Merge branch 'ggml-org:master' into add_mcp_tool_support_to_webui
This commit is contained in:
commit
4ad45b2d10
|
|
@ -0,0 +1,95 @@
|
|||
ARG UBUNTU_VERSION=24.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=13.1.0
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
find build -name "*.so*" -exec cp -P {} /app/lib \;
|
||||
|
||||
RUN mkdir -p /app/full \
|
||||
&& cp build/bin/* /app/full \
|
||||
&& cp *.py /app/full \
|
||||
&& cp -r gguf-py /app/full \
|
||||
&& cp -r requirements /app/full \
|
||||
&& cp requirements.txt /app/full \
|
||||
&& cp .devops/tools.sh /app/full/tools.sh
|
||||
|
||||
## Base image
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS base
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y libgomp1 curl\
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||
&& find /var/cache -type f -delete
|
||||
|
||||
COPY --from=build /app/lib/ /app
|
||||
|
||||
### Full
|
||||
FROM base AS full
|
||||
|
||||
COPY --from=build /app/full /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-wheel \
|
||||
&& pip install --break-system-packages --upgrade setuptools \
|
||||
&& pip install --break-system-packages -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||
&& find /var/cache -type f -delete
|
||||
|
||||
|
||||
ENTRYPOINT ["/app/tools.sh"]
|
||||
|
||||
### Light, CLI only
|
||||
FROM base AS light
|
||||
|
||||
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
ENTRYPOINT [ "/app/llama-cli" ]
|
||||
|
||||
### Server, Server only
|
||||
FROM base AS server
|
||||
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
COPY --from=build /app/full/llama-server /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
ENTRYPOINT [ "/app/llama-server" ]
|
||||
|
|
@ -0,0 +1 @@
|
|||
{ "contextFileName": "AGENTS.md" }
|
||||
|
|
@ -8,7 +8,8 @@ body:
|
|||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for bug reports where the compilation of llama.cpp fails.
|
||||
Before opening an issue, please confirm that the compilation still fails with `-DGGML_CCACHE=OFF`.
|
||||
Before opening an issue, please confirm that the compilation still fails
|
||||
after recreating the CMake build directory and with `-DGGML_CCACHE=OFF`.
|
||||
If the compilation succeeds with ccache disabled you should be able to permanently fix the issue
|
||||
by clearing `~/.cache/ccache` (on Linux).
|
||||
- type: textarea
|
||||
|
|
|
|||
|
|
@ -98,7 +98,18 @@ body:
|
|||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
For very long logs (thousands of lines), preferably upload them as files instead.
|
||||
On Linux you can redirect console output into a file by appending ` > llama.log 2>&1` to your command.
|
||||
value: |
|
||||
<details>
|
||||
<summary>Logs</summary>
|
||||
<!-- Copy-pasted short logs go into the "console" area here -->
|
||||
|
||||
```console
|
||||
|
||||
```
|
||||
</details>
|
||||
|
||||
<!-- Long logs that you upload as files go here, outside the "console" area -->
|
||||
validations:
|
||||
required: true
|
||||
|
|
|
|||
|
|
@ -85,8 +85,19 @@ body:
|
|||
label: Relevant log output
|
||||
description: >
|
||||
If applicable, please copy and paste any relevant log output, including any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
If you are encountering problems specifically with the `llama_params_fit` module, always upload `--verbose` logs as well.
|
||||
render: shell
|
||||
For very long logs (thousands of lines), please upload them as files instead.
|
||||
On Linux you can redirect console output into a file by appending ` > llama.log 2>&1` to your command.
|
||||
value: |
|
||||
<details>
|
||||
<summary>Logs</summary>
|
||||
<!-- Copy-pasted short logs go into the "console" area here -->
|
||||
|
||||
```console
|
||||
|
||||
```
|
||||
</details>
|
||||
|
||||
<!-- Long logs that you upload as files go here, outside the "console" area -->
|
||||
validations:
|
||||
required: false
|
||||
|
|
|
|||
|
|
@ -40,13 +40,13 @@ jobs:
|
|||
# https://github.com/ggml-org/llama.cpp/issues/11888
|
||||
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "cuda cuda12", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04", cuda_version: "12.4.0", ubuntu_version: "22.04" }
|
||||
- { tag: "cuda13", dockerfile: ".devops/cuda-new.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04", cuda_version: "13.1.0", ubuntu_version: "24.04" }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "s390x", dockerfile: ".devops/s390x.Dockerfile", platforms: "linux/s390x", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04-s390x" }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
|
||||
- { tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v4
|
||||
|
|
@ -81,18 +81,21 @@ jobs:
|
|||
run: |
|
||||
REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case
|
||||
REPO_NAME="${{ github.event.repository.name }}"
|
||||
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
|
||||
|
||||
# list all tags possible
|
||||
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
|
||||
TYPE=""
|
||||
else
|
||||
TYPE="-${{ matrix.config.tag }}"
|
||||
fi
|
||||
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
|
||||
CACHETAGS="${PREFIX}buildcache${TYPE}"
|
||||
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
tags="${{ matrix.config.tag }}"
|
||||
for tag in $tags; do
|
||||
if [[ "$tag" == "cpu" ]]; then
|
||||
TYPE=""
|
||||
else
|
||||
TYPE="-$tag"
|
||||
fi
|
||||
CACHETAGS="${PREFIX}buildcache${TYPE}"
|
||||
FULLTAGS="${FULLTAGS:+$FULLTAGS,}${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
LIGHTTAGS="${LIGHTTAGS:+$LIGHTTAGS,}${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
SERVERTAGS="${SERVERTAGS:+$SERVERTAGS,}${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
done
|
||||
echo "cache_output_tags=$CACHETAGS" >> $GITHUB_OUTPUT
|
||||
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
|
||||
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
|
||||
|
|
@ -133,6 +136,9 @@ jobs:
|
|||
file: ${{ matrix.config.dockerfile }}
|
||||
target: full
|
||||
provenance: false
|
||||
build-args: |
|
||||
${{ matrix.config.ubuntu_version && format('UBUNTU_VERSION={0}', matrix.config.ubuntu_version) || '' }}
|
||||
${{ matrix.config.cuda_version && format('CUDA_VERSION={0}', matrix.config.cuda_version) || '' }}
|
||||
# using github experimental cache
|
||||
#cache-from: type=gha
|
||||
#cache-to: type=gha,mode=max
|
||||
|
|
@ -155,6 +161,9 @@ jobs:
|
|||
file: ${{ matrix.config.dockerfile }}
|
||||
target: light
|
||||
provenance: false
|
||||
build-args: |
|
||||
${{ matrix.config.ubuntu_version && format('UBUNTU_VERSION={0}', matrix.config.ubuntu_version) || '' }}
|
||||
${{ matrix.config.cuda_version && format('CUDA_VERSION={0}', matrix.config.cuda_version) || '' }}
|
||||
# using github experimental cache
|
||||
#cache-from: type=gha
|
||||
#cache-to: type=gha,mode=max
|
||||
|
|
@ -177,6 +186,9 @@ jobs:
|
|||
file: ${{ matrix.config.dockerfile }}
|
||||
target: server
|
||||
provenance: false
|
||||
build-args: |
|
||||
${{ matrix.config.ubuntu_version && format('UBUNTU_VERSION={0}', matrix.config.ubuntu_version) || '' }}
|
||||
${{ matrix.config.cuda_version && format('CUDA_VERSION={0}', matrix.config.cuda_version) || '' }}
|
||||
# using github experimental cache
|
||||
#cache-from: type=gha
|
||||
#cache-to: type=gha,mode=max
|
||||
|
|
|
|||
308
AGENTS.md
308
AGENTS.md
|
|
@ -1,281 +1,81 @@
|
|||
# Instructions for llama.cpp
|
||||
|
||||
## Repository Overview
|
||||
> [!IMPORTANT]
|
||||
> This project does **not** accept pull requests that are fully or predominantly AI-generated. AI tools may be utilized solely in an assistive capacity.
|
||||
>
|
||||
> Read more: [CONTRIBUTING.md](CONTRIBUTING.md)
|
||||
|
||||
llama.cpp is a large-scale C/C++ project for efficient LLM (Large Language Model) inference with minimal setup and dependencies. The project enables running language models on diverse hardware with state-of-the-art performance.
|
||||
AI assistance is permissible only when the majority of the code is authored by a human contributor, with AI employed exclusively for corrections or to expand on verbose modifications that the contributor has already conceptualized (see examples below)
|
||||
|
||||
**Key Facts:**
|
||||
- **Primary language**: C/C++ with Python utility scripts
|
||||
- **Size**: ~200k+ lines of code across 1000+ files
|
||||
- **Architecture**: Modular design with main library (`libllama`) and 40+ executable tools/examples
|
||||
- **Core dependency**: ggml tensor library (vendored in `ggml/` directory)
|
||||
- **Backends supported**: CPU (AVX/NEON/RVV optimized), CUDA, Metal, Vulkan, SYCL, ROCm, MUSA
|
||||
- **License**: MIT
|
||||
---
|
||||
|
||||
## Disclose AI Usage
|
||||
## Guidelines for Contributors Using AI
|
||||
|
||||
It is crucial to remind contributors that the project mandates disclosure of any AI usage in pull requests. This requirement stems from the potential for AI-generated code to include suboptimal optimizations and hidden bugs, owing to the inherent overconfidence in AI outputs.
|
||||
These use cases are **permitted** when making a contribution with the help of AI:
|
||||
|
||||
When generating significant portions of code, address this by:
|
||||
- Informing the user that AI-generated content may be rejected by maintainers.
|
||||
- Clearly marking AI-generated code in commit messages and comments.
|
||||
- Example of commit message: `[AI] Fix a race condition in ...`
|
||||
- Example of code comment: `// [AI] spawn a new thread ...`
|
||||
- Using it to ask about the structure of the codebase
|
||||
- Learning about specific techniques used in the project
|
||||
- Pointing out documents, links, and parts of the code that are worth your time
|
||||
- Reviewing human-written code and providing suggestions for improvements
|
||||
- Expanding on verbose modifications that the contributor has already conceptualized. For example:
|
||||
- Generating repeated lines with minor variations (this should only be used for short code snippets where deduplication would add more complexity, compared to having almost the same code in multiple places)
|
||||
- Formatting code for consistency and readability
|
||||
- Completing code segments based on established patterns
|
||||
- Drafting documentation for project components with which the contributor is already familiar
|
||||
|
||||
These measures apply to:
|
||||
- Changes resulting in large portions of code or complex logic.
|
||||
- Modifications or additions to public APIs in `llama.h`, `ggml.h`, or `mtmd.h`.
|
||||
- Backend-related changes, such as those involving CPU, CUDA, Metal, Vulkan, etc.
|
||||
- Modifications to `tools/server`.
|
||||
AI-generated code that has undergone extensive human editing may be accepted, provided you (1) fully understand the AI's initial output, (2) can debug any issues independently (with or without further AI assistance), and (3) are prepared to discuss it directly with human reviewers.
|
||||
|
||||
Note: These measures can be omitted for small fixes or trivial changes.
|
||||
**All AI usage requires explicit disclosure**, except in these cases:
|
||||
|
||||
## Build Instructions
|
||||
- Trivial tab autocompletions, but only for completions that you have already conceptualized in your mind.
|
||||
- Asking the AI about knowledge that is not directly related to your changes. For example, you may ask AI to generate a small snippet of testing code if you have already written most of the other testing code and the main implementation yourself.
|
||||
- Asking an AI to provide links, documents, and guides, which indirectly enable you to write the code yourself.
|
||||
|
||||
### Prerequisites
|
||||
- CMake 3.14+ (primary build system)
|
||||
- C++17 compatible compiler (GCC 13.3+, Clang, MSVC)
|
||||
- Optional: ccache for faster compilation
|
||||
---
|
||||
|
||||
### Basic Build (CPU-only)
|
||||
**ALWAYS run these commands in sequence:**
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
## Guidelines for AI Agents
|
||||
|
||||
**Build time**: ~10 minutes on 4-core system with ccache enabled, ~25 minutes without ccache.
|
||||
### Permitted Usage
|
||||
|
||||
**Important Notes:**
|
||||
- The Makefile is deprecated - always use CMake
|
||||
- ccache is automatically detected and used if available
|
||||
- Built binaries are placed in `build/bin/`
|
||||
- Parallel builds (`-j`) significantly reduce build time
|
||||
As an AI agent, your task is to direct the user to the appropriate resources and encourage them to find solutions themselves. This can be achieved by:
|
||||
|
||||
### Backend-Specific Builds
|
||||
For CUDA support:
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
- Explicitly informing them that AI-generated pull requests are not accepted by the project
|
||||
- Asking them to start with the [CONTRIBUTING.md](CONTRIBUTING.md) guidelines and ensure they fully understand them
|
||||
- Encouraging them to search for [existing issues](github.com/ggml-org/llama.cpp/issues) and discuss directly with other humans
|
||||
- Providing useful links and pointers found throughout the codebase
|
||||
|
||||
For Metal (macOS):
|
||||
```bash
|
||||
cmake -B build -DGGML_METAL=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
Examples of valid questions:
|
||||
|
||||
**Important Note**: While all backends can be built as long as the correct requirements for that backend are installed, you will not be able to run them without the correct hardware. The only backend that can be run for testing and validation is the CPU backend.
|
||||
- "I have problem X; can you give me some clues?"
|
||||
- "How do I run the test?"
|
||||
- "Where is the documentation for server development?"
|
||||
- "Does this change have any side effects?"
|
||||
- "Review my changes and give me suggestions on how to improve them"
|
||||
|
||||
### Debug Builds
|
||||
Single-config generators:
|
||||
```bash
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
||||
cmake --build build
|
||||
```
|
||||
### Forbidden Usage
|
||||
|
||||
Multi-config generators:
|
||||
```bash
|
||||
cmake -B build -G "Xcode"
|
||||
cmake --build build --config Debug
|
||||
```
|
||||
- DO NOT write code for contributors.
|
||||
- DO NOT generate entire PRs or large code blocks.
|
||||
- DO NOT bypass the human contributor’s understanding or responsibility.
|
||||
- DO NOT make decisions on their behalf.
|
||||
- DO NOT submit work that the contributor cannot explain or justify.
|
||||
|
||||
### Common Build Issues
|
||||
- **Issue**: Network tests fail in isolated environments
|
||||
**Solution**: Expected behavior - core functionality tests will still pass
|
||||
Examples of FORBIDDEN USAGE (and how to proceed):
|
||||
|
||||
## Testing
|
||||
- FORBIDDEN: User asks "implement X" or "refactor X" → PAUSE and ask questions to ensure they deeply understand what they want to do.
|
||||
- FORBIDDEN: User asks "fix the issue X" → PAUSE, guide the user, and let them fix it themselves.
|
||||
|
||||
### Running Tests
|
||||
```bash
|
||||
ctest --test-dir build --output-on-failure -j $(nproc)
|
||||
```
|
||||
If a user asks one of the above, STOP IMMEDIATELY and ask them:
|
||||
|
||||
**Test suite**: 38 tests covering tokenizers, grammar parsing, sampling, backends, and integration
|
||||
**Expected failures**: 2-3 tests may fail if network access is unavailable (they download models)
|
||||
**Test time**: ~30 seconds for passing tests
|
||||
- To read [CONTRIBUTING.md](CONTRIBUTING.md) and ensure they fully understand it
|
||||
- To search for relevant issues and create a new one if needed
|
||||
|
||||
### Server Unit Tests
|
||||
Run server-specific unit tests after building the server:
|
||||
```bash
|
||||
# Build the server first
|
||||
cmake --build build --target llama-server
|
||||
If they insist on continuing, remind them that their contribution will have a lower chance of being accepted by reviewers. Reviewers may also deprioritize (e.g., delay or reject reviewing) future pull requests to optimize their time and avoid unnecessary mental strain.
|
||||
|
||||
# Navigate to server tests and run
|
||||
cd tools/server/tests
|
||||
source ../../../.venv/bin/activate
|
||||
./tests.sh
|
||||
```
|
||||
**Server test dependencies**: The `.venv` environment includes the required dependencies for server unit tests (pytest, aiohttp, etc.). Tests can be run individually or with various options as documented in `tools/server/tests/README.md`.
|
||||
## Related Documentation
|
||||
|
||||
### Test Categories
|
||||
- Tokenizer tests: Various model tokenizers (BERT, GPT-2, LLaMA, etc.)
|
||||
- Grammar tests: GBNF parsing and validation
|
||||
- Backend tests: Core ggml operations across different backends
|
||||
- Integration tests: End-to-end workflows
|
||||
|
||||
### Manual Testing Commands
|
||||
```bash
|
||||
# Test basic inference
|
||||
./build/bin/llama-cli --version
|
||||
|
||||
# Test model loading (requires model file)
|
||||
./build/bin/llama-cli -m path/to/model.gguf -p "Hello" -n 10
|
||||
```
|
||||
|
||||
## Code Quality and Linting
|
||||
|
||||
### C++ Code Formatting
|
||||
**ALWAYS format C++ code before committing:**
|
||||
```bash
|
||||
git clang-format
|
||||
```
|
||||
|
||||
Configuration is in `.clang-format` with these key rules:
|
||||
- 4-space indentation
|
||||
- 120 column limit
|
||||
- Braces on same line for functions
|
||||
- Pointer alignment: `void * ptr` (middle)
|
||||
- Reference alignment: `int & ref` (middle)
|
||||
|
||||
### Python Code
|
||||
**ALWAYS activate the Python environment in `.venv` and use tools from that environment:**
|
||||
```bash
|
||||
# Activate virtual environment
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
Configuration files:
|
||||
- `.flake8`: flake8 settings (max-line-length=125, excludes examples/tools)
|
||||
- `pyrightconfig.json`: pyright type checking configuration
|
||||
|
||||
### Pre-commit Hooks
|
||||
Run before committing:
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
## Continuous Integration
|
||||
|
||||
### GitHub Actions Workflows
|
||||
Key workflows that run on every PR:
|
||||
- `.github/workflows/build.yml`: Multi-platform builds
|
||||
- `.github/workflows/server.yml`: Server functionality tests
|
||||
- `.github/workflows/python-lint.yml`: Python code quality
|
||||
- `.github/workflows/python-type-check.yml`: Python type checking
|
||||
|
||||
### Local CI Validation
|
||||
**Run full CI locally before submitting PRs:**
|
||||
```bash
|
||||
mkdir tmp
|
||||
|
||||
# CPU-only build
|
||||
bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
```
|
||||
|
||||
**CI Runtime**: 30-60 minutes depending on backend configuration
|
||||
|
||||
### Triggering CI
|
||||
Add `ggml-ci` to commit message to trigger heavy CI workloads on the custom CI infrastructure.
|
||||
|
||||
## Project Layout and Architecture
|
||||
|
||||
### Core Directories
|
||||
- **`src/`**: Main llama library implementation (`llama.cpp`, `llama-*.cpp`)
|
||||
- **`include/`**: Public API headers, primarily `include/llama.h`
|
||||
- **`ggml/`**: Core tensor library (submodule with custom GGML framework)
|
||||
- **`examples/`**: 30+ example applications and tools
|
||||
- **`tools/`**: Additional development and utility tools (server benchmarks, tests)
|
||||
- **`tests/`**: Comprehensive test suite with CTest integration
|
||||
- **`docs/`**: Detailed documentation (build guides, API docs, etc.)
|
||||
- **`scripts/`**: Utility scripts for CI, data processing, and automation
|
||||
- **`common/`**: Shared utility code used across examples
|
||||
|
||||
### Key Files
|
||||
- **`CMakeLists.txt`**: Primary build configuration
|
||||
- **`include/llama.h`**: Main C API header (~2000 lines)
|
||||
- **`src/llama.cpp`**: Core library implementation (~8000 lines)
|
||||
- **`CONTRIBUTING.md`**: Coding guidelines and PR requirements
|
||||
- **`.clang-format`**: C++ formatting rules
|
||||
- **`.pre-commit-config.yaml`**: Git hook configuration
|
||||
|
||||
### Built Executables (in `build/bin/`)
|
||||
Primary tools:
|
||||
- **`llama-cli`**: Main inference tool
|
||||
- **`llama-server`**: OpenAI-compatible HTTP server
|
||||
- **`llama-quantize`**: Model quantization utility
|
||||
- **`llama-perplexity`**: Model evaluation tool
|
||||
- **`llama-bench`**: Performance benchmarking
|
||||
- **`llama-convert-llama2c-to-ggml`**: Model conversion utilities
|
||||
|
||||
### Configuration Files
|
||||
- **CMake**: `CMakeLists.txt`, `cmake/` directory
|
||||
- **Linting**: `.clang-format`, `.clang-tidy`, `.flake8`
|
||||
- **CI**: `.github/workflows/`, `ci/run.sh`
|
||||
- **Git**: `.gitignore` (includes build artifacts, models, cache)
|
||||
|
||||
### Dependencies
|
||||
- **System**: OpenMP, libcurl (for model downloading)
|
||||
- **Optional**: CUDA SDK, Metal framework, Vulkan SDK, Intel oneAPI
|
||||
- **Bundled**: httplib, json (header-only libraries in vendored form)
|
||||
|
||||
## Common Validation Steps
|
||||
|
||||
### After Making Changes
|
||||
1. **Format code**: `git clang-format`
|
||||
2. **Build**: `cmake --build build --config Release`
|
||||
3. **Test**: `ctest --test-dir build --output-on-failure`
|
||||
4. **Server tests** (if modifying server): `cd tools/server/tests && source ../../../.venv/bin/activate && ./tests.sh`
|
||||
5. **Manual validation**: Test relevant tools in `build/bin/`
|
||||
|
||||
### Performance Validation
|
||||
```bash
|
||||
# Benchmark inference performance
|
||||
./build/bin/llama-bench -m model.gguf
|
||||
|
||||
# Evaluate model perplexity
|
||||
./build/bin/llama-perplexity -m model.gguf -f dataset.txt
|
||||
```
|
||||
|
||||
### Backend Validation
|
||||
```bash
|
||||
# Test backend operations
|
||||
./build/bin/test-backend-ops
|
||||
```
|
||||
|
||||
## Environment Setup
|
||||
|
||||
### Required Tools
|
||||
- CMake 3.14+ (install via system package manager)
|
||||
- Modern C++ compiler with C++17 support
|
||||
- Git (for submodule management)
|
||||
- Python 3.9+ with virtual environment (`.venv` is provided)
|
||||
|
||||
### Optional but Recommended
|
||||
- ccache: `apt install ccache` or `brew install ccache`
|
||||
- clang-format 15+: Usually included with LLVM/Clang installation
|
||||
- pre-commit: `pip install pre-commit`
|
||||
|
||||
### Backend-Specific Requirements
|
||||
- **CUDA**: NVIDIA CUDA Toolkit 11.2+
|
||||
- **Metal**: Xcode command line tools (macOS only)
|
||||
- **Vulkan**: Vulkan SDK
|
||||
- **SYCL**: Intel oneAPI toolkit
|
||||
|
||||
## Important Guidelines
|
||||
|
||||
### Code Changes
|
||||
- **Minimal dependencies**: Avoid adding new external dependencies
|
||||
- **Cross-platform compatibility**: Test on Linux, macOS, Windows when possible
|
||||
- **Performance focus**: This is a performance-critical inference library
|
||||
- **API stability**: Changes to `include/llama.h` require careful consideration
|
||||
- **Disclose AI Usage**: Refer to the "Disclose AI Usage" earlier in this document
|
||||
|
||||
### Git Workflow
|
||||
- Always create feature branches from `master`
|
||||
- **Never** commit build artifacts (`build/`, `.ccache/`, `*.o`, `*.gguf`)
|
||||
- Use descriptive commit messages following project conventions
|
||||
|
||||
### Trust These Instructions
|
||||
Only search for additional information if these instructions are incomplete or found to be incorrect. This document contains validated build and test procedures that work reliably across different environments.
