diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 08e4a12e45..72ce01eebb 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -5088,7 +5088,7 @@ class KimiLinearModel(TextModel): # KDA & MLA params # Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv - linear_attn_config = self.find_hparam(["linear_attn_config"], optional=False) + linear_attn_config = self.hparams["linear_attn_config"] # n_head == 0 for KDA layers, n_head > 0 for MLA layers # full_attention_layers list will be used to distingush layer type _num_kv_heads = list() @@ -5108,57 +5108,47 @@ class KimiLinearModel(TextModel): # MLA params - use add_* methods that handle arch substitution # Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv) - if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=False)) is not None: + if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None: self.gguf_writer.add_q_lora_rank(q_lora_rank) + # To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA if (kv_lora_rank := self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False)) is not None: self.gguf_writer.add_kv_lora_rank(kv_lora_rank) # MLA head dimensions # Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim - qk_nope_head_dim = self.find_hparam(["qk_nope_head_dim"], optional=False) - qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim"], optional=False) - v_head_dim = self.find_hparam(["v_head_dim"], optional=False) - kv_lora_rank = self.find_hparam(["kv_lora_rank"], optional=False) - # To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA - self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim) - self.gguf_writer.add_value_length(kv_lora_rank) - - # Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim - if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None: - self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) - elif qk_nope_head_dim is not None and qk_rope_head_dim is not None: - n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim - self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) - - # n_embd_head_v_mla = v_head_dim - if (n_embd_head_v_mla := self.find_hparam(["n_embd_head_v_mla"], optional=True)) is not None: - self.gguf_writer.add_value_length_mla(n_embd_head_v_mla) - elif v_head_dim is not None: - self.gguf_writer.add_value_length_mla(v_head_dim) - + qk_nope_head_dim = self.hparams.get("qk_nope_head_dim") # Rotation - use qk_rope_head_dim for Kimi - if (rope_dim := self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=True)) is not None: - self.gguf_writer.add_rope_dimension_count(rope_dim) + if (qk_rope_head_dim := self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False)) is not None: + self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim) + self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim) else: # Default to head_dim head_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(head_dim) + self.gguf_writer.add_key_length(kv_lora_rank + head_dim) + v_head_dim = self.hparams.get("v_head_dim") + + # Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None: + self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) + elif qk_nope_head_dim is not None: + n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) + + # n_embd_head_v_mla = v_head_dim + if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None: + self.gguf_writer.add_value_length_mla(n_embd_head_v_mla) + elif v_head_dim is not None: + self.gguf_writer.add_value_length_mla(v_head_dim) # moe_intermediate_size (1024 for Kimi) - if (moe_intermediate_size := self.find_hparam(["moe_intermediate_size"], optional=False)) is not None: - self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size) - + self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"]) # num_shared_experts (1 for Kimi) - if (num_shared_experts := self.find_hparam(["num_shared_experts"], optional=False)) is not None: - self.gguf_writer.add_expert_shared_count(num_shared_experts) - + self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"]) # first_k_dense_replace (1 for Kimi - first layer uses dense MLP) - if (first_k_dense_replace := self.find_hparam(["first_k_dense_replace"])) is not None: - self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace) - + self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"]) # Routed scaling factor (expert_weights_scale = 2.446 for Kimi) - if (routed_scaling_factor := self.find_hparam(["routed_scaling_factor"], optional=False)) is not None: - self.gguf_writer.add_expert_weights_scale(routed_scaling_factor) + self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"]) def prepare_tensors(self): super().prepare_tensors()