This commit is contained in:
shaofeiqi 2026-02-06 22:58:27 +00:00 committed by GitHub
commit 4ddd331569
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 259 additions and 0 deletions

View File

@ -121,6 +121,7 @@ set(GGML_OPENCL_KERNELS
ssm_conv
sub
sum_rows
cumsum
transpose
concat
tsembd

View File

@ -540,6 +540,9 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
cl_kernel kernel_cumsum_blk;
cl_kernel kernel_cumsum_add;
cl_kernel kernel_repeat;
cl_kernel kernel_repeat_f32;
cl_kernel kernel_pad;
cl_kernel kernel_tanh_f32, kernel_tanh_f32_4, kernel_tanh_f32_nc;
@ -1768,6 +1771,24 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// cumsum
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "cumsum.cl.h"
};
#else
const std::string kernel_src = read_file("cumsum.cl");
#endif
cl_program prog;
prog = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_cumsum_blk = clCreateKernel(prog, "kernel_cumsum_blk", &err), err));
CL_CHECK((backend_ctx->kernel_cumsum_add = clCreateKernel(prog, "kernel_cumsum_add", &err), err));
GGML_LOG_CONT(".");
CL_CHECK(clReleaseProgram(prog));
}
// sigmoid
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -3422,6 +3443,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
}
case GGML_OP_SUM_ROWS:
case GGML_OP_CUMSUM:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_MEAN:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_FLASH_ATTN_EXT:
@ -10619,6 +10642,119 @@ static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, c
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_cumsum(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_UNUSED(src1);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(ggml_is_contiguous(src0));
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
cl_kernel kernel = backend_ctx->kernel_cumsum_blk;
int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
int nth = 1;
while (nth < ne00 && 2*nth <= max_workgroup_size) {
nth *= 2;
}
GGML_ASSERT(ne00 <= nth*nth);
const int net0 = (ne00 + nth - 1) / nth;
const int net1 = ne01;
const int net2 = ne02;
const cl_ulong nbt0 = sizeof(float);
const cl_ulong nbt1 = net0*nbt0;
const cl_ulong nbt2 = net1*nbt1;
const cl_ulong nbt3 = net2*nbt2;
cl_int status;
cl_mem tmp = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, net0 * ne01 * ne02 * ne03 * sizeof(float), NULL, &status);
CL_CHECK(status);
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &tmp));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &net0));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &net1));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &net2));
size_t global_work_size[] = { (size_t)(nth * net0 * ne01), (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = { (size_t)nth, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
if(ne00 > nth){
cl_ulong offsett = 0;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &tmp));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offsett));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &tmp));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &tmp));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offsett));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &net0));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nbt0));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nbt1));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nbt2));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nbt3));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &net0));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &net1));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &net2));
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
kernel = backend_ctx->kernel_cumsum_add;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &tmp));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &nbt0));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &nbt1));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &nbt2));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &nbt3));
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
CL_CHECK(clReleaseMemObject(tmp));
}
static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -11031,6 +11167,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_sum_rows;
break;
case GGML_OP_CUMSUM:
if (!any_on_device) {
return false;
}
func = ggml_cl_cumsum;
break;
case GGML_OP_FLASH_ATTN_EXT:
if (!any_on_device) {
return false;

View File

@ -0,0 +1,116 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// cumsum
//------------------------------------------------------------------------------
#define MAX_SUBGROUPS 16
kernel void kernel_cumsum_blk(
global char * src0,
ulong offset0,
global char * tmp,
global char * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
uint net0,
uint net1,
uint net2
) {
src0 = src0 + offset0;
dst = dst + offsetd;
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
const int nth = get_local_size(0);
const int tid = get_local_id(0);
const uint sg_size = get_sub_group_size();
const uint sg_id = get_sub_group_id();
const uint sg_lid = get_sub_group_local_id();
const int ib = i1 / ne01;
const int i00 = ib * nth;
const int i01 = i1 % ne01;
const int i02 = i2;
const int i03 = i3;
global const float * src0_row = (global const float *)(src0 + i03*nb03 + i02*nb02 + i01*nb01);
global float * tmp_row = (global float *)tmp + net0 * i01 + net0 * net1 * i02 + net0 * net1 * net2 * i03;
global float * dst_row = (global float *)dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
__local float partial[MAX_SUBGROUPS];
float v = 0.0f;
if(i00 + tid < ne00){
v = src0_row[i00 + tid];
}
float s = sub_group_scan_inclusive_add(v);
if(sg_lid == sg_size - 1){
partial[sg_id] = s;
}
barrier(CLK_LOCAL_MEM_FENCE);
if(sg_id == 0){
float x = 0.0f;
if(sg_lid < get_num_sub_groups()) x = partial[sg_lid];
float ex = sub_group_scan_exclusive_add(x);
if(sg_lid < get_num_sub_groups()) partial[sg_lid] = ex;
}
barrier(CLK_LOCAL_MEM_FENCE);
s += partial[sg_id];
if(i00 + tid < ne00){
dst_row[i00 + tid] = s;
}
if(ne00 > nth && tid == nth - 1){
tmp_row[ib] = s;
}
}
kernel void kernel_cumsum_add(
global char * tmp,
global char * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
uint nbt0,
uint nbt1,
uint nbt2,
uint nbt3
) {
dst = dst + offsetd;
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
const int nth = get_local_size(0);
const int tid = get_local_id(0);
const int ib = i1 / ne01;
if(ib == 0){
return;
}
const int i00 = ib * nth;
const int i01 = i1 % ne01;
const int i02 = i2;
const int i03 = i3;
global float * tmp_row = (global float *)(tmp + nbt1 * i01 + nbt2 * i02 + nbt3 * i03);
global float * dst_row = (global float *)dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
if(i00 + tid < ne00){
dst_row[i00 + tid] += tmp_row[ib - 1];
}
}