|
||||
For related documentation on building, testing, and guidelines, please refer to:
|
||||
|
||||
- [CONTRIBUTING.md](CONTRIBUTING.md)
|
||||
- [Build documentation](docs/build.md)
|
||||
- [Server development documentation](tools/server/README-dev.md)
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
IMPORTANT: Ensure you’ve thoroughly reviewed the [AGENTS.md](AGENTS.md) file before beginning any work.
|
||||
|
|
@ -6,21 +6,45 @@ The project differentiates between 3 levels of contributors:
|
|||
- Collaborators (Triage): people with significant contributions, who may be responsible for some parts of the code, and are expected to maintain and review contributions for the code they own
|
||||
- Maintainers: responsible for reviewing and merging PRs, after approval from the code owners
|
||||
|
||||
# AI Usage Policy
|
||||
|
||||
> [!IMPORTANT]
|
||||
> This project does **not** accept pull requests that are fully or predominantly AI-generated. AI tools may be utilized solely in an assistive capacity.
|
||||
>
|
||||
> Detailed information regarding permissible and restricted uses of AI can be found in the [AGENTS.md](AGENTS.md) file.
|
||||
|
||||
Code that is initially generated by AI and subsequently edited will still be considered AI-generated. AI assistance is permissible only when the majority of the code is authored by a human contributor, with AI employed exclusively for corrections or to expand on verbose modifications that the contributor has already conceptualized (e.g., generating repeated lines with minor variations).
|
||||
|
||||
If AI is used to generate any portion of the code, contributors must adhere to the following requirements:
|
||||
|
||||
1. Explicitly disclose the manner in which AI was employed.
|
||||
2. Perform a comprehensive manual review prior to submitting the pull request.
|
||||
3. Be prepared to explain every line of code they submitted when asked about it by a maintainer.
|
||||
4. Using AI to respond to human reviewers is strictly prohibited.
|
||||
|
||||
For more info, please refer to the [AGENTS.md](AGENTS.md) file.
|
||||
|
||||
# Pull requests (for contributors & collaborators)
|
||||
|
||||
Before submitting your PR:
|
||||
- Search for existing PRs to prevent duplicating efforts
|
||||
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
|
||||
- Test your changes:
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
|
||||
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
|
||||
- When adding support for a new model or feature, focus on **CPU support only** in the initial PR unless you have a good reason not to. Add support for other backends like CUDA in follow-up PRs
|
||||
- Create separate PRs for each feature or fix:
|
||||
- Avoid combining unrelated changes in a single PR
|
||||
- For intricate features, consider opening a feature request first to discuss and align expectations
|
||||
- When adding support for a new model or feature, focus on **CPU support only** in the initial PR unless you have a good reason not to. Add support for other backends like CUDA in follow-up PRs
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, rebase it on top of latest `master` to get maintainers attention
|
||||
|
||||
After submitting your PR:
|
||||
- Expect requests for modifications to ensure the code meets llama.cpp's standards for quality and long-term maintainability
|
||||
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
|
||||
- Using AI to generate PRs is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before publishing the PR. Note that trivial tab autocompletions do not require disclosure.
|
||||
- If your PR becomes stale, rebase it on top of latest `master` to get maintainers attention
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for fixing related issues and reviewing related PRs
|
||||
|
||||
# Pull requests (for maintainers)
|
||||
|
||||
|
|
@ -31,6 +55,11 @@ The project differentiates between 3 levels of contributors:
|
|||
- When merging a PR, make sure you have a good understanding of the changes
|
||||
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)
|
||||
|
||||
Maintainers reserve the right to decline review or close pull requests for any reason, particularly under any of the following conditions:
|
||||
- The proposed change is already mentioned in the roadmap or an existing issue, and it has been assigned to someone.
|
||||
- The pull request duplicates an existing one.
|
||||
- The contributor fails to adhere to this contributing guide.
|
||||
|
||||
# Coding guidelines
|
||||
|
||||
- Avoid adding third-party dependencies, extra files, extra headers, etc.
|
||||
|
|
|
|||
|
|
@ -2017,7 +2017,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
if (llama_supports_rpc()) {
|
||||
add_opt(common_arg(
|
||||
{"--rpc"}, "SERVERS",
|
||||
"comma separated list of RPC servers",
|
||||
"comma separated list of RPC servers (host:port)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
add_rpc_devices(value);
|
||||
GGML_UNUSED(params);
|
||||
|
|
|
|||
|
|
@ -1395,6 +1395,14 @@ static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
|
|||
builder.consume_reasoning_with_xml_tool_calls(form, "<seed:think>", "</seed:think>");
|
||||
}
|
||||
|
||||
static void common_chat_parse_solar_open(common_chat_msg_parser & builder) {
|
||||
builder.try_parse_reasoning("<|think|>", "<|end|><|begin|>assistant<|content|>");
|
||||
|
||||
// TODO: Tool calling
|
||||
|
||||
builder.add_content(builder.consume_rest());
|
||||
}
|
||||
|
||||
static void common_chat_parse_content_only(common_chat_msg_parser & builder) {
|
||||
builder.try_parse_reasoning("<think>", "</think>");
|
||||
builder.add_content(builder.consume_rest());
|
||||
|
|
@ -1479,6 +1487,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
|||
case COMMON_CHAT_FORMAT_XIAOMI_MIMO:
|
||||
common_chat_parse_xiaomi_mimo(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_SOLAR_OPEN:
|
||||
common_chat_parse_solar_open(builder);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -319,7 +319,7 @@ json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msg
|
|||
}
|
||||
}
|
||||
} else {
|
||||
jmsg["content"] = json(); // null
|
||||
jmsg["content"] = "";
|
||||
}
|
||||
if (!msg.reasoning_content.empty()) {
|
||||
jmsg["reasoning_content"] = msg.reasoning_content;
|
||||
|
|
@ -380,8 +380,8 @@ std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & too
|
|||
const auto & function = tool.at("function");
|
||||
result.push_back({
|
||||
/* .name = */ function.at("name"),
|
||||
/* .description = */ function.at("description"),
|
||||
/* .parameters = */ function.at("parameters").dump(),
|
||||
/* .description = */ function.value("description", ""),
|
||||
/* .parameters = */ function.value("parameters", json::object()).dump(),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
@ -669,6 +669,7 @@ const char * common_chat_format_name(common_chat_format format) {
|
|||
case COMMON_CHAT_FORMAT_QWEN3_CODER_XML: return "Qwen3 Coder";
|
||||
case COMMON_CHAT_FORMAT_APRIEL_1_5: return "Apriel 1.5";
|
||||
case COMMON_CHAT_FORMAT_XIAOMI_MIMO: return "Xiaomi MiMo";
|
||||
case COMMON_CHAT_FORMAT_SOLAR_OPEN: return "Solar Open";
|
||||
case COMMON_CHAT_FORMAT_PEG_SIMPLE: return "peg-simple";
|
||||
case COMMON_CHAT_FORMAT_PEG_NATIVE: return "peg-native";
|
||||
case COMMON_CHAT_FORMAT_PEG_CONSTRUCTED: return "peg-constructed";
|
||||
|
|
@ -2517,6 +2518,27 @@ static common_chat_params common_chat_params_init_granite(const common_chat_temp
|
|||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_solar_open(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
// TODO: Reasoning effort
|
||||
json additional_context = {};
|
||||
|
||||
data.prompt = apply(tmpl, inputs, std::nullopt, std::nullopt, additional_context);
|
||||
data.format = COMMON_CHAT_FORMAT_SOLAR_OPEN;
|
||||
|
||||
data.preserved_tokens = {
|
||||
"<|think|>",
|
||||
"<|content|>",
|
||||
"<|begin|>",
|
||||
"<|end|>",
|
||||
};
|
||||
|
||||
// TODO: Tool calling
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
|
|
@ -2780,6 +2802,13 @@ static common_chat_params common_chat_templates_apply_jinja(
|
|||
return common_chat_params_init_magistral(tmpl, params);
|
||||
}
|
||||
|
||||
// Solar Open
|
||||
if (src.find("<|tool_response:begin|>") != std::string::npos &&
|
||||
src.find("<|tool_response:name|>") != std::string::npos &&
|
||||
src.find("<|tool_response:result|>") != std::string::npos) {
|
||||
return common_chat_params_init_solar_open(tmpl, params);
|
||||
}
|
||||
|
||||
// Plain handler (no tools)
|
||||
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||||
return common_chat_params_init_without_tools(tmpl, params);
|
||||
|
|
|
|||
|
|
@ -124,6 +124,7 @@ enum common_chat_format {
|
|||
COMMON_CHAT_FORMAT_QWEN3_CODER_XML,
|
||||
COMMON_CHAT_FORMAT_APRIEL_1_5,
|
||||
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
|
||||
COMMON_CHAT_FORMAT_SOLAR_OPEN,
|
||||
|
||||
// These are intended to be parsed by the PEG parser
|
||||
COMMON_CHAT_FORMAT_PEG_SIMPLE,
|
||||
|
|
|
|||
|
|
@ -251,7 +251,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
|
|||
case GGML_SCHED_PRIO_REALTIME: p = -20; break;
|
||||
}
|
||||
|
||||
if (!setpriority(PRIO_PROCESS, 0, p)) {
|
||||
if (setpriority(PRIO_PROCESS, 0, p) != 0) {
|
||||
LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
|
||||
return false;
|
||||
}
|
||||
|
|
@ -1109,6 +1109,25 @@ common_init_result::common_init_result(common_params & params) :
|
|||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// load and optionally apply lora adapters (must be loaded before context creation)
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_adapter_lora_ptr lora;
|
||||
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
|
||||
if (lora == nullptr) {
|
||||
LOG_ERR("%s: failed to load lora adapter '%s'\n", __func__, la.path.c_str());
|
||||
pimpl->model.reset(model);
|
||||
return;
|
||||
}
|
||||
|
||||
char buf[1024];
|
||||
la.ptr = lora.get();
|
||||
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
|
||||
la.task_name = buf;
|
||||
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
|
||||
la.prompt_prefix = buf;
|
||||
pimpl->lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
|
||||
}
|
||||
|
||||
// updates params.sampling
|
||||
// TODO: fix naming
|
||||
common_init_sampler_from_model(model, params.sampling);
|
||||
|
|
@ -1245,24 +1264,6 @@ common_init_result_ptr common_init_from_params(common_params & params) {
|
|||
}
|
||||
}
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_adapter_lora_ptr lora;
|
||||
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
|
||||
if (lora == nullptr) {
|
||||
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
|
||||
return res;
|
||||
}
|
||||
|
||||
char buf[1024];
|
||||
la.ptr = lora.get();
|
||||
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
|
||||
la.task_name = buf;
|
||||
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
|
||||
la.prompt_prefix = buf;
|
||||
res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters
|
||||
}
|
||||
|
||||
if (!params.lora_init_without_apply) {
|
||||
common_set_adapter_lora(lctx, params.lora_adapters);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1062,6 +1062,9 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
|
||||
# ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
|
||||
res = "grok-2"
|
||||
if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
|
||||
# ref: https://huggingface.co/aari1995/German_Semantic_V3
|
||||
res = "jina-v2-de"
|
||||
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
|
||||
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
|
||||
res = "llama-bpe"
|
||||
|
|
@ -1230,6 +1233,12 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
|
||||
# ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
|
||||
res = "kormo"
|
||||
if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
|
||||
# ref: https://huggingface.co/tencent/Youtu-LLM-2B
|
||||
res = "youtu"
|
||||
if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
|
||||
# ref: https://huggingface.co/upstage/Solar-Open-100B
|
||||
res = "solar-open"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
|
@ -1696,6 +1705,84 @@ class TextModel(ModelBase):
|
|||
if template is not None:
|
||||
self.gguf_writer.add_chat_template(template)
|
||||
|
||||
def _set_vocab_plamo(self):
|
||||
# PLaMo models use a custom tokenizer with a .jsonl file
|
||||
tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
|
||||
tokenizer_config_path = self.dir_model / "tokenizer_config.json"
|
||||
|
||||
if not tokenizer_jsonl_path.is_file():
|
||||
raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
|
||||
|
||||
# Load tokenizer config
|
||||
with open(tokenizer_config_path, "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
# Load tokens from JSONL file (actually a list format)
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
|
||||
for line_num, line in enumerate(f):
|
||||
if line.strip():
|
||||
token_data = json.loads(line)
|
||||
# Format: [token, score, type, ?, ?, ?, ?]
|
||||
token = token_data[0].encode("utf-8")
|
||||
score = float(token_data[1])
|
||||
token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
|
||||
|
||||
tokens.append(token)
|
||||
scores.append(score)
|
||||
|
||||
if token_type_str == "UNKNOWN":
|
||||
toktypes.append(gguf.TokenType.UNKNOWN)
|
||||
elif token_type_str == "CONTROL":
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
elif token_type_str == "BYTE":
|
||||
toktypes.append(gguf.TokenType.BYTE)
|
||||
else:
|
||||
token_str = token_data[0]
|
||||
if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
vocab_size = self.hparams["vocab_size"]
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("plamo2")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_bos_token_id(token_id)
|
||||
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_eos_token_id(token_id)
|
||||
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_pad_token_id(token_id)
|
||||
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_sep_token_id(token_id)
|
||||
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_unk_token_id(token_id)
|
||||
|
||||
# Add <|plamo:op|> as EOT to ensure appropriate end of generation
|
||||
self.gguf_writer.add_eot_token_id(4)
|
||||
|
||||
self.gguf_writer.add_add_space_prefix(False)
|
||||
|
||||
|
||||
class MmprojModel(ModelBase):
|
||||
model_type = ModelType.MMPROJ
|
||||
|
|
@ -2408,6 +2495,7 @@ class StableLMModel(TextModel):
|
|||
"VLlama3ForCausalLM",
|
||||
"LlavaForConditionalGeneration",
|
||||
"VoxtralForConditionalGeneration",
|
||||
"IQuestCoderForCausalLM",
|
||||
"LlamaModel")
|
||||
class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
|
@ -3425,7 +3513,7 @@ class QwenModel(TextModel):
|
|||
self._set_vocab_qwen()
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM")
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
|
||||
class Qwen2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
|
|
@ -4798,87 +4886,7 @@ class Plamo2Model(TextModel):
|
|||
model_arch = gguf.MODEL_ARCH.PLAMO2
|
||||
|
||||
def set_vocab(self):
|
||||
# PLaMo 2 uses a custom tokenizer with a .jsonl file
|
||||
# We need to handle this specially
|
||||
tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
|
||||
tokenizer_config_path = self.dir_model / "tokenizer_config.json"
|
||||
|
||||
if not tokenizer_jsonl_path.is_file():
|
||||
raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
|
||||
|
||||
# Load tokenizer config
|
||||
with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
# Load tokens from JSONL file (actually a list format)
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
|
||||
for line_num, line in enumerate(f):
|
||||
if line.strip():
|
||||
token_data = json.loads(line)
|
||||
# Format: [token, score, type, ?, ?, ?, ?]
|
||||
token = token_data[0].encode("utf-8")
|
||||
score = float(token_data[1])
|
||||
token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
|
||||
|
||||
tokens.append(token)
|
||||
scores.append(score)
|
||||
|
||||
# Map token type strings to GGUF token types
|
||||
if token_type_str == "UNKNOWN":
|
||||
toktypes.append(gguf.TokenType.UNKNOWN)
|
||||
elif token_type_str == "CONTROL":
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
elif token_type_str == "BYTE":
|
||||
toktypes.append(gguf.TokenType.BYTE)
|
||||
else:
|
||||
# Check for PLaMo-2 special tokens
|
||||
token_str = token_data[0]
|
||||
if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
vocab_size = self.hparams["vocab_size"]
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
|
||||
# Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
|
||||
self.gguf_writer.add_tokenizer_model("plamo2")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
# Add special tokens from config
|
||||
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_bos_token_id(token_id)
|
||||
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_eos_token_id(token_id)
|
||||
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_pad_token_id(token_id)
|
||||
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_sep_token_id(token_id)
|
||||
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
|
||||
token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
|
||||
self.gguf_writer.add_unk_token_id(token_id)
|
||||
|
||||
# Add <|plamo:op|> as EOT to ensure appropriate end of generation
|
||||
self.gguf_writer.add_eot_token_id(4)
|
||||
|
||||
self.gguf_writer.add_add_space_prefix(False)
|
||||
self._set_vocab_plamo()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
|
|
@ -4966,6 +4974,56 @@ class Plamo2Model(TextModel):
|
|||
return [(new_name, data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
|
||||
class Plamo3Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.PLAMO3
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_plamo()
|
||||
|
||||
tokenizer_config_path = self.dir_model / "tokenizer_config.json"
|
||||
tokenizer_config = {}
|
||||
|
||||
if tokenizer_config_path.is_file():
|
||||
with open(tokenizer_config_path, encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
chat_template = tokenizer_config.get("chat_template")
|
||||
chat_template_jinja = self.dir_model / "chat_template.jinja"
|
||||
|
||||
if chat_template_jinja.is_file():
|
||||
with open(chat_template_jinja, encoding="utf-8") as f:
|
||||
chat_template = f.read()
|
||||
|
||||
if chat_template:
|
||||
self.gguf_writer.add_chat_template(chat_template)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
|
||||
if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
|
||||
self.gguf_writer.add_sliding_window(sliding_window)
|
||||
self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
|
||||
self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("rope_local_theta")})["rope_theta"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
|
||||
if name.endswith(".pre_mixer_norm.weight"):
|
||||
data_torch = data_torch + 1.0
|
||||
elif name.endswith(".post_mixer_norm.weight"):
|
||||
data_torch = data_torch + 1.0 / 5
|
||||
elif name.endswith(".pre_mlp_norm.weight"):
|
||||
data_torch = data_torch + 1.0
|
||||
elif name.endswith(".post_mlp_norm.weight"):
|
||||
data_torch = data_torch + 1.0 / (5**1.5)
|
||||
elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
|
||||
data_torch = data_torch + 1.0
|
||||
elif name.endswith(".norm.weight"):
|
||||
data_torch = data_torch + 1.0
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("CodeShellForCausalLM")
|
||||
class CodeShellModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.CODESHELL
|
||||
|
|
@ -5236,13 +5294,14 @@ class BertModel(TextModel):
|
|||
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
|
||||
|
||||
# convert to phantom space vocab
|
||||
def phantom(tok):
|
||||
if tok.startswith("[") and tok.endswith("]"):
|
||||
def phantom(tok, toktype):
|
||||
if toktype == gguf.TokenType.CONTROL:
|
||||
return tok
|
||||
if tok.startswith("##"):
|
||||
return tok[2:]
|
||||
return "\u2581" + tok
|
||||
tokens = list(map(phantom, tokens))
|
||||
assert len(tokens) == len(toktypes)
|
||||
tokens = list(map(phantom, tokens, toktypes))
|
||||
|
||||
# add vocab to gguf
|
||||
self.gguf_writer.add_tokenizer_model("bert")
|
||||
|
|
@ -7133,6 +7192,7 @@ class DeepseekModel(TextModel):
|
|||
"DeepseekV2ForCausalLM",
|
||||
"DeepseekV3ForCausalLM",
|
||||
"KimiVLForConditionalGeneration",
|
||||
"YoutuForCausalLM",
|
||||
)
|
||||
class DeepseekV2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
|
||||
|
|
@ -7199,7 +7259,15 @@ class DeepseekV2Model(TextModel):
|
|||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
# first_k_dense_replace: number of leading layers using dense FFN instead of MoE
|
||||
# For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
|
||||
# For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
|
||||
has_moe = hparams.get("n_routed_experts") is not None
|
||||
first_k_dense_replace = hparams.get("first_k_dense_replace")
|
||||
if first_k_dense_replace is None:
|
||||
# Default: if no MoE, all layers are dense; if MoE, none are dense
|
||||
first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
|
||||
self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
|
||||
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
|
||||
|
|
@ -7211,11 +7279,24 @@ class DeepseekV2Model(TextModel):
|
|||
self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
|
||||
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
|
||||
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
|
||||
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
|
||||
# MoE parameters (required by C++ code for DEEPSEEK2 arch)
|
||||
# For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
|
||||
moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||||
|
||||
if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_routed_experts)
|
||||
|
||||
# expert_shared_count is required by C++ code, default to 0 for non-MoE models
|
||||
n_shared_experts = hparams.get("n_shared_experts", 0)
|
||||
self.gguf_writer.add_expert_shared_count(n_shared_experts)
|
||||
|
||||
# When not set, C++ code will use scale_w = false to skip the no-op scaling
|
||||
if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
|
||||
self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
|
||||
|
||||
if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
|
||||
self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||||
|
||||
|
|
@ -7231,10 +7312,17 @@ class DeepseekV2Model(TextModel):
|
|||
# skip vision tensors and remove "language_model." for Kimi-VL
|
||||
if "vision_tower" in name or "multi_modal_projector" in name:
|
||||
return []
|
||||
|
||||
if name.startswith("siglip2.") or name.startswith("merger."):
|
||||
return []
|
||||
if name.startswith("language_model."):
|
||||
name = name.replace("language_model.", "")
|
||||
|
||||
# skip lm_head.weight if tie_word_embeddings is True
|
||||
if self.hparams.get("tie_word_embeddings", False):
|
||||
if name == "lm_head.weight" or name == "model.lm_head.weight":
|
||||
logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
|
||||
return []
|
||||
|
||||
# rename e_score_correction_bias tensors
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
|
|
@ -9244,6 +9332,19 @@ class VoxtralWhisperEncoderModel(WhisperEncoderModel):
|
|||
self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
|
||||
|
||||
|
||||
@ModelBase.register("AudioFlamingo3ForConditionalGeneration")
|
||||
class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
if ".conv" in name and ".weight" in name:
|
||||
# Was trained in BF16, being safe, avoiding quantizing to FP16
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
|
||||
@ModelBase.register("FalconH1ForCausalLM")
|
||||
class FalconH1Model(Mamba2Model):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON_H1
|
||||
|
|
@ -10556,6 +10657,79 @@ class JanusProVisionModel(MmprojModel):
|
|||
return []
|
||||
|
||||
|
||||
@ModelBase.register("YOUTUVLForConditionalGeneration", "YOUTUVLForCausalLM")
|
||||
class YOUTUVLVisionModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert self.hparams_vision is not None
|
||||
self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
|
||||
|
||||
# Handle activation function
|
||||
hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
|
||||
if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
elif hidden_act == "silu":
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
else:
|
||||
raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
|
||||
|
||||
self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
|
||||
|
||||
window_size = self.hparams.get("window_size")
|
||||
if window_size is not None:
|
||||
self.gguf_writer.add_vision_window_size(window_size)
|
||||
# fullatt_block_indexes contains explicit layer indices that use full attention
|
||||
# e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
|
||||
# All other layers use window attention
|
||||
fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
|
||||
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
|
||||
# Store the explicit layer indices for YoutuVL (irregular pattern approach)
|
||||
self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
# Skip language model tensors
|
||||
skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
|
||||
if name.startswith(skip_prefixes):
|
||||
return []
|
||||
|
||||
# Try to map the tensor using TensorNameMap (handles vision encoder and projector)
|
||||
try:
|
||||
new_name = self.map_tensor_name(name)
|
||||
return [(new_name, data_torch)]
|
||||
except ValueError:
|
||||
# If mapping fails, log warning and skip
|
||||
logger.warning(f"Cannot map tensor: {name}")
|
||||
return []
|
||||
|
||||
|
||||
@ModelBase.register("SolarOpenForCausalLM")
|
||||
class SolarOpenModel(Glm4MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.GLM4_MOE
|
||||
|
||||
def set_vocab(self):
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
|
||||
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -145,6 +145,8 @@ models = [
|
|||
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
|
||||
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
|
||||
{"name": "kormo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/KORMo-Team/KORMo-tokenizer", },
|
||||
{"name": "youtu", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Youtu-LLM-2B", },
|
||||
{"name": "solar-open", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/upstage/Solar-Open-100B", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
|
|
@ -165,6 +167,8 @@ pre_computed_hashes = [
|
|||
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B", "chkhsh": "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c"},
|
||||
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
|
||||
# jina-v2-de variants
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/aari1995/German_Semantic_V3", "chkhsh": "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df"},
|
||||
]
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -150,19 +150,38 @@ We also have a [guide](./backend/CUDA-FEDORA.md) for setting up CUDA toolkit in
|
|||
|
||||
|
||||
### Compilation
|
||||
|
||||
Make sure to read the notes about the CPU build for general instructions for e.g. speeding up the compilation.
