
model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
@ -1513,8 +1535,8 @@ struct clip_model_loader {
// [IMG_BREAK] token embedding
model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
// for mistral small 3.1
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"), false);
} break;
case PROJECTOR_TYPE_LIGHTONOCR:
{
@ -1522,8 +1544,8 @@ struct clip_model_loader {
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"), false);
} break;
case PROJECTOR_TYPE_ULTRAVOX:
{
@ -1924,6 +1946,8 @@ struct clip_init_result clip_init(const char * fname, struct clip_context_params
if (ctx_params.warmup) {
loader.warmup(*ctx_vision);
}
// clip_debug_encode(ctx_vision, 24*14, 24*14, 0.5f);
}
if (loader.has_audio) {
@ -2942,6 +2966,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
{
GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
clip_image_u8 resized;
@ -3268,16 +3293,30 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->model.hparams;
const int n_total = clip_n_output_tokens(ctx, img);
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
return img->nx / (params.patch_size * 2);
const auto & proj = ctx->proj_type();
switch (proj) {
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
return (img->nx / params.patch_size) / 2;
default:
break;
}
return n_total;
}
int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->model.hparams;
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
return img->ny / (params.patch_size * 2);
const auto & proj = ctx->proj_type();
switch (proj) {
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
return (img->ny / params.patch_size) / 2;
default:
break;
}
return 1;
}
@ -3334,6 +3373,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
{
// dynamic size (2 conv, so double patch size)
int x_patch = img->nx / (params.patch_size * 2);
@ -3593,6 +3633,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN3VL:
case PROJECTOR_TYPE_GLM4V:
{
const int merge_ratio = hparams.n_merge;
const int pw = image_size_width / patch_size;
@ -3862,7 +3903,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
if (vec != nullptr) {
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
}
return true;
}
@ -3912,6 +3955,8 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->model.mm_4h_to_h_w->ne[1];
case PROJECTOR_TYPE_DEEPSEEKOCR:
return ctx->model.fc_w->ne[1];
case PROJECTOR_TYPE_GLM4V:
return ctx->model.mm_ffn_down_w->ne[1];
default:
GGML_ABORT("Unknown projector type");
}
@ -3928,10 +3973,11 @@ bool clip_is_glm(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
}
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
bool clip_is_mrope(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL
|| ctx->proj_type() == PROJECTOR_TYPE_GLM4V;
}
bool clip_is_llava(const struct clip_ctx * ctx) {
@ -3996,3 +4042,22 @@ void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel
const clip_hparams * clip_get_hparams(const struct clip_ctx * ctx) {
return &ctx->model.hparams;
}
//
// API for debugging
//
void clip_debug_encode(clip_ctx * ctx, int h, int w, float fill_value) {
clip_image_f32 img;
img.nx = w;
img.ny = h;
img.buf.resize(h * w * 3);
for (int i = 0; i < h * w * 3; i++) {
img.buf[i] = static_cast<float>(fill_value);
}
bool cur_debug_graph = ctx->debug_graph;
ctx->debug_graph = true;
clip_image_encode(ctx, 1, &img, nullptr);
ctx->debug_graph = cur_debug_graph;
GGML_ASSERT(img.buf.empty() && "expected, always stop here");
}

View File

@ -104,7 +104,7 @@ bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct
int clip_is_minicpmv(const struct clip_ctx * ctx);
bool clip_is_glm(const struct clip_ctx * ctx);
bool clip_is_qwen2vl(const struct clip_ctx * ctx);
bool clip_is_mrope(const struct clip_ctx * ctx);
bool clip_is_llava(const struct clip_ctx * ctx);
bool clip_is_gemma3(const struct clip_ctx * ctx);
bool clip_is_deepseekocr(const struct clip_ctx * ctx);