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Non-Native Builds
|
||||
|
||||
By default llama.cpp will be built for the hardware that is connected to the system at that time.
|
||||
For a build covering all CUDA GPUs, disable `GGML_NATIVE`:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON -DGGML_NATIVE=OFF
|
||||
```
|
||||
|
||||
The resulting binary should run on all CUDA GPUs with optimal performance, though some just-in-time compilation may be required.
|
||||
|
||||
### Override Compute Capability Specifications
|
||||
|
||||
If `nvcc` cannot detect your gpu, you may get compile-warnings such as:
|
||||
If `nvcc` cannot detect your gpu, you may get compile warnings such as:
|
||||
```text
|
||||
nvcc warning : Cannot find valid GPU for '-arch=native', default arch is used
|
||||
```
|
||||
|
||||
To override the `native` GPU detection:
|
||||
One option is to do a non-native build as described above.
|
||||
However, this will result in a large binary that takes a long time to compile.
|
||||
Alternatively it is also possible to explicitly specify CUDA architectures.
|
||||
This may also make sense for a non-native build, for that one should look at the logic in `ggml/src/ggml-cuda/CMakeLists.txt` as a starting point.
|
||||
|
||||
To override the default CUDA architectures:
|
||||
|
||||
#### 1. Take note of the `Compute Capability` of your NVIDIA devices: ["CUDA: Your GPU Compute > Capability"](https://developer.nvidia.com/cuda-gpus).
|
||||
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ Legend:
|
|||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
|
|
|
|||
|
|
@ -965,6 +965,7 @@
|
|||
"Metal","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[12,12,1,2560],ne_kernel=[3,3,1,2560],s0=1,s1=1,p0=1,p1=1,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[12,12,2,2560],ne_kernel=[3,3,2,2560],s0=1,s1=1,p0=1,p1=1,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[5,5,1,32],ne_kernel=[3,4,1,32],s0=1,s1=1,p0=0,p1=0,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL","type_input=f32,type_kernel=f32,dst_type=f32,ne_input=[2,2,1536,729],ne_kernel=[2,2,1536,4096],s0=1,s1=1,p0=0,p1=0,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL_3D","type_input=f32,type_kernel=f32,dst_type=f32,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","Metal"
|
||||
"Metal","IM2COL_3D","type_input=f32,type_kernel=f16,dst_type=f32,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","Metal"
|
||||
"Metal","IM2COL_3D","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","Metal"
|
||||
|
|
@ -4964,8 +4965,9 @@
|
|||
"Metal","CONV_TRANSPOSE_1D","ne_input=[2,1,1,1],ne_kernel=[3,1,1,1],s0=1,p0=0,d0=1","support","1","yes","Metal"
|
||||
"Metal","CONV_TRANSPOSE_2D","ne_input=[3,2,3,1],ne_kernel=[2,2,1,3],stride=1","support","1","yes","Metal"
|
||||
"Metal","CONV_TRANSPOSE_2D","ne_input=[10,10,9,1],ne_kernel=[3,3,1,9],stride=2","support","1","yes","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,500,1,1]","support","0","no","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,5000,1,1]","support","0","no","Metal"
|
||||
"Metal","CONV_TRANSPOSE_2D","ne_input=[129,63,35,1],ne_kernel=[3,3,48,35],stride=1","support","1","yes","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,500,1,1]","support","1","yes","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,5000,1,1]","support","1","yes","Metal"
|
||||
"Metal","ARGMAX","type=f32,ne=[32,1,1,1]","support","1","yes","Metal"
|
||||
"Metal","ARGMAX","type=f32,ne=[32,513,1,1]","support","1","yes","Metal"
|
||||
"Metal","ARGMAX","type=f32,ne=[100,10,1,1]","support","1","yes","Metal"
|
||||
|
|
@ -5715,15 +5717,15 @@
|
|||
"Metal","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Metal"
|
||||
"Metal","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000001,inplace=1","support","1","yes","Metal"
|
||||
"Metal","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[6,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[6,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[6,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Metal"
|
||||
|
|
@ -5733,6 +5735,15 @@
|
|||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1024,1,1],ne_b=[9,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[18,1024,1,1],ne_b=[9,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1024,4,1],ne_b=[9,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1536,1,1],ne_b=[9,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[18,1536,1,1],ne_b=[9,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1536,4,1],ne_b=[9,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,2048,1,1],ne_b=[9,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[18,2048,1,1],ne_b=[9,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,2048,4,1],ne_b=[9,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Metal"
|
||||
"Metal","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Metal"
|
||||
"Metal","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Metal"
|
||||
|
|
@ -8916,6 +8927,8 @@
|
|||
"Metal","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=0,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=0.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=1,m_prec=f32,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=1,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[200001,2,3,1],mask=1,sinks=1,m_prec=f32,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[200001,2,3,1],mask=1,sinks=1,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX_BACK","type=f32,ne=[16,16,1,1],scale=1.000000,max_bias=0.000000","support","0","no","Metal"
|
||||
"Metal","SOFT_MAX_BACK","type=f32,ne=[15,15,1,1],scale=1.000000,max_bias=0.000000","support","0","no","Metal"
|
||||
"Metal","SOFT_MAX_BACK","type=f32,ne=[16,16,2,3],scale=1.000000,max_bias=0.000000","support","0","no","Metal"
|
||||
|
|
@ -9542,311 +9555,311 @@
|
|||
"Metal","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","Metal"
|
||||
"Metal","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","Metal"
|
||||
"Metal","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[12,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","Metal"
|
||||
"Metal","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","Metal"
|
||||
"Metal","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","Metal"
|
||||
|
|
@ -9891,8 +9904,9 @@
|
|||
"Metal","GROUP_NORM","type=f32,ne=[64,64,320,1],num_groups=32,eps=0.000001","support","1","yes","Metal"
|
||||
"Metal","GROUP_NORM","type=f32,ne=[9,9,1280,1],num_groups=32,eps=0.000001","support","1","yes","Metal"
|
||||
"Metal","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1,circular=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[33,17,2,1],pad_0=4,pad_1=3,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0,circular=0","support","0","no","Metal"
|
||||
"Metal","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","1","yes","Metal"
|
||||
"Metal","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","1","yes","Metal"
|
||||
"Metal","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","0","no","Metal"
|
||||
|
|
@ -9923,17 +9937,41 @@
|
|||
"Metal","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","Metal"
|
||||
"Metal","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","Metal"
|
||||
"Metal","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","Metal"
|
||||
"Metal","DIAG","type=f32,ne=[10,1,4,3]","support","0","no","Metal"
|
||||
"Metal","DIAG","type=f32,ne=[79,1,19,13]","support","0","no","Metal"
|
||||
"Metal","DIAG","type=f32,ne=[256,1,8,16]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[64,64,2,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[79,79,5,3],ne_rhs=[417,79,5,3]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,2],ne_rhs=[32,128,4,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[80,80,2,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[79,80,2,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[81,80,2,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[80,80,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[79,80,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[81,80,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[84,84,4,4],ne_rhs=[32,84,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[95,95,8,8],ne_rhs=[40,95,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[31,128,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[32,128,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,3,4],ne_rhs=[32,128,3,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,1],ne_rhs=[32,128,4,1]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[200,64,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[384,64,4,4]","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=1","support","0","no","Metal"
|
||||
"Metal","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f32,permute=[0,1,2,3]","support","1","yes","Metal"
|
||||
"Metal","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f16,permute=[0,1,2,3]","support","1","yes","Metal"
|
||||
"Metal","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=bf16,permute=[0,1,2,3]","support","1","yes","Metal"
|
||||
|
|
|
|||
|
Can't render this file because it is too large.
|
|
|
@ -41,11 +41,8 @@ android {
|
|||
}
|
||||
}
|
||||
compileOptions {
|
||||
sourceCompatibility = JavaVersion.VERSION_1_8
|
||||
targetCompatibility = JavaVersion.VERSION_1_8
|
||||
}
|
||||
kotlinOptions {
|
||||
jvmTarget = "1.8"
|
||||
sourceCompatibility = JavaVersion.VERSION_17
|
||||
targetCompatibility = JavaVersion.VERSION_17
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@ import android.util.Log
|
|||
import android.widget.EditText
|
||||
import android.widget.TextView
|
||||
import android.widget.Toast
|
||||
import androidx.activity.addCallback
|
||||
import androidx.activity.enableEdgeToEdge
|
||||
import androidx.activity.result.contract.ActivityResultContracts
|
||||
import androidx.appcompat.app.AppCompatActivity
|
||||
|
|
@ -18,6 +19,7 @@ import com.arm.aichat.gguf.GgufMetadata
|
|||
import com.arm.aichat.gguf.GgufMetadataReader
|
||||
import com.google.android.material.floatingactionbutton.FloatingActionButton
|
||||
import kotlinx.coroutines.Dispatchers
|
||||
import kotlinx.coroutines.Job
|
||||
import kotlinx.coroutines.flow.onCompletion
|
||||
import kotlinx.coroutines.launch
|
||||
import kotlinx.coroutines.withContext
|
||||
|
|
@ -36,6 +38,7 @@ class MainActivity : AppCompatActivity() {
|
|||
|
||||
// Arm AI Chat inference engine
|
||||
private lateinit var engine: InferenceEngine
|
||||
private var generationJob: Job? = null
|
||||
|
||||
// Conversation states
|
||||
private var isModelReady = false
|
||||
|
|
@ -47,11 +50,13 @@ class MainActivity : AppCompatActivity() {
|
|||
super.onCreate(savedInstanceState)
|
||||
enableEdgeToEdge()
|
||||
setContentView(R.layout.activity_main)
|
||||
// View model boilerplate and state management is out of this basic sample's scope
|
||||
onBackPressedDispatcher.addCallback { Log.w(TAG, "Ignore back press for simplicity") }
|
||||
|
||||
// Find views
|
||||
ggufTv = findViewById(R.id.gguf)
|
||||
messagesRv = findViewById(R.id.messages)
|
||||
messagesRv.layoutManager = LinearLayoutManager(this)
|
||||
messagesRv.layoutManager = LinearLayoutManager(this).apply { stackFromEnd = true }
|
||||
messagesRv.adapter = messageAdapter
|
||||
userInputEt = findViewById(R.id.user_input)
|
||||
userActionFab = findViewById(R.id.fab)
|
||||
|
|
@ -157,33 +162,35 @@ class MainActivity : AppCompatActivity() {
|
|||
* Validate and send the user message into [InferenceEngine]
|
||||
*/
|
||||
private fun handleUserInput() {
|
||||
userInputEt.text.toString().also { userSsg ->
|
||||
if (userSsg.isEmpty()) {
|
||||
userInputEt.text.toString().also { userMsg ->
|
||||
if (userMsg.isEmpty()) {
|
||||
Toast.makeText(this, "Input message is empty!", Toast.LENGTH_SHORT).show()
|
||||
} else {
|
||||
userInputEt.text = null
|
||||
userInputEt.isEnabled = false
|
||||
userActionFab.isEnabled = false
|
||||
|
||||
// Update message states
|
||||
messages.add(Message(UUID.randomUUID().toString(), userSsg, true))
|
||||
messages.add(Message(UUID.randomUUID().toString(), userMsg, true))
|
||||
lastAssistantMsg.clear()
|
||||
messages.add(Message(UUID.randomUUID().toString(), lastAssistantMsg.toString(), false))
|
||||
|
||||
lifecycleScope.launch(Dispatchers.Default) {
|
||||
engine.sendUserPrompt(userSsg)
|
||||
generationJob = lifecycleScope.launch(Dispatchers.Default) {
|
||||
engine.sendUserPrompt(userMsg)
|
||||
.onCompletion {
|
||||
withContext(Dispatchers.Main) {
|
||||
userInputEt.isEnabled = true
|
||||
userActionFab.isEnabled = true
|
||||
}
|
||||
}.collect { token ->
|
||||
val messageCount = messages.size
|
||||
check(messageCount > 0 && !messages[messageCount - 1].isUser)
|
||||
|
||||
messages.removeAt(messageCount - 1).copy(
|
||||
content = lastAssistantMsg.append(token).toString()
|
||||
).let { messages.add(it) }
|
||||
|
||||
withContext(Dispatchers.Main) {
|
||||
val messageCount = messages.size
|
||||
check(messageCount > 0 && !messages[messageCount - 1].isUser)
|
||||
|
||||
messages.removeAt(messageCount - 1).copy(
|
||||
content = lastAssistantMsg.append(token).toString()
|
||||
).let { messages.add(it) }
|
||||
|
||||
messageAdapter.notifyItemChanged(messages.size - 1)
|
||||
}
|
||||
}
|
||||
|
|
@ -195,6 +202,7 @@ class MainActivity : AppCompatActivity() {
|
|||
/**
|
||||
* Run a benchmark with the model file
|
||||
*/
|
||||
@Deprecated("This benchmark doesn't accurately indicate GUI performance expected by app developers")
|
||||
private suspend fun runBenchmark(modelName: String, modelFile: File) =
|
||||
withContext(Dispatchers.Default) {
|
||||
Log.i(TAG, "Starts benchmarking $modelName")
|
||||
|
|
@ -223,6 +231,16 @@ class MainActivity : AppCompatActivity() {
|
|||
if (!it.exists()) { it.mkdir() }
|
||||
}
|
||||
|
||||
override fun onStop() {
|
||||
generationJob?.cancel()
|
||||
super.onStop()
|
||||
}
|
||||
|
||||
override fun onDestroy() {
|
||||
engine.destroy()
|
||||
super.onDestroy()
|
||||
}
|
||||
|
||||
companion object {
|
||||
private val TAG = MainActivity::class.java.simpleName
|
||||
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@
|
|||
android:id="@+id/gguf"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="wrap_content"
|
||||
android:layout_margin="16dp"
|
||||
android:padding="16dp"
|
||||
android:text="Selected GGUF model's metadata will show here."
|
||||
style="@style/TextAppearance.MaterialComponents.Body2" />
|
||||
|
||||
|
|
@ -33,8 +33,7 @@
|
|||
<com.google.android.material.divider.MaterialDivider
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="2dp"
|
||||
android:layout_marginHorizontal="16dp"
|
||||
android:layout_marginVertical="8dp" />
|
||||
android:layout_marginHorizontal="16dp" />
|
||||
|
||||
<androidx.recyclerview.widget.RecyclerView
|
||||
android:id="@+id/messages"
|
||||
|
|
|
|||
|
|
@ -1,15 +1,15 @@
|
|||
[versions]
|
||||
|
||||
# Plugins
|
||||
agp = "8.13.0"
|
||||
kotlin = "2.2.20"
|
||||
agp = "8.13.2"
|
||||
kotlin = "2.3.0"
|
||||
|
||||
# AndroidX
|
||||
activity = "1.11.0"
|
||||
activity = "1.12.2"
|
||||
appcompat = "1.7.1"
|
||||
core-ktx = "1.17.0"
|
||||
constraint-layout = "2.2.1"
|
||||
datastore-preferences = "1.1.7"
|
||||
datastore-preferences = "1.2.0"
|
||||
|
||||
# Material
|
||||
material = "1.13.0"
|
||||
|
|
|
|||
|
|
@ -560,6 +560,6 @@ Java_com_arm_aichat_internal_InferenceEngineImpl_unload(JNIEnv * /*unused*/, job
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_arm_aichat_internal_InferenceEngineImpl_shutdown(JNIEnv *env, jobject /*unused*/) {
|
||||
Java_com_arm_aichat_internal_InferenceEngineImpl_shutdown(JNIEnv *, jobject /*unused*/) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ interface InferenceEngine {
|
|||
/**
|
||||
* Unloads the currently loaded model.
|
||||
*/
|
||||
suspend fun cleanUp()
|
||||
fun cleanUp()
|
||||
|
||||
/**
|
||||
* Cleans up resources when the engine is no longer needed.
|
||||
|
|
|
|||
|
|
@ -15,9 +15,11 @@ import kotlinx.coroutines.cancel
|
|||
import kotlinx.coroutines.flow.Flow
|
||||
import kotlinx.coroutines.flow.MutableStateFlow
|
||||
import kotlinx.coroutines.flow.StateFlow
|
||||
import kotlinx.coroutines.flow.asStateFlow
|
||||
import kotlinx.coroutines.flow.flow
|
||||
import kotlinx.coroutines.flow.flowOn
|
||||
import kotlinx.coroutines.launch
|
||||
import kotlinx.coroutines.runBlocking
|
||||
import kotlinx.coroutines.withContext
|
||||
import java.io.File
|
||||
import java.io.IOException
|
||||
|
|
@ -109,9 +111,11 @@ internal class InferenceEngineImpl private constructor(
|
|||
|
||||
private val _state =
|
||||
MutableStateFlow<InferenceEngine.State>(InferenceEngine.State.Uninitialized)
|
||||
override val state: StateFlow<InferenceEngine.State> = _state
|
||||
override val state: StateFlow<InferenceEngine.State> = _state.asStateFlow()
|
||||
|
||||
private var _readyForSystemPrompt = false
|
||||
@Volatile
|
||||
private var _cancelGeneration = false
|
||||
|
||||
/**
|
||||
* Single-threaded coroutine dispatcher & scope for LLama asynchronous operations
|
||||
|
|
@ -169,6 +173,8 @@ internal class InferenceEngineImpl private constructor(
|
|||
}
|
||||
Log.i(TAG, "Model loaded!")
|
||||
_readyForSystemPrompt = true
|
||||
|
||||
_cancelGeneration = false
|
||||
_state.value = InferenceEngine.State.ModelReady
|
||||
} catch (e: Exception) {
|
||||
Log.e(TAG, (e.message ?: "Error loading model") + "\n" + pathToModel, e)
|
||||
|
|
@ -231,15 +237,19 @@ internal class InferenceEngineImpl private constructor(
|
|||
|
||||
Log.i(TAG, "User prompt processed. Generating assistant prompt...")
|
||||
_state.value = InferenceEngine.State.Generating
|
||||
while (true) {
|
||||
while (!_cancelGeneration) {
|
||||
generateNextToken()?.let { utf8token ->
|
||||
if (utf8token.isNotEmpty()) emit(utf8token)
|
||||
} ?: break
|
||||
}
|
||||
Log.i(TAG, "Assistant generation complete. Awaiting user prompt...")
|
||||
if (_cancelGeneration) {
|
||||
Log.i(TAG, "Assistant generation aborted per requested.")
|
||||
} else {
|
||||
Log.i(TAG, "Assistant generation complete. Awaiting user prompt...")
|
||||
}
|
||||
_state.value = InferenceEngine.State.ModelReady
|
||||
} catch (e: CancellationException) {
|
||||
Log.i(TAG, "Generation cancelled by user.")
|
||||
Log.i(TAG, "Assistant generation's flow collection cancelled.")
|
||||
_state.value = InferenceEngine.State.ModelReady
|
||||
throw e
|
||||
} catch (e: Exception) {
|
||||
|
|
@ -268,8 +278,9 @@ internal class InferenceEngineImpl private constructor(
|
|||
/**
|
||||
* Unloads the model and frees resources, or reset error states
|
||||
*/
|
||||
override suspend fun cleanUp() =
|
||||
withContext(llamaDispatcher) {
|
||||
override fun cleanUp() {
|
||||
_cancelGeneration = true
|
||||
runBlocking(llamaDispatcher) {
|
||||
when (val state = _state.value) {
|
||||
is InferenceEngine.State.ModelReady -> {
|
||||
Log.i(TAG, "Unloading model and free resources...")
|
||||
|
|
@ -293,17 +304,21 @@ internal class InferenceEngineImpl private constructor(
|
|||
else -> throw IllegalStateException("Cannot unload model in ${state.javaClass.simpleName}")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Cancel all ongoing coroutines and free GGML backends
|
||||
*/
|
||||
override fun destroy() {
|
||||
_readyForSystemPrompt = false
|
||||
llamaScope.cancel()
|
||||
when(_state.value) {
|
||||
is InferenceEngine.State.Uninitialized -> {}
|
||||
is InferenceEngine.State.Initialized -> shutdown()
|
||||
else -> { unload(); shutdown() }
|
||||
_cancelGeneration = true
|
||||
runBlocking(llamaDispatcher) {
|
||||
_readyForSystemPrompt = false
|
||||
when(_state.value) {
|
||||
is InferenceEngine.State.Uninitialized -> {}
|
||||
is InferenceEngine.State.Initialized -> shutdown()
|
||||
else -> { unload(); shutdown() }
|
||||
}
|
||||
}
|
||||
llamaScope.cancel()
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,8 +5,11 @@ set -e
|
|||
MODEL_PATH="${1:-"$MODEL_PATH"}"
|
||||
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
|
||||
|
||||
CONVERTED_MODEL_PATH="${1:-"$CONVERTED_MODEL"}"
|
||||
CONVERTED_MODEL_NAME="${2:-$(basename "$CONVERTED_MODEL_PATH" ".gguf")}"
|
||||
|
||||
if [ -t 0 ]; then
|
||||
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
|
||||
CPP_EMBEDDINGS="data/llamacpp-${CONVERTED_MODEL_NAME}-embeddings.bin"
|
||||
else
|
||||
# Process piped JSON data and convert to binary (matching logits.cpp format)
|
||||
TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import numpy as np
|
||||
import importlib
|
||||
from pathlib import Path
|
||||
|
|
@ -9,169 +10,243 @@ from pathlib import Path
|
|||
from transformers import AutoTokenizer, AutoConfig, AutoModel
|
||||
import torch
|
||||
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
||||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
||||
parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
|
||||
parser.add_argument('--use-sentence-transformers', action='store_true',
|
||||
help='Use SentenceTransformer to apply all numbered layers (01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
|
||||
args = parser.parse_args()
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(description='Run original embedding model')
|
||||
parser.add_argument(
|
||||
'--model-path',
|
||||
'-m',
|
||||
help='Path to the model'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--prompts-file',
|
||||
'-p',
|
||||
help='Path to file containing prompts (one per line)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--use-sentence-transformers',
|
||||
action='store_true',
|
||||
help=('Use SentenceTransformer to apply all numbered layers '
|
||||
'(01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
|
||||
)
|
||||
parser.add_argument(
|
||||
'--device',
|
||||
'-d',
|
||||
help='Device to use (cpu, cuda, mps, auto)',
|
||||
default='auto'
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
def read_prompt_from_file(file_path):
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
return f.read().strip()
|
||||
except FileNotFoundError:
|
||||
print(f"Error: Prompts file '{file_path}' not found")
|
||||
exit(1)
|
||||
except Exception as e:
|
||||
print(f"Error reading prompts file: {e}")
|
||||
exit(1)
|
||||
|
||||
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
|
||||
if model_path is None:
|
||||
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
|
||||
|
||||
# Determine if we should use SentenceTransformer
|
||||
use_sentence_transformers = args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
|
||||
|
||||
if use_sentence_transformers:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
print("Using SentenceTransformer to apply all numbered layers")
|
||||
model = SentenceTransformer(model_path)
|
||||
tokenizer = model.tokenizer
|
||||
config = model[0].auto_model.config # type: ignore
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# This can be used to override the sliding window size for manual testing. This
|
||||
# can be useful to verify the sliding window attention mask in the original model
|
||||
# and compare it with the converted .gguf model.
|
||||
if hasattr(config, 'sliding_window'):
|
||||
original_sliding_window = config.sliding_window
|
||||
#original_sliding_window = 6
|
||||
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
|
||||
|
||||
print(f"Using unreleased model: {unreleased_model_name}")
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
class_name = f"{unreleased_model_name}Model"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(model_path, config=config, trust_remote_code=True)
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
exit(1)
|
||||
def load_model_and_tokenizer(model_path, use_sentence_transformers=False, device="auto"):
|
||||
if device == "cpu":
|
||||
device_map = {"": "cpu"}
|
||||
print("Forcing CPU usage")
|
||||
elif device == "auto":
|
||||
# On Mac, "auto" device_map can cause issues with accelerate
|
||||
# So we detect the best device manually
|
||||
if torch.cuda.is_available():
|
||||
device_map = {"": "cuda"}
|
||||
print("Using CUDA")
|
||||
elif torch.backends.mps.is_available():
|
||||
device_map = {"": "mps"}
|
||||
print("Using MPS (Apple Metal)")
|
||||
else:
|
||||
device_map = {"": "cpu"}
|
||||
print("Using CPU")
|
||||
else:
|
||||
model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True)
|
||||
print(f"Model class: {type(model)}")
|
||||
print(f"Model file: {type(model).__module__}")
|
||||
device_map = {"": device}
|
||||
|
||||
# Verify the model is using the correct sliding window
|
||||
if not use_sentence_transformers:
|
||||
if hasattr(model.config, 'sliding_window'): # type: ignore
|
||||
print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
|
||||
else:
|
||||
print("Model config does not have sliding_window attribute")
|
||||
|
||||
model_name = os.path.basename(model_path)
|
||||
|
||||
if args.prompts_file:
|
||||
prompt_text = read_prompt_from_file(args.prompts_file)
|
||||
texts = [prompt_text]
|
||||
else:
|
||||
texts = ["Hello world today"]
|
||||
|
||||
with torch.no_grad():
|
||||
if use_sentence_transformers:
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
all_embeddings = embeddings # Shape: [batch_size, hidden_size]
|
||||
|
||||
encoded = tokenizer(
|
||||
texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
tokens = encoded['input_ids'][0]
|
||||
token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
||||
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
||||
print(f"{token_id:6d} -> '{token_str}'")
|
||||
|
||||
print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
|
||||
print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
|
||||
from sentence_transformers import SentenceTransformer
|
||||
print("Using SentenceTransformer to apply all numbered layers")
|
||||
model = SentenceTransformer(model_path)
|
||||
tokenizer = model.tokenizer
|
||||
config = model[0].auto_model.config # type: ignore
|
||||
else:
|
||||
# Standard approach: use base model output only
|
||||
encoded = tokenizer(
|
||||
texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
tokens = encoded['input_ids'][0]
|
||||
token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
||||
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
||||
print(f"{token_id:6d} -> '{token_str}'")
|
||||
# This can be used to override the sliding window size for manual testing. This
|
||||
# can be useful to verify the sliding window attention mask in the original model
|
||||
# and compare it with the converted .gguf model.
|
||||
if hasattr(config, 'sliding_window'):
|
||||
original_sliding_window = config.sliding_window
|
||||
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
|
||||
|
||||
outputs = model(**encoded)
|
||||
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
|
||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||||
print(f"Using unreleased model: {unreleased_model_name}")
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||
class_name = f"{unreleased_model_name}Model"
|
||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||
|
||||
all_embeddings = hidden_states[0].float().cpu().numpy() # Shape: [seq_len, hidden_size]
|
||||
try:
|
||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||||
model = model_class.from_pretrained(
|
||||
model_path,
|
||||
device_map=device_map,
|
||||
offload_folder="offload",
|
||||
trust_remote_code=True,
|
||||
config=config
|
||||
)
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Failed to import or load model: {e}")
|
||||
sys.exit(1)
|
||||
else:
|
||||
model = AutoModel.from_pretrained(
|
||||
model_path,
|
||||
device_map=device_map,
|
||||
offload_folder="offload",
|
||||
trust_remote_code=True,
|
||||
config=config
|
||||
)
|
||||
print(f"Model class: {type(model)}")
|
||||
print(f"Model file: {type(model).__module__}")
|
||||
|
||||
print(f"Hidden states shape: {hidden_states.shape}")
|
||||
print(f"All embeddings shape: {all_embeddings.shape}")
|
||||
print(f"Embedding dimension: {all_embeddings.shape[1]}")
|
||||
# Verify the model is using the correct sliding window
|
||||
if hasattr(model.config, 'sliding_window'): # type: ignore
|
||||
print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
|
||||
else:
|
||||
print("Model config does not have sliding_window attribute")
|
||||
|
||||
if len(all_embeddings.shape) == 1:
|
||||
n_embd = all_embeddings.shape[0] # type: ignore
|
||||
n_embd_count = 1
|
||||
all_embeddings = all_embeddings.reshape(1, -1)
|
||||
return model, tokenizer, config
|
||||
|
||||
|
||||
def get_prompt(args):
|
||||
if args.prompts_file:
|
||||
try:
|
||||
with open(args.prompts_file, 'r', encoding='utf-8') as f:
|
||||
return f.read().strip()
|
||||
except FileNotFoundError:
|
||||
print(f"Error: Prompts file '{args.prompts_file}' not found")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"Error reading prompts file: {e}")
|
||||
sys.exit(1)
|
||||
else:
|
||||
n_embd = all_embeddings.shape[1] # type: ignore
|
||||
n_embd_count = all_embeddings.shape[0] # type: ignore
|
||||
return "Hello world today"
|
||||
|
||||
print()
|
||||
|
||||
for j in range(n_embd_count):
|
||||
embedding = all_embeddings[j]
|
||||
print(f"embedding {j}: ", end="")
|
||||
def main():
|
||||
args = parse_arguments()
|
||||
|
||||
# Print first 3 values
|
||||
for i in range(min(3, n_embd)):
|
||||
print(f"{embedding[i]:9.6f} ", end="")
|
||||
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
|
||||
if model_path is None:
|
||||
print("Error: Model path must be specified either via --model-path argument "
|
||||
"or EMBEDDING_MODEL_PATH environment variable")
|
||||
sys.exit(1)
|
||||
|
||||
print(" ... ", end="")
|
||||
# Determine if we should use SentenceTransformer
|
||||
use_st = (
|
||||
args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
|
||||
)
|
||||
|
||||
# Print last 3 values
|
||||
for i in range(n_embd - 3, n_embd):
|
||||
print(f"{embedding[i]:9.6f} ", end="")
|
||||
model, tokenizer, config = load_model_and_tokenizer(model_path, use_st, args.device)
|
||||
|
||||
print() # New line
|
||||
# Get the device the model is on
|
||||
if not use_st:
|
||||
device = next(model.parameters()).device
|
||||
else:
|
||||
# For SentenceTransformer, get device from the underlying model
|
||||
device = next(model[0].auto_model.parameters()).device # type: ignore
|
||||
|
||||
print()
|
||||
model_name = os.path.basename(model_path)
|
||||
|
||||
data_dir = Path("data")
|
||||
data_dir.mkdir(exist_ok=True)
|
||||
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
|
||||
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
|
||||
prompt_text = get_prompt(args)
|
||||
texts = [prompt_text]
|
||||
|
||||
flattened_embeddings = all_embeddings.flatten()
|
||||
flattened_embeddings.astype(np.float32).tofile(bin_filename)
|
||||
with torch.no_grad():
|
||||
if use_st:
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
all_embeddings = embeddings # Shape: [batch_size, hidden_size]
|
||||
|
||||
encoded = tokenizer(
|
||||
texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
tokens = encoded['input_ids'][0]
|
||||
token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
||||
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
||||
print(f"{token_id:6d} -> '{token_str}'")
|
||||
|
||||
print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
|
||||
print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
|
||||
else:
|
||||
# Standard approach: use base model output only
|
||||
encoded = tokenizer(
|
||||
texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
tokens = encoded['input_ids'][0]
|
||||
token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
||||
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
||||
print(f"{token_id:6d} -> '{token_str}'")
|
||||
|
||||
# Move inputs to the same device as the model
|
||||
encoded = {k: v.to(device) for k, v in encoded.items()}
|
||||
outputs = model(**encoded)
|
||||
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
|
||||
|
||||
all_embeddings = hidden_states[0].float().cpu().numpy() # Shape: [seq_len, hidden_size]
|
||||
|
||||
print(f"Hidden states shape: {hidden_states.shape}")
|
||||
print(f"All embeddings shape: {all_embeddings.shape}")
|
||||
print(f"Embedding dimension: {all_embeddings.shape[1]}")
|
||||
|
||||
if len(all_embeddings.shape) == 1:
|
||||
n_embd = all_embeddings.shape[0] # type: ignore
|
||||
n_embd_count = 1
|
||||
all_embeddings = all_embeddings.reshape(1, -1)
|
||||
else:
|
||||
n_embd = all_embeddings.shape[1] # type: ignore
|
||||
n_embd_count = all_embeddings.shape[0] # type: ignore
|
||||
|
||||
print()
|
||||
|
||||
with open(txt_filename, "w") as f:
|
||||
idx = 0
|
||||
for j in range(n_embd_count):
|
||||
for value in all_embeddings[j]:
|
||||
f.write(f"{idx}: {value:.6f}\n")
|
||||
idx += 1
|
||||
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
|
||||
print("")
|
||||
print(f"Saved bin embeddings to: {bin_filename}")
|
||||
print(f"Saved txt embeddings to: {txt_filename}")
|
||||
embedding = all_embeddings[j]
|
||||
print(f"embedding {j}: ", end="")
|
||||
|
||||
# Print first 3 values
|
||||
for i in range(min(3, n_embd)):
|
||||
print(f"{embedding[i]:9.6f} ", end="")
|
||||
|
||||
print(" ... ", end="")
|
||||
|
||||
# Print last 3 values
|
||||
for i in range(n_embd - 3, n_embd):
|
||||
print(f"{embedding[i]:9.6f} ", end="")
|
||||
|
||||
print() # New line
|
||||
|
||||
print()
|
||||
|
||||
data_dir = Path("data")
|
||||
data_dir.mkdir(exist_ok=True)
|
||||
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
|
||||
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
|
||||
|
||||
flattened_embeddings = all_embeddings.flatten()
|
||||
flattened_embeddings.astype(np.float32).tofile(bin_filename)
|
||||
|
||||
with open(txt_filename, "w") as f:
|
||||
idx = 0
|
||||
for j in range(n_embd_count):
|
||||
for value in all_embeddings[j]:
|
||||
f.write(f"{idx}: {value:.6f}\n")
|
||||
idx += 1
|
||||
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
|
||||
print("")
|
||||
print(f"Saved bin embeddings to: {bin_filename}")
|
||||
print(f"Saved txt embeddings to: {txt_filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
|||
|
|
@ -222,8 +222,8 @@ int main(int argc, char ** argv) {
|
|||
float * emb = embeddings.data();
|
||||
|
||||
// break into batches
|
||||
int p = 0; // number of prompts processed already
|
||||
int s = 0; // number of prompts in current batch
|
||||
unsigned int p = 0; // number of prompts processed already
|
||||
unsigned int s = 0; // number of prompts in current batch
|
||||
for (int k = 0; k < n_chunks; k++) {
|
||||
// clamp to n_batch tokens
|
||||
auto & inp = chunks[k].tokens;
|
||||
|
|
@ -231,7 +231,7 @@ int main(int argc, char ** argv) {
|
|||
const uint64_t n_toks = inp.size();
|
||||
|
||||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
if (batch.n_tokens + n_toks > n_batch || s >= llama_n_seq_max(ctx)) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_process(ctx, batch, out, s, n_embd);
|
||||
common_batch_clear(batch);
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ project("ggml" C CXX ASM)
|
|||
### GGML Version
|
||||
set(GGML_VERSION_MAJOR 0)
|
||||
set(GGML_VERSION_MINOR 9)
|
||||
set(GGML_VERSION_PATCH 4)
|
||||
set(GGML_VERSION_PATCH 5)
|
||||
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
|
||||
|
||||
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
|
@ -430,10 +430,22 @@ if (MSVC)
|
|||
configure_msvc_target(ggml-cpu-x64)
|
||||
configure_msvc_target(ggml-cpu-sse42)
|
||||
configure_msvc_target(ggml-cpu-sandybridge)
|
||||
# __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
# skipping ggml-cpu-ivybridge
|
||||
# skipping ggml-cpu-piledriver
|
||||
configure_msvc_target(ggml-cpu-haswell)
|
||||
configure_msvc_target(ggml-cpu-skylakex)
|
||||
configure_msvc_target(ggml-cpu-cannonlake)
|
||||
configure_msvc_target(ggml-cpu-cascadelake)
|
||||
configure_msvc_target(ggml-cpu-icelake)
|
||||
# MSVC 2022 doesn't support BF16 intrinsics without `/arch:AVX10.1` ?!
|
||||
# https://learn.microsoft.com/en-us/cpp/intrinsics/x64-amd64-intrinsics-list?view=msvc-170
|
||||
# https://learn.microsoft.com/en-us/cpp/build/reference/arch-x64?view=msvc-170
|
||||
# skipping ggml-cpu-cooperlake
|
||||
# skipping ggml-cpu-zen4
|
||||
configure_msvc_target(ggml-cpu-alderlake)
|
||||
# MSVC doesn't support AMX
|
||||
# skipping ggml-cpu-sapphirerapids
|
||||
|
||||
if (GGML_BUILD_EXAMPLES)
|
||||
configure_msvc_target(common-ggml)
|
||||
|
|
|
|||
|
|
@ -358,7 +358,7 @@ extern "C" {
|
|||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node);
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor const * const * test_nodes, size_t num_test_nodes);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
|
|
|
|||
|
|
@ -357,15 +357,29 @@ if (GGML_CPU_ALL_VARIANTS)
|
|||
endif()
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
if (NOT MSVC)
|
||||
# __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
ggml_add_cpu_backend_variant(ivybridge SSE42 AVX F16C)
|
||||
ggml_add_cpu_backend_variant(piledriver SSE42 AVX F16C FMA)
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C FMA AVX2 BMI2)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C FMA AVX2 BMI2 AVX512)
|
||||
ggml_add_cpu_backend_variant(cannonlake SSE42 AVX F16C FMA AVX2 BMI2 AVX512 AVX512_VBMI)
|
||||
ggml_add_cpu_backend_variant(cascadelake SSE42 AVX F16C FMA AVX2 BMI2 AVX512 AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C FMA AVX2 BMI2 AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC 2022 doesn't support BF16 intrinsics without `/arch:AVX10.1` ?!
|
||||
# https://learn.microsoft.com/en-us/cpp/intrinsics/x64-amd64-intrinsics-list?view=msvc-170
|
||||
# https://learn.microsoft.com/en-us/cpp/build/reference/arch-x64?view=msvc-170
|
||||
ggml_add_cpu_backend_variant(cooperlake SSE42 AVX F16C FMA AVX2 BMI2 AVX512 AVX512_VNNI AVX512_BF16)
|
||||
ggml_add_cpu_backend_variant(zen4 SSE42 AVX F16C FMA AVX2 BMI2 AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16)
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C FMA AVX2 BMI2 AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C FMA AVX2 BMI2 AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
|
|
@ -387,8 +401,8 @@ if (GGML_CPU_ALL_VARIANTS)
|
|||
ggml_add_cpu_backend_variant(android_armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC)
|
||||
ggml_add_cpu_backend_variant(android_armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC MATMUL_INT8)
|
||||
ggml_add_cpu_backend_variant(android_armv9.0_1 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE2)
|
||||
ggml_add_cpu_backend_variant(android_armv9.2_1 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SME)
|
||||
ggml_add_cpu_backend_variant(android_armv9.2_2 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE SME)
|
||||
ggml_add_cpu_backend_variant(android_armv9.2_1 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE SME)
|
||||
ggml_add_cpu_backend_variant(android_armv9.2_2 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE SVE2 SME)
|
||||
elseif (APPLE)
|
||||
ggml_add_cpu_backend_variant(apple_m1 DOTPROD)
|
||||
ggml_add_cpu_backend_variant(apple_m2_m3 DOTPROD MATMUL_INT8)
|
||||
|
|
|
|||
|
|
@ -2053,7 +2053,7 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
|||
ggml_free(copy.ctx_unallocated);
|
||||
}
|
||||
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor const * const * test_nodes, size_t num_test_nodes) {
|
||||
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
||||
if (copy.buffer == NULL) {
|
||||
return false;
|
||||
|
|
@ -2064,22 +2064,22 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
|||
|
||||
assert(g1->n_nodes == g2->n_nodes);
|
||||
|
||||
if (test_node != nullptr) {
|
||||
// Compute the whole graph and only test the output for a specific tensor
|
||||
if (num_test_nodes != 0) {
|
||||
GGML_ASSERT(test_nodes);
|
||||
// Compute the whole graph and only test the output for specific tensors
|
||||
ggml_backend_graph_compute(backend1, g1);
|
||||
ggml_backend_graph_compute(backend2, g2);
|
||||
|
||||
int test_node_idx = -1;
|
||||
bool verified = false;
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
if (t1 == test_node) {
|
||||
test_node_idx = i;
|
||||
break;
|
||||
for (size_t j = 0; j < num_test_nodes; ++j) {
|
||||
if (g1->nodes[i] == test_nodes[j]) {
|
||||
callback(i, g1->nodes[i], g2->nodes[i], user_data);
|
||||
verified = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(test_node_idx != -1);
|
||||
|
||||
callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
|
||||
GGML_ASSERT(verified);
|
||||
} else {
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
|
|
|
|||
|
|
@ -561,9 +561,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.14.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.16.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "45e110675d93f99f82c23a1afcca76bc")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "0a9e9008adb6031f9e8cf70dff4a3321")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
|
|
@ -615,6 +615,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||
string(FIND "${ARCH_FLAGS_TEMP}" "+dotprod" DOTPROD_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+sve" SVE_ENABLED)
|
||||
|
||||
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS_TEMP})
|
||||
|
||||
|
|
@ -659,6 +660,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
endif()
|
||||
|
||||
if (NOT SVE_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/kai_common_sve_asm.S
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod_asm.S
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm_asm.S
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm.c)
|
||||
endif()
|
||||
|
||||
set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}")
|
||||
list(APPEND GGML_CPU_SOURCES ${GGML_KLEIDIAI_SOURCES})
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -328,7 +328,7 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
|||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#elif defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#elif defined(__SSE__) || defined(__SSE3__) || defined(__SSSE3__) || defined(__AVX__) || defined(__F16C__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX512BF16__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -18,6 +18,8 @@
|
|||
#include "kai_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod.h"
|
||||
|
||||
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
|
|
@ -69,9 +71,9 @@ static inline void kernel_run_fn10(size_t m, size_t n, size_t k, size_t /*bl*/,
|
|||
|
||||
template<void(*Fn)(size_t,size_t,size_t,const void*,const void*,float*,size_t,size_t,float,float)>
|
||||
static inline void kernel_run_float_fn10(size_t m, size_t n, size_t k, size_t /*bl*/,
|
||||
const void* lhs, const void* rhs, void* dst,
|
||||
size_t dst_stride_row, size_t dst_stride_col,
|
||||
float clamp_min, float clamp_max) {
|
||||
const void* lhs, const void* rhs, void* dst,
|
||||
size_t dst_stride_row, size_t dst_stride_col,
|
||||
float clamp_min, float clamp_max) {
|
||||
Fn(m, n, k, lhs, rhs, static_cast<float*>(dst), dst_stride_row, dst_stride_col, clamp_min, clamp_max);
|
||||
}
|
||||
|
||||
|
|
@ -152,8 +154,8 @@ static inline void rhs_pack_fn12(size_t num_groups, size_t n, size_t k, size_t n
|
|||
|
||||
template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,const int8_t*,const float*,const float*,void*,size_t,const struct kai_rhs_pack_qsi8cx_params*)>
|
||||
static inline void rhs_pack_scale_fn12(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t /*bl*/,
|
||||
size_t /*rhs_stride*/, const void* rhs, const void* bias, const void* scale,
|
||||
void* rhs_packed, size_t extra_bytes, const void* params) {
|
||||
size_t /*rhs_stride*/, const void* rhs, const void* bias, const void* scale,
|
||||
void* rhs_packed, size_t extra_bytes, const void* params) {
|
||||
Fn(num_groups, n, k, nr, kr, sr,
|
||||
static_cast<const int8_t*>(rhs),
|
||||
static_cast<const float*>(bias),
|
||||
|
|
@ -524,6 +526,61 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
|||
},
|
||||
#endif
|
||||
#else
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
{
|
||||
/* SVE i8mm GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm,
|
||||
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm>,
|
||||
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm>,
|
||||
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm>,
|
||||
},
|
||||
/* .gemm_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
|
||||
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
|
||||
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
|
||||
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
|
||||
},
|
||||
/* SVE dotprod GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod,
|
||||
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod>,
|
||||
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod>,
|
||||
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod>,
|
||||
},
|
||||
/* .gemv_lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32>,
|
||||
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32>,
|
||||
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32>,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
|
||||
/* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
|
||||
/* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
|
||||
/* .pack_func_ex = */ &rhs_pack_fn12<kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SVE | CPU_FEATURE_I8MM | CPU_FEATURE_DOTPROD,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
{
|
||||
/* i8mm GEMM */
|
||||
|
|
@ -578,7 +635,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
|||
/* .rhs_type = */ GGML_TYPE_Q4_0,
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
#endif // __ARM_FEATURE_MATMUL_INT8
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
{
|
||||
/* DOTPROD GEMM */
|
||||
|
|
@ -811,26 +868,27 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
|
|||
ggml_kleidiai_kernels * kernel = nullptr;
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) {
|
||||
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels) - 1; ++i) {
|
||||
if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu &&
|
||||
gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type &&
|
||||
gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type &&
|
||||
gemm_gemv_kernels[i].op_type == tensor->type) {
|
||||
kernel = &gemm_gemv_kernels[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!kernel) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8) - 1; ++i) {
|
||||
if ((cpu_features & gemm_gemv_kernels_q8[i].required_cpu) == gemm_gemv_kernels_q8[i].required_cpu &&
|
||||
gemm_gemv_kernels_q8[i].lhs_type == tensor->src[1]->type &&
|
||||
gemm_gemv_kernels_q8[i].rhs_type == tensor->src[0]->type &&
|
||||
gemm_gemv_kernels_q8[i].op_type == tensor->type) {
|
||||
kernel = &gemm_gemv_kernels_q8[i];
|
||||
break;
|
||||
#if defined(__ARM_FEATURE_SME) || \
|
||||
defined(__ARM_FEATURE_DOTPROD) || \
|
||||
defined(__ARM_FEATURE_MATMUL_INT8) || \
|
||||
defined(__ARM_FEATURE_SVE)
|
||||
auto try_table = [&](auto & table) {
|
||||
for (size_t i = 0; i < NELEMS(table) - 1; ++i) {
|
||||
if ((cpu_features & table[i].required_cpu) == table[i].required_cpu &&
|
||||
table[i].lhs_type == tensor->src[1]->type &&
|
||||
table[i].rhs_type == tensor->src[0]->type &&
|
||||
table[i].op_type == tensor->type) {
|
||||
kernel = &table[i];
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
if (tensor->src[0]->type == GGML_TYPE_Q8_0) {
|
||||
try_table(gemm_gemv_kernels_q8);
|
||||
} else {
|
||||
try_table(gemm_gemv_kernels);
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(gemm_gemv_kernels);
|
||||
|
|
@ -845,7 +903,10 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
|
|||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) {
|
||||
ggml_kleidiai_kernels * kernels = nullptr;
|
||||
|
||||
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
#if defined(__ARM_FEATURE_SME) || \
|
||||
defined(__ARM_FEATURE_DOTPROD) || \
|
||||
defined(__ARM_FEATURE_MATMUL_INT8) || \
|
||||
defined(__ARM_FEATURE_SVE)
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels) - 1; ++i) {
|
||||
if ((features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu) {
|
||||
kernels = &gemm_gemv_kernels[i];
|
||||
|
|
|
|||
|
|
@ -46,13 +46,20 @@ struct ggml_kleidiai_context {
|
|||
} static ctx = { CPU_FEATURE_NONE, NULL, NULL };
|
||||
|
||||
static const char* cpu_feature_to_string(cpu_feature f) {
|
||||
switch (f) {
|
||||
case CPU_FEATURE_NONE: return "NONE";
|
||||
case CPU_FEATURE_DOTPROD: return "DOTPROD";
|
||||
case CPU_FEATURE_I8MM: return "I8MM";
|
||||
case CPU_FEATURE_SVE: return "SVE";
|
||||
case CPU_FEATURE_SME: return "SME";
|
||||
default: return "UNKNOWN";
|
||||
if (f == CPU_FEATURE_NONE) {
|
||||
return "NONE";
|
||||
} else if ((f & CPU_FEATURE_SME) == CPU_FEATURE_SME) {
|
||||
return "SME";
|
||||
} else if ((f & CPU_FEATURE_SVE) == CPU_FEATURE_SVE) {
|
||||
return "SVE";
|
||||
}
|
||||
else if ((f & CPU_FEATURE_I8MM) == CPU_FEATURE_I8MM) {
|
||||
return "I8MM";
|
||||
} else if ((f & CPU_FEATURE_DOTPROD) == CPU_FEATURE_DOTPROD) {
|
||||
return "DOTPROD";
|
||||
}
|
||||
else {
|
||||
return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -68,7 +75,7 @@ static void init_kleidiai_context(void) {
|
|||
|
||||
ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
((ggml_cpu_has_sve() && ggml_cpu_get_sve_cnt() == QK8_0) ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
|
||||
if (env_var) {
|
||||
sme_enabled = atoi(env_var);
|
||||
|
|
|
|||
|
|
@ -14,10 +14,6 @@
|
|||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#if defined(__F16C__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#if defined(__riscv_v_intrinsic)
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -35,37 +35,51 @@ if (CUDAToolkit_FOUND)
|
|||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
list(APPEND CMAKE_CUDA_ARCHITECTURES 89-real)
|
||||
endif()