120
tools/mtmd/models/glm4v.cpp Normal file
View File

@ -0,0 +1,120 @@
#include "models.h"
ggml_cgraph * clip_graph_glm4v::build() {
GGML_ASSERT(model.patch_bias != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
GGML_ASSERT(model.class_embedding == nullptr);
const int batch_size = 1;
norm_type norm_t = NORM_TYPE_RMS;
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches * 4);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
GGML_ASSERT(img.nx % (patch_size * 2) == 0);
GGML_ASSERT(img.ny % (patch_size * 2) == 0);
// second conv dimension
{
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_cont_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
inp = ggml_cont_3d(
ctx0, inp,
n_embd, n_patches_x * n_patches_y, batch_size);
}
// add patch bias
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
// pos-conv norm
inp = build_norm(inp, model.norm_embd_w, model.norm_embd_b, norm_t, eps, -1);
// calculate absolute position embedding and apply
ggml_tensor * learned_pos_embd = resize_position_embeddings(GGML_SCALE_MODE_BICUBIC);
learned_pos_embd = ggml_cont_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
learned_pos_embd = ggml_reshape_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
learned_pos_embd = ggml_cont_3d(
ctx0, learned_pos_embd,
n_embd, n_patches_x * n_patches_y, batch_size);
cb(learned_pos_embd, "learned_pos_embd", -1);
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
return ggml_rope_multi(
ctx0, cur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION,
32768, hparams.rope_theta, 1, 0, 1, 32, 1);
};
ggml_tensor * cur = build_vit(
inp, n_patches,
norm_t,
hparams.ffn_op,
learned_pos_embd,
add_pos);
cb(cur, "vit_out", -1);
// cb(ggml_sum(ctx0, cur), "vit_out_sum", -1);
// GLM4V projector
// ref: https://github.com/huggingface/transformers/blob/40dc11cd3eb4126652aa41ef8272525affd4a636/src/transformers/models/glm4v/modeling_glm4v.py#L116-L130
// patch merger (downsample)
{
int n_merge = hparams.n_merge;
GGML_ASSERT(n_merge > 0);
int n_token_out = n_patches / n_merge / n_merge;
cur = ggml_reshape_4d(ctx0, cur, n_embd, n_merge, n_merge, n_token_out);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3)); // [n_merge, n_merge, n_embd, n_token_out]
cur = ggml_conv_2d(ctx0, model.mm_patch_merger_w, cur, n_merge, n_merge, 0, 0, 1, 1);
cur = ggml_reshape_2d(ctx0, cur, cur->ne[2], n_token_out); // [n_embd_out, n_token_out]
cur = ggml_add(ctx0, cur, model.mm_patch_merger_b);
}
// FC projector
{
cur = ggml_mul_mat(ctx0, model.projection, cur);
// default LayerNorm (post_projection_norm)
cur = build_norm(cur, model.mm_post_norm_w, model.mm_post_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
cur = ggml_gelu_erf(ctx0, cur);
cb(cur, "after_fc_proj", -1);
}
// FFN projector
{
cur = build_ffn(cur,
model.mm_ffn_up_w, model.mm_ffn_up_b,
model.mm_ffn_gate_w, model.mm_ffn_gate_b,
model.mm_ffn_down_w, model.mm_ffn_down_b,
hparams.ffn_op, -1);
cb(cur, "after_ffn_proj", -1);
// cb(ggml_sum(ctx0, cur), "merged_sum", -1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}

View File

@ -61,3 +61,8 @@ struct clip_graph_deepseekocr : clip_graph {
clip_graph_deepseekocr(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
ggml_cgraph * build() override;
};
struct clip_graph_glm4v : clip_graph {
clip_graph_glm4v(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
ggml_cgraph * build() override;
};

View File

@ -217,7 +217,7 @@ struct mtmd_context {
void init_vision() {
GGML_ASSERT(ctx_v != nullptr);
use_mrope = clip_is_qwen2vl(ctx_v);
use_mrope = clip_is_mrope(ctx_v);
projector_type proj = clip_get_projector_type(ctx_v);
int minicpmv_version = clip_is_minicpmv(ctx_v);
@ -309,6 +309,10 @@ struct mtmd_context {
img_beg = "<|image_start|>";
img_end = "<|image_end|>";
} else if (proj == PROJECTOR_TYPE_GLM4V) {
img_beg = "<|begin_of_image|>";
img_end = "<|end_of_image|>";
}
}

View File

@ -1430,7 +1430,7 @@ Model presets allow advanced users to define custom configurations using an `.in
llama-server --models-preset ./my-models.ini
```
Each section in the file defines a new preset. Keys within a section correspond to command-line arguments (without leading dashes). For example, the argument `--n-gpu-layer 123` is written as `n-gpu-layer = 123`.
Each section in the file defines a new preset. Keys within a section correspond to command-line arguments (without leading dashes). For example, the argument `--n-gpu-layers 123` is written as `n-gpu-layers = 123`.
Short argument forms (e.g., `c`, `ngl`) and environment variable names (e.g., `LLAMA_ARG_N_GPU_LAYERS`) are also supported as keys.
@ -1445,7 +1445,7 @@ version = 1
; string value
chat-template = chatml
; numeric value
n-gpu-layer = 123
n-gpu-layers = 123
; flag value (for certain flags, you need to use the "no-" prefix for negation)
jinja = true
; shorthand argument (for example, context size)