|
||||
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
|
||||
# The CUDA architecture 120f-virtual would in principle work for Blackwell support
|
||||
# but the newly added "f" suffix conflicted with a preexising regex for validating CUDA architectures in CMake.
|
||||
# So either a recent CMake version or one with the backported fix is needed.
|
||||
# The following versions should work:
|
||||
# - CMake >= v3.31.8 && CMake < v4.0.0
|
||||
# - CMake >= v4.0.2
|
||||
# This is NOT documented in the CMake release notes,
|
||||
# check Modules/Internal/CMakeCUDAArchitecturesValidate.cmake in the CMake git repository instead.
|
||||
# However, the architectures 120a-real and 121a-real should work with basically any CMake version and
|
||||
# until the release of e.g. Rubin there is no benefit to shipping virtual architectures for Blackwell.
|
||||
list(APPEND CMAKE_CUDA_ARCHITECTURES 120a-real 121a-real)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
# Replace any 12x-real architectures with 12x{a}-real. FP4 ptx instructions are not available in just 12x
|
||||
if (GGML_NATIVE)
|
||||
set(PROCESSED_ARCHITECTURES "")
|
||||
if (CMAKE_CUDA_ARCHITECTURES_NATIVE)
|
||||
set(ARCH_LIST ${CMAKE_CUDA_ARCHITECTURES_NATIVE})
|
||||
else()
|
||||
set(ARCH_LIST ${CMAKE_CUDA_ARCHITECTURES})
|
||||
endif()
|
||||
foreach(ARCH ${ARCH_LIST})
|
||||
# Replace any plain 12X CUDA architectures with their "architecture-specific" equivalents 12Xa.
|
||||
# 12X is forwards-compatible, 12Xa is not.
|
||||
# Notably the Blackwell FP4 tensor core instructions are not forwards compatible and therefore need 12Xa.
|
||||
# But while 12X vs. 12Xa can be checked in device code there is (to my knowledge) no easy way to do the same check in host code.
|
||||
# So for now just replace all instances of 12X with 12Xa, this should be fine until Rubin is released.
|
||||
foreach(ARCHS IN ITEMS CMAKE_CUDA_ARCHITECTURES CMAKE_CUDA_ARCHITECTURES_NATIVE)
|
||||
set(FIXED_ARCHS "")
|
||||
foreach(ARCH IN LISTS ${ARCHS})
|
||||
if (ARCH MATCHES "^12[0-9](-real|-virtual)?$")
|
||||
string(REGEX REPLACE "^(12[0-9]).*$" "\\1" BASE_ARCH ${ARCH})
|
||||
message(STATUS "Replacing ${ARCH} with ${BASE_ARCH}a-real")
|
||||
list(APPEND PROCESSED_ARCHITECTURES "${BASE_ARCH}a-real")
|
||||
string(REGEX REPLACE "^(12[0-9])((-real|-virtual)?)$" "\\1a\\2" FIXED_ARCH ${ARCH})
|
||||
message(STATUS "Replacing ${ARCH} in ${ARCHS} with ${FIXED_ARCH}")
|
||||
list(APPEND FIXED_ARCHS "${FIXED_ARCH}")
|
||||
else()
|
||||
list(APPEND PROCESSED_ARCHITECTURES ${ARCH})
|
||||
endif()
|
||||
endforeach()
|
||||
set(CMAKE_CUDA_ARCHITECTURES ${PROCESSED_ARCHITECTURES})
|
||||
else()
|
||||
foreach(ARCH ${CMAKE_CUDA_ARCHITECTURES})
|
||||
if(ARCH MATCHES "^12[0-9](-real|-virtual)?$")
|
||||
message(FATAL_ERROR "Compute capability ${ARCH} used, use ${ARCH}a or ${ARCH}f for Blackwell specific optimizations")
|
||||
list(APPEND FIXED_ARCHS "${ARCH}")
|
||||
endif()
|
||||
endforeach()
|
||||
set(${ARCHS} ${FIXED_ARCHS})
|
||||
endforeach()
|
||||
|
||||
# If we try to compile a "native" build it will use the 12X architectures and fail.
|
||||
# So we should instead use the native architectures as determined by CMake after replacing 12X with 12Xa.
|
||||
# But if at the time of the build no GPUs are connected at all CMAKE_CUDA_ARCHITECTURES will contain garbage that we should not use.
|
||||
if (CMAKE_CUDA_ARCHITECTURES STREQUAL "native" AND CMAKE_CUDA_ARCHITECTURES_NATIVE MATCHES "^[0-9]+(a|f)?(-real|-virtual)?(;[0-9]+(a|f)?(-real|-virtual)?|;)*$")
|
||||
set(CMAKE_CUDA_ARCHITECTURES ${CMAKE_CUDA_ARCHITECTURES_NATIVE})
|
||||
endif()
|
||||
message(STATUS "Using CMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} CMAKE_CUDA_ARCHITECTURES_NATIVE=${CMAKE_CUDA_ARCHITECTURES_NATIVE}")
|
||||
|
||||
file(GLOB GGML_HEADERS_CUDA "*.cuh")
|
||||
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
|
||||
|
|
|
|||
|
|
@ -12,11 +12,11 @@ const int CUDA_CPY_BLOCK_NM = 8; // block size of 3rd dimension if available
|
|||
const int CUDA_CPY_BLOCK_ROWS = 8; // block dimension for marching through rows
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_scalar(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
static __global__ void cpy_scalar(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
|
|
@ -40,10 +40,10 @@ static __global__ void cpy_scalar(const char * cx, char * cdst, const int ne,
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
|
||||
const T* src = reinterpret_cast<const T*>(cx);
|
||||
T* dst = reinterpret_cast<T*>(cdst);
|
||||
|
|
@ -117,60 +117,60 @@ static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
|
|||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static __global__ void cpy_scalar_contiguous(const char * cx, char * cdst, const int64_t ne) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
|
|
@ -188,19 +188,20 @@ static void ggml_cpy_scalar_contiguous_cuda(
|
|||
cudaStream_t stream) {
|
||||
|
||||
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_scalar_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t, bool transposed = false>
|
||||
static void ggml_cpy_scalar_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
if (transposed) {
|
||||
GGML_ASSERT(ne == ne00*ne01*ne02); // ne[3] is 1 assumed
|
||||
int ne00n, ne01n, ne02n;
|
||||
int64_t ne00n, ne01n, ne02n;
|
||||
if (nb00 <= nb02) { // most likely safe to handle nb00 = nb02 case here
|
||||
ne00n = ne00;
|
||||
ne01n = ne01;
|
||||
|
|
@ -211,143 +212,159 @@ static void ggml_cpy_scalar_cuda(
|
|||
ne02n = 1;
|
||||
}
|
||||
|
||||
dim3 dimGrid( (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM);
|
||||
int64_t grid_x = (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D;
|
||||
int64_t grid_y = (ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D;
|
||||
int64_t grid_z = (ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM;
|
||||
GGML_ASSERT(grid_x < UINT_MAX);
|
||||
GGML_ASSERT(grid_y < USHRT_MAX);
|
||||
GGML_ASSERT(grid_z < USHRT_MAX);
|
||||
dim3 dimGrid(grid_x, grid_y, grid_z);
|
||||
dim3 dimBlock(CUDA_CPY_TILE_DIM_2D, CUDA_CPY_BLOCK_ROWS, 1);
|
||||
cpy_scalar_transpose<dst_t><<<dimGrid, dimBlock, 0, stream>>>
|
||||
(cx, cdst, ne, ne00n, ne01n, ne02n, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
} else {
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_scalar<cpy_1_scalar<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
const int64_t num_blocks = ne / QK8_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q8_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
const int64_t num_blocks = ne / QK4_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
const int64_t num_blocks = ne / QK4_1;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_1_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_0 == 0);
|
||||
const int num_blocks = ne / QK5_0;
|
||||
const int64_t num_blocks = ne / QK5_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_1 == 0);
|
||||
const int num_blocks = ne / QK5_1;
|
||||
const int64_t num_blocks = ne / QK5_1;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_1_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_iq4_nl_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_NL == 0);
|
||||
const int num_blocks = ne / QK4_NL;
|
||||
const int64_t num_blocks = ne / QK4_NL;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
|
@ -356,9 +373,6 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
|||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
|
||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
|
|
|||
|
|
@ -61,7 +61,7 @@ static __global__ void cumsum_cub_kernel(
|
|||
|
||||
// Add offset to each item and store
|
||||
T thread_offset = thread_prefix - thread_sum + block_carry;
|
||||
#pragma unroll
|
||||
#pragma unroll
|
||||
for (int i = 0; i < UNROLL_FACTOR; i++) {
|
||||
int64_t idx = start + tid * UNROLL_FACTOR + i;
|
||||
if (idx < ne00) {
|
||||
|
|
@ -69,11 +69,12 @@ static __global__ void cumsum_cub_kernel(
|
|||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Update carry for next tile
|
||||
if (tid == 0) {
|
||||
block_carry += block_total;
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
|
|
@ -175,11 +176,12 @@ static __global__ void cumsum_kernel(
|
|||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Update carry for next chunk
|
||||
if (tid == 0) {
|
||||
*s_carry += *s_chunk_total;
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -531,7 +531,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
|||
for (int k0 = 0; k0 < nbatch_fa; k0 += np*T_C_KQ::I) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < T_C_KQ::ne; ++l) {
|
||||
if (!oob_check || k0 + T_C_KQ::get_i(l) < k_VKQ_sup) {
|
||||
if (!oob_check || k0 + (threadIdx.y % np)*T_C_KQ::I + T_C_KQ::get_i(l) < k_VKQ_sup) {
|
||||
KQ_max_new[l % 2] = fmaxf(KQ_max_new[l % 2], KQ_C[k0/(np*T_C_KQ::I)].x[l] + FATTN_KQ_MAX_OFFSET);
|
||||
}
|
||||
}
|
||||
|
|
@ -583,7 +583,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
|||
for (int k0 = 0; k0 < nbatch_fa; k0 += np*T_C_KQ::J) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < T_C_KQ::ne; ++l) {
|
||||
if (!oob_check || k0 + T_C_KQ::get_j(l) < k_VKQ_sup) {
|
||||
if (!oob_check || k0 + (threadIdx.y % np)*T_C_KQ::J + T_C_KQ::get_j(l) < k_VKQ_sup) {
|
||||
// Turing + Volta:
|
||||
KQ_max_new[(l/2) % 2] = fmaxf(KQ_max_new[(l/2) % 2], KQ_C[(k0/(np*T_C_KQ::J))].x[l] + FATTN_KQ_MAX_OFFSET);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -201,16 +201,6 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||
GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
|
||||
|
||||
int64_t total_vram = 0;
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
|
||||
#else
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
|
||||
#endif // GGML_CUDA_FORCE_MMQ
|
||||
#ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
|
||||
#else
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
|
||||
#endif // GGML_CUDA_FORCE_CUBLAS
|
||||
GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
|
||||
|
||||
std::vector<std::pair<int, std::string>> turing_devices_without_mma;
|
||||
|
|
@ -2211,7 +2201,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[id].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1], /*n_experts=*/0);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
|
|
@ -2219,7 +2209,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
} else {
|
||||
const int cc = ggml_cuda_info().devices[ctx.device].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1], /*n_experts=*/0);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
|
|
@ -2287,7 +2277,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmq(src0->type, cc, ne12)) {
|
||||
if (ggml_cuda_should_use_mmq(src0->type, cc, ne12, /*n_experts=*/ne02)) {
|
||||
ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
|
|
@ -4785,6 +4775,16 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
|
|||
features.push_back({ "FA_ALL_QUANTS", "1" });
|
||||
#endif
|
||||
|
||||
{
|
||||
const auto & info = ggml_cuda_info();
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
if (blackwell_mma_available(info.devices[id].cc)) {
|
||||
features.push_back({ "BLACKWELL_NATIVE_FP4", "1"});
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef _STRINGIFY
|
||||
#undef STRINGIFY
|
||||
|
||||
|
|
|
|||
|
|
@ -259,7 +259,7 @@ void ggml_cuda_op_mul_mat_q(
|
|||
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_padded_row_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11, int64_t n_experts) {
|
||||
#ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
return false;
|
||||
#endif // GGML_CUDA_FORCE_CUBLAS
|
||||
|
|
@ -320,7 +320,10 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
|||
if (GGML_CUDA_CC_IS_CDNA3(cc)) {
|
||||
return true;
|
||||
}
|
||||
if (ne11 <= 128 || type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
|
||||
if (n_experts > 64 || ne11 <= 128) {
|
||||
return true;
|
||||
}
|
||||
if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
|
||||
return true;
|
||||
}
|
||||
if (ne11 <= 256 && (type == GGML_TYPE_Q4_K || type == GGML_TYPE_Q5_K)) {
|
||||
|
|
|
|||
|
|
@ -4082,4 +4082,4 @@ void ggml_cuda_op_mul_mat_q(
|
|||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||
|
||||
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11);
|
||||
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11, int64_t n_experts);
|
||||
|
|
|
|||
|
|
@ -24,10 +24,6 @@
|
|||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#if defined(__F16C__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -1684,3 +1684,60 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_sgd(ggm
|
|||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_memset(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
GGML_ASSERT(op->type == GGML_TYPE_I64);
|
||||
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
snprintf(base, 256, "kernel_memset_%s", ggml_type_name(op->type));
|
||||
snprintf(name, 256, "%s", base);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_count_equal(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
assert(op->op == GGML_OP_COUNT_EQUAL);
|
||||
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, op->src[0], ne);
|
||||
|
||||
GGML_ASSERT(op->src[0]->type == op->src[1]->type);
|
||||
GGML_ASSERT(op->src[0]->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(op->type == GGML_TYPE_I64);
|
||||
|
||||
// note: the kernel only supports i32 output due to metal atomic add only supporting atomic_int
|
||||
GGML_ASSERT(ggml_nelements(op->src[0]) < (1LL << 31));
|
||||
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
int nsg = 1;
|
||||
while (32*nsg < ne00 && nsg < 32) {
|
||||
nsg *= 2;
|
||||
}
|
||||
|
||||
snprintf(base, 256, "kernel_count_equal_%s", ggml_type_name(op->src[0]->type));
|
||||
snprintf(name, 256, "%s_nsg=%d", base, nsg);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
ggml_metal_cv_t cv = ggml_metal_cv_init();
|
||||
|
||||
ggml_metal_cv_set_int16(cv, nsg, FC_COUNT_EQUAL + 0);
|
||||
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
|
||||
|
||||
ggml_metal_cv_free(cv);
|
||||
}
|
||||
|
||||
res.smem = 32 * sizeof(int32_t);
|
||||
res.nsg = nsg;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -147,6 +147,8 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_arange
|
|||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_adamw (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_sgd (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_memset (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_count_equal (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_pad(
|
||||
ggml_metal_library_t lib,
|
||||
|
|
|
|||
|
|
@ -1023,6 +1023,11 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
|||
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
|
||||
case GGML_OP_L2_NORM:
|
||||
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return has_simdgroup_reduction &&
|
||||
op->src[0]->type == GGML_TYPE_I32 &&
|
||||
op->src[1]->type == GGML_TYPE_I32 &&
|
||||
op->type == GGML_TYPE_I64;
|
||||
case GGML_OP_ARGMAX:
|
||||
return has_simdgroup_reduction;
|
||||
case GGML_OP_NORM:
|
||||
|
|
|
|||
|
|
@ -78,6 +78,7 @@
|
|||
#define FC_MUL_MM 700
|
||||
#define FC_ROPE 800
|
||||
#define FC_SSM_CONV 900
|
||||
#define FC_COUNT_EQUAL 1000
|
||||
|
||||
// op-specific constants
|
||||
#define OP_FLASH_ATTN_EXT_NQPTG 8
|
||||
|
|
@ -894,6 +895,25 @@ typedef struct {
|
|||
float step;
|
||||
} ggml_metal_kargs_arange;
|
||||
|
||||
typedef struct {
|
||||
int64_t val;
|
||||
} ggml_metal_kargs_memset;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00;
|
||||
int32_t ne01;
|
||||
int32_t ne02;
|
||||
int32_t ne03;
|
||||
uint64_t nb00;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
uint64_t nb10;
|
||||
uint64_t nb11;
|
||||
uint64_t nb12;
|
||||
uint64_t nb13;
|
||||
} ggml_metal_kargs_count_equal;
|
||||
|
||||
typedef struct {
|
||||
int32_t k0;
|
||||
int32_t k1;
|
||||
|
|
|
|||
|
|
@ -448,7 +448,11 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
|||
{
|
||||
n_fuse = ggml_metal_op_opt_step_sgd(ctx, idx);
|
||||
} break;
|
||||
default:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
{
|
||||
n_fuse = ggml_metal_op_count_equal(ctx, idx);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(node->op));
|
||||
GGML_ABORT("fatal error");
|
||||
|
|
@ -4090,3 +4094,64 @@ int ggml_metal_op_opt_step_sgd(ggml_metal_op_t ctx, int idx) {
|
|||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_count_equal(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
ggml_metal_library_t lib = ctx->lib;
|
||||
ggml_metal_encoder_t enc = ctx->enc;
|
||||
|
||||
GGML_TENSOR_LOCALS(int32_t, ne0, op->src[0], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
|
||||
|
||||
{
|
||||
ggml_metal_kargs_memset args = { /*.val =*/ 0 };
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_memset(lib, op);
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 1);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, 1, 1, 1, 1, 1, 1);
|
||||
}
|
||||
|
||||
ggml_metal_op_concurrency_reset(ctx);
|
||||
|
||||
{
|
||||
ggml_metal_kargs_count_equal args = {
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne01 =*/ ne01,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.ne03 =*/ ne03,
|
||||
/*.nb00 =*/ nb00,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.nb10 =*/ nb10,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb13 =*/ nb13,
|
||||
};
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_count_equal(lib, op);
|
||||
|
||||
const size_t smem = pipeline.smem;
|
||||
|
||||
const int nth = 32*pipeline.nsg;
|
||||
|
||||
GGML_ASSERT(nth <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[1]), 2);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 3);
|
||||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -87,6 +87,7 @@ int ggml_metal_op_leaky_relu (ggml_metal_op_t ctx, int idx);
|
|||
int ggml_metal_op_tri (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_opt_step_adamw (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_opt_step_sgd (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_count_equal (ggml_metal_op_t ctx, int idx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1790,6 +1790,7 @@ kernel void kernel_op_sum_f32(
|
|||
return;
|
||||
}
|
||||
|
||||
// TODO: become function constant
|
||||
const uint nsg = (ntg.x + 31) / 32;
|
||||
|
||||
float sumf = 0;
|
||||
|
|
@ -9557,9 +9558,6 @@ template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mul_mm_t kernel_mul_m
|
|||
|
||||
template [[host_name("kernel_mul_mm_f32_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_f16_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, half, half2x4>;
|
||||
#if defined(GGML_METAL_HAS_BF16)
|
||||
template [[host_name("kernel_mul_mm_bf16_f16")]] kernel mul_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, half, half2x4, simdgroup_half8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, half, half2x4>;
|
||||
#endif
|
||||
template [[host_name("kernel_mul_mm_q4_0_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_q4_1_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_q5_0_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, half, half2x4>;
|
||||
|
|
@ -9615,9 +9613,6 @@ template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mul_mm_id kernel_m
|
|||
|
||||
template [[host_name("kernel_mul_mm_id_f32_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_id_f16_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, half, half2x4>;
|
||||
#if defined(GGML_METAL_HAS_BF16)
|
||||
template [[host_name("kernel_mul_mm_id_bf16_f16")]] kernel mul_mm_id kernel_mul_mm_id<bfloat, bfloat4x4, simdgroup_bfloat8x8, half, half2x4, simdgroup_half8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, half, half2x4>;
|
||||
#endif
|
||||
template [[host_name("kernel_mul_mm_id_q4_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_id_q4_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_id_q5_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, half, half2x4>;
|
||||
|
|
@ -9920,3 +9915,75 @@ kernel void kernel_opt_step_sgd_f32(
|
|||
|
||||
x[gid] = x[gid] * (1.0f - pars[0] * pars[1]) - pars[0] * g[gid];
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_memset(
|
||||
constant ggml_metal_kargs_fill & args,
|
||||
device T * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = args.val;
|
||||
}
|
||||
|
||||
typedef decltype(kernel_memset<int64_t>) kernel_memset_t;
|
||||
|
||||
template [[host_name("kernel_memset_i64")]] kernel kernel_memset_t kernel_memset<int64_t>;
|
||||
|
||||
constant short FC_count_equal_nsg [[function_constant(FC_COUNT_EQUAL + 0)]];
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_count_equal(
|
||||
constant ggml_metal_kargs_count_equal & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device atomic_int * dst,
|
||||
threadgroup int32_t * shmem_i32 [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort3 tpitg[[thread_position_in_threadgroup]],
|
||||
ushort sgitg[[simdgroup_index_in_threadgroup]],
|
||||
ushort tiisg[[thread_index_in_simdgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
const short NSG = FC_count_equal_nsg;
|
||||
|
||||
const int i3 = tgpig.z;
|
||||
const int i2 = tgpig.y;
|
||||
const int i1 = tgpig.x;
|
||||
|
||||
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
int sum = 0;
|
||||
|
||||
device const char * base0 = src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03;
|
||||
device const char * base1 = src1 + i1*args.nb11 + i2*args.nb12 + i3*args.nb13;
|
||||
|
||||
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
|
||||
const T v0 = *(device const T *)(base0 + i0*args.nb00);
|
||||
const T v1 = *(device const T *)(base1 + i0*args.nb10);
|
||||
sum += (v0 == v1);
|
||||
}
|
||||
|
||||
sum = simd_sum(sum);
|
||||
|
||||
if (tiisg == 0) {
|
||||
shmem_i32[sgitg] = sum;
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
if (sgitg == 0) {
|
||||
float v = 0.0f;
|
||||
if (tpitg.x < NSG) {
|
||||
v = shmem_i32[tpitg.x];
|
||||
}
|
||||
|
||||
float total = simd_sum(v);
|
||||
if (tpitg.x == 0) {
|
||||
atomic_fetch_add_explicit(dst, (int32_t) total, memory_order_relaxed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
typedef decltype(kernel_count_equal<int32_t>) kernel_count_equal_t;
|
||||
|
||||
template [[host_name("kernel_count_equal_i32")]] kernel kernel_count_equal_t kernel_count_equal<int32_t>;
|
||||
|
|
|
|||
|
|
@ -524,6 +524,7 @@ static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
|
|||
std::string host;
|
||||
int port;
|
||||
if (!parse_endpoint(endpoint, host, port)) {
|
||||
GGML_LOG_ERROR("Failed to parse endpoint: %s\n", endpoint.c_str());
|
||||
return nullptr;
|
||||
}
|
||||
#ifdef _WIN32
|
||||
|
|
@ -1516,10 +1517,12 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input) {
|
|||
struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
|
||||
graph->n_nodes = n_nodes;
|
||||
std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
|
||||
tensor_ptrs.reserve(n_tensors);
|
||||
for (uint32_t i = 0; i < n_tensors; i++) {
|
||||
tensor_ptrs[tensors[i].id] = &tensors[i];
|
||||
tensor_ptrs.emplace(tensors[i].id, &tensors[i]);
|
||||
}
|
||||
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
|
||||
tensor_map.reserve(n_nodes);
|
||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||
int64_t id;
|
||||
memcpy(&id, &nodes[i], sizeof(id));
|
||||
|
|
@ -2053,6 +2056,10 @@ ggml_backend_reg_t ggml_backend_rpc_reg(void) {
|
|||
|
||||
static uint32_t ggml_backend_rpc_get_device_count(const char * endpoint) {
|
||||
auto sock = get_socket(endpoint);
|
||||
if (sock == nullptr) {
|
||||
GGML_LOG_ERROR("Failed to connect to %s\n", endpoint);
|
||||
return 0;
|
||||
}
|
||||
rpc_msg_device_count_rsp response;
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_DEVICE_COUNT, nullptr, 0, &response, sizeof(response));
|
||||
RPC_STATUS_ASSERT(status);
|
||||
|
|
|
|||
|
|
@ -36,7 +36,47 @@ if (WIN32)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
find_package(IntelSYCL)
|
||||
macro(detect_and_find_package package_name)
|
||||
set(test_source "
|
||||
cmake_minimum_required(VERSION ${CMAKE_VERSION})
|
||||
project(check_package LANGUAGES CXX)
|
||||
find_package(${package_name} QUIET)
|
||||
")
|
||||
|
||||
set(test_dir "${CMAKE_CURRENT_BINARY_DIR}/check_package_${package_name}")
|
||||
file(WRITE "${test_dir}/CMakeLists.txt" "${test_source}")
|
||||
|
||||
set(cmake_args "")
|
||||
if(CMAKE_GENERATOR)
|
||||
list(APPEND cmake_args "-G" "${CMAKE_GENERATOR}")
|
||||
endif()
|
||||
if(CMAKE_GENERATOR_PLATFORM)
|
||||
list(APPEND cmake_args "-A" "${CMAKE_GENERATOR_PLATFORM}")
|
||||
endif()
|
||||
if(CMAKE_GENERATOR_TOOLSET)
|
||||
list(APPEND cmake_args "-T" "${CMAKE_GENERATOR_TOOLSET}")
|
||||
endif()
|
||||
if(CMAKE_CXX_COMPILER)
|
||||
list(APPEND cmake_args "-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}")
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_COMMAND} ${cmake_args} .
|
||||
WORKING_DIRECTORY "${test_dir}"
|
||||
RESULT_VARIABLE result
|
||||
OUTPUT_QUIET
|
||||
ERROR_QUIET
|
||||
)
|
||||
|
||||
if(result EQUAL 0)
|
||||
find_package(${package_name} ${ARGN})
|
||||
else()
|
||||
message(WARNING "Detection of ${package_name} failed. The package might be broken or incompatible.")
|
||||
set(${package_name}_FOUND FALSE)
|
||||
endif()
|
||||
endmacro()
|
||||
|
||||
detect_and_find_package(IntelSYCL)
|
||||
if (IntelSYCL_FOUND)
|
||||
# Use oneAPI CMake when possible
|
||||
target_link_libraries(ggml-sycl PRIVATE IntelSYCL::SYCL_CXX)
|
||||
|
|
@ -191,3 +231,4 @@ if (GGML_SYCL_DEVICE_ARCH)
|
|||
target_compile_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
|
||||
target_link_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
|
||||
endif()
|
||||
|
||||
|
|
|
|||
|
|
@ -434,8 +434,15 @@ static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax_norm{ GGM
|
|||
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
||||
GGML_OP_SUM_ROWS, GGML_OP_CLAMP, GGML_OP_DIV,
|
||||
GGML_OP_RESHAPE };
|
||||
|
||||
static constexpr std::initializer_list<ggml_op> topk_moe_sigmoid_norm_bias{ GGML_OP_UNARY, GGML_OP_RESHAPE, GGML_OP_ADD,
|
||||
GGML_OP_ARGSORT, GGML_OP_VIEW, GGML_OP_GET_ROWS,
|
||||
GGML_OP_RESHAPE, GGML_OP_SUM_ROWS, GGML_OP_CLAMP,
|
||||
GGML_OP_DIV, GGML_OP_RESHAPE };
|
||||
|
||||
static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
||||
GGML_OP_VIEW, GGML_OP_GET_ROWS };
|
||||
|
||||
static constexpr std::initializer_list<ggml_op> topk_moe_late_softmax { GGML_OP_ARGSORT, GGML_OP_VIEW,
|
||||
GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
||||
GGML_OP_SOFT_MAX, GGML_OP_RESHAPE };
|
||||
|
|
@ -464,6 +471,32 @@ static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softma
|
|||
{ 9, 0, 8 }, // reshape->src[0] == div
|
||||
};
|
||||
|
||||
//node #436 ( UNARY): ffn_moe_probs-10 ( 256K) [Vulka ] use=2: ffn_moe_logits-10 ( 256K) [Vulka ]
|
||||
//node #437 ( RESHAPE): ffn_moe_probs-10 (re ( 256K) [Vulka ] use=1: ffn_moe_probs-10 ( 256K) [Vulka ]
|
||||
//node #438 ( ADD): ffn_moe_probs_biased ( 256K) [Vulka ] use=1: ffn_moe_probs-10 ( 256K) [Vulka ] blk.10.exp_probs_b.b ( 0K) [Vulka ]
|
||||
//node #439 ( ARGSORT): ffn_moe_argsort-10 ( 256K) [Vulka ] use=1: ffn_moe_probs_biased ( 256K) [Vulka ]
|
||||
//node #440 ( VIEW): ffn_moe_topk-10 ( 255K) [Vulka ] use=3: ffn_moe_argsort-10 ( 256K) [Vulka ]
|
||||
//node #441 ( GET_ROWS): ffn_moe_weights-10 ( 12K) [Vulka ] use=1: ffn_moe_probs-10 (re ( 256K) [Vulka ] ffn_moe_topk-10 ( 255K) [Vulka ]
|
||||
//node #442 ( RESHAPE): ffn_moe_weights-10 ( ( 12K) [Vulka ] use=2: ffn_moe_weights-10 ( 12K) [Vulka ]
|
||||
//node #443 ( SUM_ROWS): ffn_moe_weights_sum- ( 2K) [Vulka ] use=1: ffn_moe_weights-10 ( ( 12K) [Vulka ]
|
||||
//node #444 ( CLAMP): ffn_moe_weights_sum_ ( 2K) [Vulka ] use=1: ffn_moe_weights_sum- ( 2K) [Vulka ]
|
||||
//node #445 ( DIV): ffn_moe_weights_norm ( 12K) [Vulka ] use=1: ffn_moe_weights-10 ( ( 12K) [Vulka ] ffn_moe_weights_sum_ ( 2K) [Vulka ]
|
||||
//node #446 ( RESHAPE): ffn_moe_weights_norm ( 12K) [Vulka ] use=1: ffn_moe_weights_norm ( 12K) [Vulka ]
|
||||
static constexpr std::initializer_list<std::array<int, 3>> topk_moe_sigmoid_norm_bias_edges {
|
||||
{ 1, 0, 0 }, // reshape->src[0] == sigmoid
|
||||
{ 2, 0, 0 }, // add->src[0] == sigmoid
|
||||
{ 3, 0, 2 }, // argsort->src[0] == add
|
||||
{ 4, 0, 3 }, // view->src[0] == argsort
|
||||
{ 5, 0, 1 }, // get_rows->src[0] == reshape
|
||||
{ 5, 1, 4 }, // get_rows->src[1] == view
|
||||
{ 6, 0, 5 }, // reshape->src[0] == get_rows
|
||||
{ 7, 0, 6 }, // sum_rows->src[0] == reshape
|
||||
{ 8, 0, 7 }, // clamp->src[0] == sum_rows
|
||||
{ 9, 0, 6 }, // div->src[0] == reshape
|
||||
{ 9, 1, 8 }, // div->src[1] == clamp
|
||||
{10, 0, 9 }, // reshape->src[0] == div
|
||||
};
|
||||
|
||||
// same as early_softmax_norm but ending after the get_rows
|
||||
static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softmax_edges {
|
||||
{ 1, 0, 0 }, // reshape->src[0] == softmax
|
||||
|
|
@ -491,16 +524,10 @@ enum topk_moe_mode {
|
|||
TOPK_MOE_EARLY_SOFTMAX,
|
||||
TOPK_MOE_EARLY_SOFTMAX_NORM,
|
||||
TOPK_MOE_LATE_SOFTMAX,
|
||||
TOPK_MOE_SIGMOID_NORM_BIAS,
|
||||
TOPK_MOE_COUNT,
|
||||
};
|
||||
|
||||
static topk_moe_mode ggml_vk_num_additional_ops_to_topk_moe_mode(uint32_t num) {
|
||||
topk_moe_mode mode = num == topk_moe_early_softmax_norm.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX_NORM :
|
||||
num == topk_moe_early_softmax.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX :
|
||||
TOPK_MOE_LATE_SOFTMAX;
|
||||
return mode;
|
||||
}
|
||||
|
||||
static constexpr std::initializer_list<std::array<int, 3>> rope_view_set_rows_edges {
|
||||
{ 1, 0, 0 }, // view->src[0] == rope
|
||||
{ 2, 0, 1 }, // set_rows->src[0] == view
|
||||
|
|
@ -766,7 +793,7 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_count_experts;
|
||||
|
||||
// [2] is for whether to take n_experts from spec constant (0) or push constant (1)
|
||||
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][TOPK_MOE_COUNT][2];
|
||||
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][2];
|
||||
|
||||
std::vector<vk_pipeline_ref> all_pipelines;
|
||||
|
||||
|
|
@ -1181,6 +1208,11 @@ struct vk_op_topk_moe_push_constants {
|
|||
uint32_t n_expert_used;
|
||||
float clamp_min;
|
||||
float clamp_max;
|
||||
uint32_t gating_func;
|
||||
uint32_t has_bias;
|
||||
uint32_t with_norm;
|
||||
float output_scale;
|
||||
float output_bias;
|
||||
};
|
||||
|
||||
struct vk_op_add_id_push_constants {
|
||||
|
|
@ -1771,6 +1803,8 @@ struct ggml_backend_vk_context {
|
|||
// Bit 'i' means nodes[start_of_fusion + i] writes to memory.
|
||||
// If there's no fusion, bit 0 is still set.
|
||||
int fused_ops_write_mask {};
|
||||
topk_moe_mode fused_topk_moe_mode {};
|
||||
bool fused_topk_moe_scale {};
|
||||
|
||||
// for GGML_VK_PERF_LOGGER
|
||||
std::unique_ptr<vk_perf_logger> perf_logger;
|
||||
|
|
@ -4291,9 +4325,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
for (uint32_t use_push = 0; use_push < 2; ++use_push) {
|
||||
for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX][use_push], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0, use_push}, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM][use_push], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0, use_push}, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX][use_push], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1, use_push}, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][use_push], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 4, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, use_push}, 1, true, true, device->subgroup_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -8684,10 +8716,9 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
if (ctx->num_additional_fused_ops) {
|
||||
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
|
||||
GGML_ASSERT(idx < num_topk_moe_pipelines);
|
||||
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
|
||||
// use n_experts from push constant if it's not equal to the power of two spec constant
|
||||
bool use_push = dst->ne[0] != (1u << idx);
|
||||
return ctx->device->pipeline_topk_moe[idx][mode][use_push];
|
||||
return ctx->device->pipeline_topk_moe[idx][use_push];
|
||||
}
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
||||
|
|
@ -10346,14 +10377,16 @@ static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
}
|
||||
|
||||
static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx) {
|
||||
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
|
||||
topk_moe_mode mode = ctx->fused_topk_moe_mode;
|
||||
ggml_tensor * logits = cgraph->nodes[node_idx + 0]->src[0];
|
||||
ggml_tensor * weights = (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) ? cgraph->nodes[node_idx + 9] :
|
||||
(mode == TOPK_MOE_EARLY_SOFTMAX) ? cgraph->nodes[node_idx + 4] :
|
||||
cgraph->nodes[node_idx + 5];
|
||||
ggml_tensor * ids = (mode == TOPK_MOE_LATE_SOFTMAX) ? cgraph->nodes[node_idx + 1] : cgraph->nodes[node_idx + 3];
|
||||
ggml_tensor * bias = (mode == TOPK_MOE_SIGMOID_NORM_BIAS) ? cgraph->nodes[node_idx + 2]->src[1] : logits;
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx + ctx->num_additional_fused_ops];
|
||||
ggml_tensor * ids = (mode == TOPK_MOE_SIGMOID_NORM_BIAS) ? cgraph->nodes[node_idx + 4] :
|
||||
(mode == TOPK_MOE_LATE_SOFTMAX) ? cgraph->nodes[node_idx + 1] :
|
||||
cgraph->nodes[node_idx + 3];
|
||||
|
||||
GGML_ASSERT(logits->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(bias->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(weights->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
|
||||
|
|
@ -10368,6 +10401,7 @@ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
|
||||
|
||||
vk_subbuffer logits_buf = ggml_vk_tensor_subbuffer(ctx, logits);
|
||||
vk_subbuffer bias_buf = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
vk_subbuffer weights_buf = ggml_vk_tensor_subbuffer(ctx, weights);
|
||||
vk_subbuffer ids_buf = ggml_vk_tensor_subbuffer(ctx, ids);
|
||||
|
||||
|
|
@ -10375,18 +10409,45 @@ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
pc.n_rows = n_rows;
|
||||
pc.n_experts_push = n_experts;
|
||||
pc.n_expert_used = n_expert_used;
|
||||
pc.clamp_min = -std::numeric_limits<float>::infinity();
|
||||
pc.clamp_max = std::numeric_limits<float>::infinity();
|
||||
if (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) {
|
||||
ggml_tensor * clamp = cgraph->nodes[node_idx + 7];
|
||||
GGML_ASSERT(clamp->op == GGML_OP_CLAMP);
|
||||
pc.clamp_min = ggml_get_op_params_f32(clamp, 0);
|
||||
pc.clamp_max = ggml_get_op_params_f32(clamp, 1);
|
||||
}
|
||||
if (mode == TOPK_MOE_SIGMOID_NORM_BIAS) {
|
||||
ggml_tensor * clamp = cgraph->nodes[node_idx + 8];
|
||||
GGML_ASSERT(clamp->op == GGML_OP_CLAMP);
|
||||
pc.clamp_min = ggml_get_op_params_f32(clamp, 0);
|
||||
pc.clamp_max = ggml_get_op_params_f32(clamp, 1);
|
||||
}
|
||||
|
||||
#define GATING_FUNC_SOFTMAX 0
|
||||
#define GATING_FUNC_SIGMOID 1
|
||||
#define GATING_FUNC_SOFTMAX_WEIGHT 2
|
||||
|
||||
pc.gating_func = mode == TOPK_MOE_SIGMOID_NORM_BIAS ? GATING_FUNC_SIGMOID :
|
||||
mode == TOPK_MOE_LATE_SOFTMAX ? GATING_FUNC_SOFTMAX_WEIGHT :
|
||||
GATING_FUNC_SOFTMAX;
|
||||
pc.has_bias = mode == TOPK_MOE_SIGMOID_NORM_BIAS;
|
||||
pc.with_norm = mode == TOPK_MOE_EARLY_SOFTMAX_NORM || mode == TOPK_MOE_SIGMOID_NORM_BIAS;
|
||||
if (ctx->fused_topk_moe_scale) {
|
||||
GGML_ASSERT(weights->op == GGML_OP_SCALE);
|
||||
pc.output_scale = ggml_get_op_params_f32(weights, 0);
|
||||
pc.output_bias = ggml_get_op_params_f32(weights, 1);
|
||||
} else {
|
||||
pc.output_scale = 1.0f;
|
||||
pc.output_bias = 0.0f;
|
||||
}
|
||||
|
||||
GGML_ASSERT(n_expert_used <= n_experts);
|
||||
|
||||
const uint32_t rows_per_block = 4;
|
||||
std::array<uint32_t, 3> elements = { CEIL_DIV(n_rows, rows_per_block), 1, 1 };
|
||||
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {logits_buf, weights_buf, ids_buf}, pc, elements);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {logits_buf, bias_buf, weights_buf, ids_buf}, pc, elements);
|
||||
}
|
||||
|
||||
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_cgraph * cgraph, int node_idx, bool backprop) {
|
||||
|
|
@ -12128,6 +12189,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
break;
|
||||
case GGML_OP_UNARY:
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
|
||||
break;
|
||||
}
|
||||
|
||||
switch (ggml_get_unary_op(node)) {
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
|
|
@ -12175,7 +12241,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
if (ctx->num_additional_fused_ops) {
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
|
||||
} else {
|
||||
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node);
|
||||
|
|
@ -12195,7 +12261,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
if (ctx->num_additional_fused_ops) {
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
|
||||
} else {
|
||||
ggml_vk_argsort(ctx, compute_ctx, src0, node);
|
||||
|
|
@ -13048,6 +13114,24 @@ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struc
|
|||
get_rows = cgraph->nodes[node_idx + 4];
|
||||
argsort = cgraph->nodes[node_idx + 2];
|
||||
break;
|
||||
case TOPK_MOE_SIGMOID_NORM_BIAS:
|
||||
softmax = cgraph->nodes[node_idx + 0]; // really sigmoid
|
||||
weights = cgraph->nodes[node_idx + 10];
|
||||
get_rows = cgraph->nodes[node_idx + 5];
|
||||
argsort = cgraph->nodes[node_idx + 3];
|
||||
if (ggml_get_unary_op(softmax) != GGML_UNARY_OP_SIGMOID) {
|
||||
return false;
|
||||
}
|
||||
// bias is expected to be 1D
|
||||
if (ggml_nrows(cgraph->nodes[node_idx + 2]->src[1]) != 1 ||
|
||||
!ggml_is_contiguous(cgraph->nodes[node_idx + 2]->src[1])) {
|
||||
return false;
|
||||
}
|
||||
// sigmoid fusion seems to generate infinities on moltenvk
|
||||
if (ctx->device->driver_id == vk::DriverId::eMoltenvk) {
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
case TOPK_MOE_EARLY_SOFTMAX:
|
||||
softmax = cgraph->nodes[node_idx + 0];
|
||||
weights = cgraph->nodes[node_idx + 4];
|
||||
|
|
@ -13071,26 +13155,28 @@ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struc
|
|||
probs = probs->src[0];
|
||||
ggml_tensor * selection_probs = argsort->src[0];
|
||||
|
||||
if (probs != selection_probs) {
|
||||
if (probs != selection_probs && mode != TOPK_MOE_SIGMOID_NORM_BIAS) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const float * op_params = (const float *)softmax->op_params;
|
||||
|
||||
float scale = op_params[0];
|
||||
float max_bias = op_params[1];
|
||||
|
||||
if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (scale != 1.0f || max_bias != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
if (softmax->op == GGML_OP_SOFT_MAX) {
|
||||
const float * op_params = (const float *)softmax->op_params;
|
||||
|
||||
// don't fuse when masks or sinks are present
|
||||
if (softmax->src[1] || softmax->src[2]) {
|
||||
return false;
|
||||
float scale = op_params[0];
|
||||
float max_bias = op_params[1];
|
||||
|
||||
if (scale != 1.0f || max_bias != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// don't fuse when masks or sinks are present
|
||||
if (softmax->src[1] || softmax->src[2]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const int n_expert = softmax->ne[0];
|
||||
|
|
@ -13363,6 +13449,8 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
total_mul_mat_bytes += bytes;
|
||||
}
|
||||
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_COUNT;
|
||||
ctx->fused_topk_moe_scale = false;
|
||||
const char *fusion_string {};
|
||||
if (!ctx->device->disable_fusion) {
|
||||
uint32_t num_adds = ggml_vk_fuse_multi_add(ctx, cgraph, i);
|
||||
|
|
@ -13408,13 +13496,23 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
ctx->num_additional_fused_ops = topk_moe_early_softmax_norm.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 3;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_EARLY_SOFTMAX_NORM;
|
||||
fusion_string = "TOPK_MOE_EARLY_SOFTMAX_NORM";
|
||||
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_sigmoid_norm_bias, { i + 4, i + 10 }) &&
|
||||
ggml_check_edges(cgraph, i, topk_moe_sigmoid_norm_bias_edges) &&
|
||||
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_SIGMOID_NORM_BIAS)) {
|
||||
ctx->num_additional_fused_ops = topk_moe_sigmoid_norm_bias.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 4;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_SIGMOID_NORM_BIAS;
|
||||
fusion_string = "TOPK_MOE_SIGMOID_NORM_BIAS";
|
||||
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax, { i + 3, i + 4 }) &&
|
||||
ggml_check_edges(cgraph, i, topk_moe_early_softmax_edges) &&
|
||||
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX)) {
|
||||
ctx->num_additional_fused_ops = topk_moe_early_softmax.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 3;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_EARLY_SOFTMAX;
|
||||
fusion_string = "TOPK_MOE_EARLY_SOFTMAX";
|
||||
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_late_softmax, { i + 1, i + 5 }) &&
|
||||
ggml_check_edges(cgraph, i, topk_moe_late_softmax_edges) &&
|
||||
|
|
@ -13422,8 +13520,17 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
ctx->num_additional_fused_ops = topk_moe_late_softmax.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 1;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_LATE_SOFTMAX;
|
||||
fusion_string = "TOPK_MOE_LATE_SOFTMAX";
|
||||
}
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
// Look for an additional scale op to fuse - occurs in deepseek2 and nemotron3 nano.
|
||||
if (ggml_can_fuse_subgraph(cgraph, i + ctx->num_additional_fused_ops - 1, { GGML_OP_DIV, GGML_OP_RESHAPE, GGML_OP_SCALE }, { i + ctx->num_additional_fused_ops + 1 }) ||
|
||||
ggml_can_fuse_subgraph(cgraph, i + ctx->num_additional_fused_ops, { GGML_OP_GET_ROWS, GGML_OP_SCALE }, { i + ctx->num_additional_fused_ops + 1 })) {
|
||||
ctx->fused_topk_moe_scale = true;
|
||||
ctx->num_additional_fused_ops++;
|
||||
}
|
||||
}
|
||||
}
|
||||
ctx->fused_ops_write_mask |= 1 << ctx->num_additional_fused_ops;
|
||||
|
||||
|
|
@ -13602,6 +13709,9 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
if (keep_pattern(topk_moe_early_softmax_norm)) {
|
||||
continue;
|
||||
}
|
||||
if (keep_pattern(topk_moe_sigmoid_norm_bias)) {
|
||||
continue;
|
||||
}
|
||||
if (keep_pattern(topk_moe_early_softmax)) {
|
||||
continue;
|
||||
}
|
||||
|
|
@ -13628,6 +13738,7 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
}
|
||||
// Don't pull forward nodes from fusion patterns
|
||||
if (match_pattern(topk_moe_early_softmax_norm, j) ||
|
||||
match_pattern(topk_moe_sigmoid_norm_bias, j) ||
|
||||
match_pattern(topk_moe_early_softmax, j) ||
|
||||
match_pattern(topk_moe_late_softmax, j)) {
|
||||
continue;
|
||||
|
|
|
|||
|
|
@ -7,6 +7,10 @@
|
|||
|
||||
#include "types.glsl"
|
||||
|
||||
#define GATING_FUNC_SOFTMAX 0
|
||||
#define GATING_FUNC_SIGMOID 1
|
||||
#define GATING_FUNC_SOFTMAX_WEIGHT 2
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint n_rows;
|
||||
|
|
@ -14,15 +18,18 @@ layout (push_constant) uniform parameter
|
|||
uint n_expert_used;
|
||||
float clamp_min;
|
||||
float clamp_max;
|
||||
uint gating_func;
|
||||
uint has_bias;
|
||||
uint with_norm;
|
||||
float output_scale;
|
||||
float output_bias;
|
||||
};
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 4, local_size_z = 1) in;
|
||||
|
||||
layout(constant_id = 0) const uint WARP_SIZE = 32;
|
||||
layout(constant_id = 1) const uint n_experts_spec = 512;
|
||||
layout(constant_id = 2) const bool with_norm = true;
|
||||
layout(constant_id = 3) const bool late_softmax = false;
|
||||
layout(constant_id = 4) const bool nexperts_use_push = false;
|
||||
layout(constant_id = 2) const bool nexperts_use_push = false;
|
||||
|
||||
uint n_experts = nexperts_use_push ? n_experts_push : n_experts_spec;
|
||||
|
||||
|
|
@ -31,8 +38,9 @@ uint n_experts = nexperts_use_push ? n_experts_push : n_experts_spec;
|
|||
const uint experts_per_thread = CEIL_DIV(n_experts_spec, WARP_SIZE);
|
||||
|
||||
layout (binding = 0, std430) readonly buffer Logits {float logits[];};
|
||||
layout (binding = 1, std430) writeonly buffer Weights {float weights[];};
|
||||
layout (binding = 2, std430) writeonly buffer Ids {uint ids[];};
|
||||
layout (binding = 1, std430) readonly buffer BiasProbs {float bias[];};
|
||||
layout (binding = 2, std430) writeonly buffer Weights {float weights[];};
|
||||
layout (binding = 3, std430) writeonly buffer Ids {uint ids[];};
|
||||
|
||||
const float INFINITY = 1.0 / 0.0;
|
||||
|
||||
|
|
@ -87,20 +95,40 @@ void main() {
|
|||
}
|
||||
|
||||
const uint logits_offset = n_experts * row;
|
||||
const uint bias_offset = 0; // 1D
|
||||
const uint weights_offset = n_expert_used * row;
|
||||
const uint ids_offset = n_experts * row;
|
||||
const uint lane = gl_SubgroupInvocationID;
|
||||
|
||||
float wt[experts_per_thread];
|
||||
float probs[experts_per_thread];
|
||||
|
||||
[[unroll]]
|
||||
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
|
||||
const uint expert = i + lane;
|
||||
wt[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[logits_offset + expert] : -INFINITY;
|
||||
probs[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[logits_offset + expert] : -INFINITY;
|
||||
}
|
||||
|
||||
if (!late_softmax) {
|
||||
softmax_warp_inplace(wt, n_experts, lane, nexperts_use_push);
|
||||
if (gating_func == GATING_FUNC_SOFTMAX) {
|
||||
softmax_warp_inplace(probs, n_experts, lane, nexperts_use_push);
|
||||
} else if (gating_func == GATING_FUNC_SIGMOID) {
|
||||
[[unroll]]
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
probs[i] = 1.f / (1.f + exp(-probs[i]));
|
||||
}
|
||||
}
|
||||
|
||||
float selection_probs[experts_per_thread];
|
||||
if (has_bias != 0) {
|
||||
[[unroll]]
|
||||
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
|
||||
const uint expert = i + lane;
|
||||
selection_probs[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? probs[i / WARP_SIZE] + bias[bias_offset + expert] : -INFINITY;
|
||||
}
|
||||
} else {
|
||||
[[unroll]]
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
selection_probs[i] = probs[i];
|
||||
}
|
||||
}
|
||||
|
||||
// at this point, each thread holds a portion of softmax,
|
||||
|
|
@ -117,14 +145,16 @@ void main() {
|
|||
}
|
||||
|
||||
for (int k = 0; k < n_expert_used; k++) {
|
||||
float max_val = wt[0];
|
||||
float max_val = probs[0];
|
||||
float max_val_s = selection_probs[0];
|
||||
uint max_expert = lane;
|
||||
|
||||
[[unroll]]
|
||||
for (int i = 1; i < experts_per_thread; i++) {
|
||||
const uint expert = lane + i * WARP_SIZE;
|
||||
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && wt[i] > max_val) {
|
||||
max_val = wt[i];
|
||||
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && selection_probs[i] > max_val_s) {
|
||||
max_val = probs[i];
|
||||
max_val_s = selection_probs[i];
|
||||
max_expert = expert;
|
||||
}
|
||||
}
|
||||
|
|
@ -132,9 +162,11 @@ void main() {
|
|||
[[unroll]]
|
||||
for (uint mask = WARP_SIZE / 2; mask > 0; mask /= 2) {
|
||||
const float val = subgroupShuffleXor(max_val, mask);
|
||||
const float val_s = subgroupShuffleXor(max_val_s, mask);
|
||||
const uint expert = subgroupShuffleXor(max_expert, mask);
|
||||
if (val > max_val || (val == max_val && expert < max_expert)) {
|
||||
if (val_s > max_val_s || (val_s == max_val_s && expert < max_expert)) {
|
||||
max_val = val;
|
||||
max_val_s = val_s;
|
||||
max_expert = expert;
|
||||
}
|
||||
}
|
||||
|
|
@ -144,16 +176,14 @@ void main() {
|
|||
}
|
||||
|
||||
if ((max_expert & (WARP_SIZE - 1)) == lane) {
|
||||
wt[max_expert / WARP_SIZE] = -INFINITY;
|
||||
selection_probs[max_expert / WARP_SIZE] = -INFINITY;
|
||||
|
||||
ids[ids_offset + k] = max_expert;
|
||||
if (with_norm) {
|
||||
wt_sum += max_val;
|
||||
}
|
||||
wt_sum += max_val;
|
||||
}
|
||||
}
|
||||
|
||||
if (with_norm) {
|
||||
if (with_norm != 0) {
|
||||
wt_sum = subgroupAdd(wt_sum);
|
||||
wt_sum = clamp(wt_sum, clamp_min, clamp_max);
|
||||
const float inv_sum = 1.0f / wt_sum;
|
||||
|
|
@ -164,7 +194,7 @@ void main() {
|
|||
}
|
||||
}
|
||||
|
||||
if (late_softmax) {
|
||||
if (gating_func == GATING_FUNC_SOFTMAX_WEIGHT) {
|
||||
softmax_warp_inplace(output_weights, n_expert_used, lane, true);
|
||||
}
|
||||
|
||||
|
|
@ -172,7 +202,7 @@ void main() {
|
|||
for (uint i = 0; i < experts_per_thread; ++i) {
|
||||
uint idx = i * WARP_SIZE + lane;
|
||||
if (idx < n_expert_used) {
|
||||
weights[weights_offset + idx] = output_weights[i];
|
||||
weights[weights_offset + idx] = output_scale * output_weights[i] + output_bias;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -294,7 +294,9 @@ class Keys:
|
|||
USE_GELU = "clip.use_gelu"
|
||||
USE_SILU = "clip.use_silu"
|
||||
N_WA_PATTERN = "clip.vision.n_wa_pattern" # used by qwen2.5vl
|
||||
WA_LAYER_INDEXES = "clip.vision.wa_layer_indexes" # used by youtuvl
|
||||
IS_DEEPSTACK_LAYERS = "clip.vision.is_deepstack_layers"
|
||||
WINDOW_SIZE = "clip.vision.window_size"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "clip.vision.attention.head_count"
|
||||
|
|
@ -377,6 +379,7 @@ class MODEL_ARCH(IntEnum):
|
|||
PHIMOE = auto()
|
||||
PLAMO = auto()
|
||||
PLAMO2 = auto()
|
||||
PLAMO3 = auto()
|
||||
CODESHELL = auto()
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
|
|
@ -773,6 +776,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.PHIMOE: "phimoe",
|
||||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.PLAMO2: "plamo2",
|
||||
MODEL_ARCH.PLAMO3: "plamo3",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
|
|
@ -1763,6 +1767,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.SSM_B_NORM,
|
||||
MODEL_TENSOR.SSM_C_NORM,
|
||||
],
|
||||
MODEL_ARCH.PLAMO3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_POST_NORM,
|
||||
],
|
||||
MODEL_ARCH.GPT2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.POS_EMBD,
|
||||
|
|
@ -3475,7 +3494,9 @@ class VisionProjectorType:
|
|||
COGVLM = "cogvlm"
|
||||
JANUS_PRO = "janus_pro"
|
||||
LFM2A = "lfm2a" # audio
|
||||
MUSIC_FLAMINGO = "musicflamingo" # audio
|
||||
GLM4V = "glm4v"
|
||||
YOUTUVL = "youtuvl"
|
||||
|
||||
|
||||
# Items here are (block size, type size)
|
||||
|
|
|
|||
|
|
@ -1129,11 +1129,40 @@ class GGUFWriter:
|
|||
self.add_uint32(Keys.ClipVision.Projector.SCALE_FACTOR, value)
|
||||
|
||||
def add_vision_n_wa_pattern(self, value: int) -> None:
|
||||
"""Add window attention pattern interval for vision models.
|
||||
|
||||
This defines the pattern interval for window attention vs full attention layers.
|
||||
For example, if n_wa_pattern=4, then layers 3, 7, 11, ... use full attention,
|
||||
while other layers use window attention.
|
||||
|
||||
Used by models like Qwen2.5-VL where full attention layers follow a regular pattern.
|
||||
"""
|
||||
self.add_uint32(Keys.ClipVision.N_WA_PATTERN, value)
|
||||
|
||||
def add_vision_wa_layer_indexes(self, layers: Sequence[int]) -> None:
|
||||
"""Add explicit layer indexes that use full attention in vision models.
|
||||
|
||||
This specifies the exact layer indices (0-based) that should use full attention
|
||||
instead of window attention. All other layers will use window attention.
|
||||
|
||||
Args:
|
||||
layers: List of layer indices that use full attention (e.g., [3, 7, 11, 15])
|
||||
|
||||
Used by models like YoutuVL where full attention layers are explicitly specified
|
||||
rather than following a regular pattern.
|
||||
|
||||
Difference from add_vision_n_wa_pattern:
|
||||
- n_wa_pattern: Defines a regular interval pattern (every Nth layer uses full attention)
|
||||
- wa_layer_indexes: Explicitly lists which layers use full attention (irregular pattern)
|
||||
"""
|
||||
self.add_array(Keys.ClipVision.WA_LAYER_INDEXES, layers)
|
||||
|
||||
def add_vision_is_deepstack_layers(self, layers: Sequence[bool]) -> None:
|
||||
self.add_array(Keys.ClipVision.IS_DEEPSTACK_LAYERS, layers)
|
||||
|
||||
def add_vision_window_size(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipVision.WINDOW_SIZE, value)
|
||||
|
||||
# audio models
|
||||
|
||||
def add_audio_projection_dim(self, value: int) -> None:
|
||||
|
|
|
|||
|
|
@ -595,6 +595,7 @@ class TensorNameMap:
|
|||
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.q_norm", # openelm
|
||||
"model.layers.layers.{bid}.mixer.q", # plamo2
|
||||
"model.layers.layers.{bid}.mixer.q_norm", # plamo3
|
||||
"layers.{bid}.self_attn.q_norm", # qwen3-embedding
|
||||
"model.layers.{bid}.attention.query_layernorm", # apertus
|
||||
),
|
||||
|
|
@ -610,6 +611,7 @@ class TensorNameMap:
|
|||
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.k_norm", # openelm
|
||||
"model.layers.layers.{bid}.mixer.k", # plamo2
|
||||
"model.layers.layers.{bid}.mixer.k_norm", # plamo3
|
||||
"layers.{bid}.self_attn.k_norm", # qwen3-embedding
|
||||
"model.layers.{bid}.attention.key_layernorm", # apertus
|
||||
),
|
||||
|
|
@ -1219,6 +1221,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.V_MMPROJ: (
|
||||
"multi_modal_projector.linear_{bid}",
|
||||
"visual.merger.mlp.{bid}", # qwen2vl
|
||||
"merger.mlp.{bid}",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MMPROJ_FC: (
|
||||
|
|
@ -1256,6 +1259,7 @@ class TensorNameMap:
|
|||
"visual.patch_embed.proj", # qwen2vl
|
||||
"vision_tower.patch_embed.proj", # kimi-vl
|
||||
"model.vision.patch_embedding.proj", # cogvlm
|
||||
"siglip2.vision_model.embeddings.patch_embedding",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_EMBD_NORM: (
|
||||
|
|
@ -1289,6 +1293,7 @@ class TensorNameMap:
|
|||
"vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
|
||||
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
|
||||
"vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.q_proj", # youtuvl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
|
||||
|
|
@ -1306,6 +1311,7 @@ class TensorNameMap:
|
|||
"vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
|
||||
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
|
||||
"vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.k_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
|
||||
|
|
@ -1323,6 +1329,7 @@ class TensorNameMap:
|
|||
"vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
|
||||
"visual.blocks.{bid}.attn.v", # qwen2vl, generated
|
||||
"vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.v_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_INPUT_NORM: (
|
||||
|
|
@ -1337,6 +1344,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.norm1", # qwen2vl
|
||||
"vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
|
||||
"model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.layer_norm1",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_O: (
|
||||
|
|
@ -1352,6 +1360,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.attn.proj", # qwen2vl
|
||||
"vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
|
||||
"model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.out_proj", # youtuvl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
|
||||
|
|
@ -1366,6 +1375,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.norm2", # qwen2vl
|
||||
"vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
|
||||
"model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.layer_norm2",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_UP: (
|
||||
|
|
@ -1381,6 +1391,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
|
||||
"vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
|
||||
"model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.mlp.fc1",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_GATE: (
|
||||
|
|
@ -1402,6 +1413,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
|
||||
"vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
|
||||
"model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.mlp.fc2",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_LAYER_SCALE_1: (
|
||||
|
|
@ -1428,6 +1440,7 @@ class TensorNameMap:
|
|||
"visual.merger.ln_q", # qwen2vl
|
||||
"vision_tower.encoder.final_layernorm", # kimi-vl
|
||||
"visual.post_layernorm", # glm4v
|
||||
"siglip2.vision_model.post_layernorm",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_POST_NORM: (
|
||||
|
|
@ -1444,6 +1457,7 @@ class TensorNameMap:
|
|||
"multi_modal_projector.pre_norm",
|
||||
"pre_mm_projector_norm",
|
||||
"model.vision.linear_proj.norm1", # cogvlm
|
||||
"merger.ln_q",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
|
||||
|
|
|
|||
|
|
@ -150,6 +150,9 @@ You can use GBNF grammars:
|
|||
- in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
|
||||
- in JavaScript with [json-schema-to-grammar.mjs](../tools/server/public_legacy/json-schema-to-grammar.mjs) (this is used by the [server](../tools/server)'s Web UI)
|
||||
|
||||
> [!NOTE]
|
||||
> The JSON schema is only used to constrain the model output and is not injected into the prompt. The model has no visibility into the schema, so if you want it to understand the expected structure, describe it explicitly in your prompt. This does not apply to tool calling, where schemas are injected into the prompt.
|
||||
|
||||
Take a look at [tests](../tests/test-json-schema-to-grammar.cpp) to see which features are likely supported (you'll also find usage examples in https://github.com/ggml-org/llama.cpp/pull/5978, https://github.com/ggml-org/llama.cpp/pull/6659 & https://github.com/ggml-org/llama.cpp/pull/6555).
|
||||
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -607,6 +607,8 @@ extern "C" {
|
|||
//
|
||||
|
||||
// Load a LoRA adapter from file
|
||||
// The adapter is valid as long as the associated model is not freed
|
||||
// All adapters must be loaded before context creation
|
||||
LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
|
||||
struct llama_model * model,
|
||||
const char * path_lora);
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ Example function tool call syntax:
|
|||
{%- if message['role'] == 'user' -%}
|
||||
{{- '<|User|>' + message['content'] + '<|end▁of▁sentence|>' -}}
|
||||
{%- endif -%}
|
||||
{%- if message['role'] == 'assistant' and message['content'] is none -%}
|
||||
{%- if message['role'] == 'assistant' and not message['content'] -%}
|
||||
{{- '<|Assistant|><|tool▁calls▁begin|>' -}}
|
||||
{%- set ns.is_first = true -%}
|
||||
{%- for tc in message['tool_calls'] -%}
|
||||
|
|
@ -53,7 +53,7 @@ Example function tool call syntax:
|
|||
{%- endfor -%}
|
||||
{{- '<|tool▁calls▁end|><|end▁of▁sentence|>' -}}
|
||||
{%- endif -%}
|
||||
{%- if message['role'] == 'assistant' and message['content'] is not none -%}
|
||||
{%- if message['role'] == 'assistant' and message['content'] -%}
|
||||
{{- flush_tool_outputs() -}}
|
||||
{%- set content = message['content'] -%}
|
||||
{%- if '</think>' in content -%}
|
||||
|
|
@ -73,4 +73,4 @@ Example function tool call syntax:
|
|||
{{- flush_tool_outputs() -}}
|
||||
{%- if add_generation_prompt and not ns.is_tool_outputs -%}
|
||||
{{- '<|Assistant|><think>\n' -}}
|
||||
{%- endif -%}
|
||||
{%- endif -%}
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
130bc125a88bb57664b88932c48c38a1cb316fac
|
||||
ebc3a0f4a56be1c9424a89fbec09962ac34fde85
|
||||
|
|
|
|||
|
|
@ -107,6 +107,7 @@ add_library(llama
|
|||
models/phi3.cpp
|
||||
models/plamo.cpp
|
||||
models/plamo2.cpp
|
||||
models/plamo3.cpp
|
||||
models/plm.cpp
|
||||
models/qwen.cpp
|
||||
models/qwen2.cpp
|
||||
|
|
|
|||
|
|
@ -146,9 +146,11 @@ llama_adapter_lora_weight * llama_adapter_lora::get_weight(ggml_tensor * w) {
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
static void llama_adapter_lora_init_impl(llama_model & model, const char * path_lora, llama_adapter_lora & adapter) {
|
||||
static void llama_adapter_lora_init_impl(const char * path_lora, llama_adapter_lora & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
llama_model & model = adapter.model;
|
||||
|
||||
ggml_context * ctx_init;
|
||||
gguf_init_params meta_gguf_params = {
|
||||
/* .no_alloc = */ true,
|
||||
|
|
@ -411,14 +413,17 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
|
|||
}
|
||||
}
|
||||
|
||||
// update number of nodes used
|
||||
model.n_lora_nodes += adapter.get_n_nodes();
|
||||
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
||||
|
||||
llama_adapter_lora * llama_adapter_lora_init(llama_model * model, const char * path_lora) {
|
||||
llama_adapter_lora * adapter = new llama_adapter_lora();
|
||||
llama_adapter_lora * adapter = new llama_adapter_lora(*model);
|
||||
|
||||
try {
|
||||
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
|
||||
llama_adapter_lora_init_impl(path_lora, *adapter);
|
||||
return adapter;
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
|
|
@ -469,6 +474,10 @@ int32_t llama_adapter_meta_val_str_by_index(const llama_adapter_lora * adapter,
|
|||
}
|
||||
|
||||
void llama_adapter_lora_free(llama_adapter_lora * adapter) {
|
||||
// update number of nodes used
|
||||
GGML_ASSERT(adapter->model.n_lora_nodes >= adapter->get_n_nodes());
|
||||
adapter->model.n_lora_nodes -= adapter->get_n_nodes();
|
||||
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -59,6 +59,8 @@ struct llama_adapter_lora_weight {
|
|||
};
|
||||
|
||||
struct llama_adapter_lora {
|
||||
llama_model & model;
|
||||
|
||||
// map tensor name to lora_a_b
|
||||
std::unordered_map<std::string, llama_adapter_lora_weight> ab_map;
|
||||
|
||||
|
|
@ -73,10 +75,14 @@ struct llama_adapter_lora {
|
|||
// activated lora (aLoRA)
|
||||
std::vector<llama_token> alora_invocation_tokens;
|
||||
|
||||
llama_adapter_lora() = default;
|
||||
llama_adapter_lora(llama_model & model) : model(model) {}
|
||||
~llama_adapter_lora() = default;
|
||||
|
||||
llama_adapter_lora_weight * get_weight(ggml_tensor * w);
|
||||
|
||||
uint32_t get_n_nodes() const {
|
||||
return ab_map.size() * 6u; // a, b, scale, add, 2 x mul_mat
|
||||
}
|
||||
};
|
||||
|
||||
using llama_adapter_loras = std::unordered_map<llama_adapter_lora *, float>;
|
||||
|
|
|
|||
|
|
@ -42,6 +42,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_PHIMOE, "phimoe" },
|
||||
{ LLM_ARCH_PLAMO, "plamo" },
|
||||
{ LLM_ARCH_PLAMO2, "plamo2" },
|
||||
{ LLM_ARCH_PLAMO3, "plamo3" },
|
||||
{ LLM_ARCH_CODESHELL, "codeshell" },
|
||||
{ LLM_ARCH_ORION, "orion" },
|
||||
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
||||
|
|
@ -1077,6 +1078,22 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
|
|||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_FFN_POST_NORM,
|
||||
};
|
||||
case LLM_ARCH_PLAMO3:
|
||||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_POST_NORM,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
};
|
||||
case LLM_ARCH_CODESHELL:
|
||||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
|
|
|
|||
|
|
@ -46,6 +46,7 @@ enum llm_arch {
|
|||
LLM_ARCH_PHIMOE,
|
||||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_PLAMO2,
|
||||
LLM_ARCH_PLAMO3,
|
||||
LLM_ARCH_CODESHELL,
|
||||
LLM_ARCH_ORION,
|
||||
LLM_ARCH_INTERNLM2,
|
||||
|
|
|
|||
|
|
@ -74,6 +74,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|||
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
|
||||
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
|
||||
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
|
||||
{ "solar-open", LLM_CHAT_TEMPLATE_SOLAR_OPEN },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
|
|
@ -216,6 +217,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
|||
return LLM_CHAT_TEMPLATE_GROK_2;
|
||||
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
|
||||
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
|
||||
} else if (tmpl_contains("<|begin|>") && tmpl_contains("<|end|>") && tmpl_contains("<|content|>")) {
|
||||
return LLM_CHAT_TEMPLATE_SOLAR_OPEN;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
|
@ -845,6 +848,14 @@ int32_t llm_chat_apply_template(
|
|||
if (add_ass) {
|
||||
ss << "[unused9]助手:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_SOLAR_OPEN) {
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|begin|>" << role << "<|content|>" << message->content << "<|end|>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|begin|>assistant";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
|
|
|
|||
|
|
@ -54,6 +54,7 @@ enum llm_chat_template {
|
|||
LLM_CHAT_TEMPLATE_SEED_OSS,
|
||||
LLM_CHAT_TEMPLATE_GROK_2,
|
||||
LLM_CHAT_TEMPLATE_PANGU_EMBED,
|
||||
LLM_CHAT_TEMPLATE_SOLAR_OPEN,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -1442,7 +1442,9 @@ uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
|
|||
if (model.arch == LLM_ARCH_QWEN3NEXT) {
|
||||
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
|
||||
}
|
||||
return std::max<uint32_t>(1024u, 8u*model.n_tensors());
|
||||
uint32_t res = std::max<uint32_t>(1024u, 8u*model.n_tensors());
|
||||
res += model.n_lora_nodes;
|
||||
return res;
|
||||
}
|
||||
|
||||
llm_graph_result * llama_context::get_gf_res_reserve() const {
|
||||
|
|
|
|||
|
|
@ -305,7 +305,7 @@ public:
|
|||
bool do_shift,
|
||||
stream_copy_info sc_info);
|
||||
|
||||
// used to create a batch procesing context from a batch
|
||||
// used to create a batch processing context from a batch
|
||||
llama_kv_cache_context(
|
||||
llama_kv_cache * kv,
|
||||
slot_info_vec_t sinfos,
|
||||
|
|
|
|||
|
|
@ -240,9 +240,10 @@ struct llama_file::impl {
|
|||
throw std::runtime_error("unexpectedly reached end of file");
|
||||
}
|
||||
} else {
|
||||
bool successful = false;
|
||||
while (!successful) {
|
||||
off_t ret = read(fd, ptr, len);
|
||||
size_t bytes_read = 0;
|
||||
while (bytes_read < len) {
|
||||
const size_t to_read = len - bytes_read;
|
||||
ssize_t ret = ::read(fd, reinterpret_cast<char *>(ptr) + bytes_read, to_read);
|
||||
|
||||
if (ret == -1) {
|
||||
if (errno == EINTR) {
|
||||
|
|
@ -251,10 +252,16 @@ struct llama_file::impl {
|
|||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret == 0) {
|
||||
// EOF: allow if this read was only pulling alignment padding past file end
|
||||
off_t pos = lseek(fd, 0, SEEK_CUR);
|
||||
if (pos != -1 && (size_t) pos == size) {
|
||||
std::memset(reinterpret_cast<char *>(ptr) + bytes_read, 0, len - bytes_read);
|
||||
return;
|
||||
}
|
||||
throw std::runtime_error("unexpectedly reached end of file");
|
||||
}
|
||||
|
||||
successful = true;
|
||||
bytes_read += (size_t) ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -126,6 +126,7 @@ const char * llm_type_name(llm_type type) {
|
|||
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
|
||||
case LLM_TYPE_80B_A3B: return "80B.A3B";
|
||||
case LLM_TYPE_100B_A6B: return "100B.A6B";
|
||||
case LLM_TYPE_102B_A12B: return "102B.A12B";
|
||||
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
||||
case LLM_TYPE_230B_A10B: return "230B.A10B";
|
||||
case LLM_TYPE_235B_A22B: return "235B.A22B";
|
||||
|
|
@ -1227,6 +1228,26 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
|
||||
} break;
|
||||
case LLM_ARCH_PLAMO3:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
if (found_swa && hparams.n_swa > 0) {
|
||||
uint32_t swa_period = 8;
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.rope_freq_scale_train_swa = 1.0f;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, swa_period, false);
|
||||
hparams.set_swa_pattern(swa_period);
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
}
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: type = LLM_TYPE_2B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GPT2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
|
@ -1662,7 +1683,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
||||
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
||||
|
|
@ -1758,6 +1779,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
|
||||
switch (hparams.n_layer) {
|
||||
case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
|
||||
case 48: type = LLM_TYPE_102B_A12B; break; // Solar Open
|
||||
case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
|
|
@ -3300,7 +3322,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
|
||||
|
||||
const auto tn_ffn_up_weight = tn(LLM_TENSOR_FFN_UP, "weight", i);
|
||||
ggml_tensor * t_ffn_up = ml.get_tensor_meta(tn_ffn_up_weight.str().c_str());
|
||||
const int64_t n_ffn_up = t_ffn_up ? t_ffn_up->ne[1] : n_ff;
|
||||
|
||||
GGML_ASSERT(n_ffn_up == n_ff || n_ffn_up == n_ff * 2);
|
||||
layer.ffn_up = create_tensor(tn_ffn_up_weight, {n_embd, n_ffn_up}, 0);
|
||||
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ffn_up}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
||||
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
|
||||
|
|
@ -3828,6 +3857,44 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PLAMO3:
|
||||
{
|
||||
const int64_t head_dim_q = hparams.n_embd_head_k;
|
||||
const int64_t head_dim_v = hparams.n_embd_head_v;
|
||||
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
const int64_t num_attention_heads = hparams.n_head(i);
|
||||
const int64_t num_key_value_heads = hparams.n_head_kv(i);
|
||||
const int64_t q_proj_dim = num_attention_heads * head_dim_q;
|
||||
const int64_t k_proj_dim = num_key_value_heads * head_dim_q;
|
||||
const int64_t v_proj_dim = num_key_value_heads * head_dim_v;
|
||||
const int64_t n_ff_cur = hparams.n_ff(i);
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i),
|
||||
{n_embd,q_proj_dim + k_proj_dim + v_proj_dim}, 0);
|
||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim_q}, 0);
|
||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim_q}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {num_attention_heads * head_dim_v, n_embd}, 0);
|
||||
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
|
||||
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff_cur * 2}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff_cur, n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GPT2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
|
@ -4718,7 +4785,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||
// try to load output.weight, if not found, use token_embd (tied embeddings)
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (!output) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
|
@ -4781,7 +4852,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||
// try to load output.weight, if not found, use token_embd (tied embeddings)
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (!output) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
|
@ -5148,9 +5223,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, TENSOR_NOT_REQUIRED | flags);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, TENSOR_NOT_REQUIRED | flags);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, TENSOR_NOT_REQUIRED | flags);
|
||||
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
|
||||
|
||||
|
|
@ -7382,7 +7457,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
} break;
|
||||
case LLM_ARCH_MODERN_BERT:
|
||||
{
|
||||
llm = std::make_unique<llm_build_modern_bert<true>>(*this, params);
|
||||
llm = std::make_unique<llm_build_modern_bert>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
{
|
||||
|
|
@ -7473,6 +7548,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
{
|
||||
llm = std::make_unique<llm_build_plamo2>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_PLAMO3:
|
||||
{
|
||||
if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
|
||||
llm = std::make_unique<llm_build_plamo3<true>> (*this, params);
|
||||
} else {
|
||||
llm = std::make_unique<llm_build_plamo3<false>>(*this, params);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GPT2:
|
||||
{
|
||||
llm = std::make_unique<llm_build_gpt2>(*this, params);
|
||||
|
|
@ -7977,6 +8060,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_PHIMOE:
|
||||
case LLM_ARCH_PLAMO:
|
||||
case LLM_ARCH_PLAMO2:
|
||||
case LLM_ARCH_PLAMO3:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_GEMMA3:
|
||||
|
|
|
|||
|
|
@ -119,6 +119,7 @@ enum llm_type {
|
|||
LLM_TYPE_31B_A3_5B,
|
||||
LLM_TYPE_80B_A3B, // Qwen3 Next
|
||||
LLM_TYPE_100B_A6B,
|
||||
LLM_TYPE_102B_A12B, // Solar-Open
|
||||
LLM_TYPE_106B_A12B, // GLM-4.5-Air
|
||||
LLM_TYPE_230B_A10B, // Minimax M2
|
||||
LLM_TYPE_235B_A22B,
|
||||
|
|
@ -475,6 +476,9 @@ struct llama_model {
|
|||
// for quantize-stats only
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
||||
|
||||
// for keeping track of extra nodes used by lora adapters
|
||||
uint32_t n_lora_nodes = 0;
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
|
|
|
|||
|
|
@ -421,39 +421,6 @@ void llama_sampler_free(struct llama_sampler * smpl) {
|
|||
delete smpl;
|
||||
}
|
||||
|
||||
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
// TODO: do not allocate each time
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ cur.data(),
|
||||
/* .size = */ cur.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(smpl, &cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);
|
||||
|
||||
auto token = cur_p.data[cur_p.selected].id;
|
||||
|
||||
llama_sampler_accept(smpl, token);
|
||||
|
||||
return token;
|
||||
}
|
||||
|
||||
// sampler chain
|
||||
|
||||
static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
|
||||
|
|
@ -527,12 +494,56 @@ struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_param
|
|||
/* .ctx = */ new llama_sampler_chain {
|
||||
/* .params = */ params,
|
||||
/* .samplers = */ {},
|
||||
/* .cur = */ {},
|
||||
/* .t_sample_us = */ 0,
|
||||
/* .n_sample = */ 0,
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
// use pre-allocated buffer from chain if available, otherwise allocate locally
|
||||
std::vector<llama_token_data> * cur_ptr;
|
||||
std::vector<llama_token_data> cur_local;
|
||||
|
||||
if (smpl->iface == &llama_sampler_chain_i) {
|
||||
auto * chain = (llama_sampler_chain *) smpl->ctx;
|
||||
cur_ptr = &chain->cur;
|
||||
} else {
|
||||
cur_ptr = &cur_local;
|
||||
}
|
||||
|
||||
auto & cur = *cur_ptr;
|
||||
cur.resize(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ cur.data(),
|
||||
/* .size = */ cur.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(smpl, &cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);
|
||||
|
||||
auto token = cur_p.data[cur_p.selected].id;
|
||||
|
||||
llama_sampler_accept(smpl, token);
|
||||
|
||||
return token;
|
||||
}
|
||||
|
||||
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
|
||||
auto * p = (llama_sampler_chain *) chain->ctx;
|
||||
p->samplers.push_back(smpl);
|
||||
|
|
|
|||
|
|
@ -16,6 +16,9 @@ struct llama_sampler_chain {
|
|||
|
||||
std::vector<struct llama_sampler *> samplers;
|
||||
|
||||
// pre-allocated buffer for llama_sampler_sample to avoid repeated allocations
|
||||
std::vector<llama_token_data> cur;
|
||||
|
||||
// timing
|
||||
|
||||
mutable int64_t t_sample_us;
|
||||
|
|
|
|||
|
|
@ -314,6 +314,12 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_YOUTU:
|
||||
regex_exprs = {
|
||||
"[가-힣ㄱ-ㆎ]+|[!…“”‘’—:;,、-〿︰-﹏]+|[ㄅ-ㄯ]+|[一-龥-ゟ゠-ヿ]+",
|
||||
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
|
|
@ -355,6 +361,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
|
||||
case LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
|
|
@ -1860,6 +1867,11 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "deepseek-v3") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "youtu") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_YOUTU;
|
||||
clean_spaces = false;
|
||||
ignore_merges = true;
|
||||
} else if (
|
||||
tokenizer_pre == "falcon") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
|
||||
|
|
@ -2015,6 +2027,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "minimax-m2") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "solar-open") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
}
|
||||
|
|
@ -2187,6 +2203,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
// for now, we apply this workaround to find the tokens based on their text
|
||||
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
// find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
|
||||
if (special_eot_id == LLAMA_TOKEN_NULL) {
|
||||
if (false
|
||||
|
|
@ -2202,10 +2220,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<end_of_utterance>" // smoldocling
|
||||
) {
|
||||
special_eot_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2216,10 +2234,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|eom_id|>"
|
||||
) {
|
||||
special_eom_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2236,10 +2254,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|code_prefix|>" // GLM-4.5
|
||||
) {
|
||||
special_fim_pre_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2256,10 +2274,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|code_suffix|>" // GLM-4.5
|
||||
) {
|
||||
special_fim_suf_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2276,10 +2294,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|code_middle|>" // GLM-4.5
|
||||
) {
|
||||
special_fim_mid_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2293,10 +2311,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<PAD>"
|
||||
) {
|
||||
special_fim_pad_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2311,10 +2329,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<reponame>" // Granite
|
||||
) {
|
||||
special_fim_rep_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2325,15 +2343,41 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|file_sep|>" // Qwen
|
||||
) {
|
||||
special_fim_sep_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// auto-detect unused tokens: e.g. control tokens with the word "unused"
|
||||
// ideally, these tokens should be marked as unused during conversion
|
||||
{
|
||||
uint32_t n_unused = 0;
|
||||
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((attr & LLAMA_TOKEN_ATTR_UNUSED) == 0) {
|
||||
if (strstr(t.first.c_str(), "unused") != NULL) {
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_UNUSED);
|
||||
}
|
||||
}
|
||||
|
||||
if (attr & LLAMA_TOKEN_ATTR_UNUSED) {
|
||||
n_unused++;
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: %u unused tokens\n", __func__, n_unused);
|
||||
}
|
||||
|
||||
// maintain a list of tokens that cause end-of-generation
|
||||
// this is currently determined based on the token text, which is obviously not ideal
|
||||
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
|
||||
|
|
@ -2352,12 +2396,16 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
}
|
||||
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
if (false
|
||||
|| t.first == "<|eot_id|>"
|
||||
|| t.first == "<|im_end|>"
|
||||
|| t.first == "<|end|>"
|
||||
|| t.first == "<|return|>" // o200k_harmony
|
||||
|| t.first == "<|call|>" // o200k_harmony
|
||||
|| t.first == "<|flush|>" // solar-open
|
||||
|| t.first == "<|calls|>" // solar-open
|
||||
|| t.first == "<end_of_turn>"
|
||||
|| t.first == "<|endoftext|>"
|
||||
|| t.first == "<|eom_id|>"
|
||||
|
|
@ -2367,24 +2415,28 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<end_of_utterance>" // smoldocling
|
||||
) {
|
||||
special_eog_ids.insert(t.second);
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
} else {
|
||||
// token is control, but not marked as EOG -> print a debug log
|
||||
if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
|
||||
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
if (attr & LLAMA_TOKEN_ATTR_CONTROL && !(attr & LLAMA_TOKEN_ATTR_UNUSED)) {
|
||||
// token is control, but not marked as EOG -> print a debug log
|
||||
if (special_eog_ids.count(t.second) == 0) {
|
||||
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// @ngxson : quick hack for gpt-oss, always render these tokens
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
if (t.first == "<|channel|>" || t.first == "<|message|>" || t.first == "<|start|>" || t.first == "<|constrain|>") {
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_USER_DEFINED);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -2404,34 +2456,42 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||||
}
|
||||
|
||||
// TODO: workaround for o200k_harmony tokenizer: the "<|end|>" token should not be EOG
|
||||
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens,
|
||||
// TODO: workaround for o200k_harmony and solar-open tokenizer: the "<|end|>" token should not be EOG
|
||||
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens ("<|calls|>" and "<|flush|>" for solar-open),
|
||||
// we remove the "<|end|>" token from the EOG list
|
||||
{
|
||||
bool has_return = false;
|
||||
bool has_call = false;
|
||||
bool has_end = false;
|
||||
bool has_flush = false;
|
||||
|
||||
llama_token end_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
LLAMA_LOG_INFO("%s: printing all EOG tokens:\n", __func__);
|
||||
for (auto tid : special_eog_ids) {
|
||||
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, id_to_token[tid].text.c_str());
|
||||
auto & text = id_to_token[tid].text;
|
||||
|
||||
if (id_to_token[tid].text == "<|return|>") {
|
||||
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, text.c_str());
|
||||
|
||||
if (text == "<|return|>") {
|
||||
has_return = true;
|
||||
} else if (id_to_token[tid].text == "<|call|>") {
|
||||
} else if (text == "<|call|>" || text == "<|calls|>") {
|
||||
has_call = true;
|
||||
} else if (id_to_token[tid].text == "<|end|>") {
|
||||
} else if (text == "<|flush|>") {
|
||||
has_flush = true;
|
||||
} else if (text == "<|end|>") {
|
||||
has_end = true;
|
||||
end_id = tid;
|
||||
}
|
||||
}
|
||||
|
||||
if (has_return && has_call && has_end) {
|
||||
if ((has_return && has_call && has_end) || (has_call && has_flush && has_end)) {
|
||||
special_eog_ids.erase(end_id);
|
||||
id_to_token[end_id].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
|
||||
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
|
||||
|
||||
auto & attr = id_to_token[end_id].attr;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_USER_DEFINED);
|
||||
|
||||
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>', or '<|calls|>' and '<|flush|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -51,6 +51,8 @@ enum llama_vocab_pre_type {
|
|||
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
|
||||
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
|
||||
LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN = 43,
|
||||
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
|
||||
};
|
||||
|
||||
struct LLM_KV;
|
||||
|
|
|
|||
|
|
@ -512,6 +512,9 @@ static void llama_params_fit_impl(
|
|||
if (mem_high[id] > targets[id]) {
|
||||
assert(ngl_per_device_high[id].n_layer > ngl_per_device[id].n_layer);
|
||||
uint32_t delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer;
|
||||
if (hp_nex > 0 && size_t(id) == nd - 1) {
|
||||
delta--;
|
||||
}
|
||||
LLAMA_LOG_DEBUG("%s: start filling device %" PRIu32 ", delta=%" PRIu32 "\n", __func__, id, delta);
|
||||
while (delta > 1) {
|
||||
uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]);
|
||||
|
|
|
|||
|
|
@ -142,11 +142,13 @@ llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params
|
|||
LLM_FFN_GELU, LLM_FFN_SEQ, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
|
||||
const bool up_contains_gate = !model.layers[il].ffn_gate && model.layers[il].ffn_up->ne[1] != hparams.n_ff();
|
||||
auto type_op = up_contains_gate ? LLM_FFN_GEGLU : LLM_FFN_GELU;
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
|
||||
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
|
||||
type_op, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
cur = build_ffn(cur,
|
||||
|
|
|
|||
|
|
@ -215,7 +215,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
|
|||
model.layers[il].ffn_exp_probs_b,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, hparams.expert_weights_norm,
|
||||
true, hparams.expert_weights_scale,
|
||||
hparams.expert_weights_scale, hparams.expert_weights_scale,
|
||||
(llama_expert_gating_func_type) hparams.expert_gating_func,
|
||||
il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
|
|
|||
|
|
@ -332,7 +332,6 @@ struct llm_build_mistral3 : public llm_graph_context {
|
|||
llm_build_mistral3(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
template <bool iswa>
|
||||
struct llm_build_modern_bert : public llm_graph_context {
|
||||
llm_build_modern_bert(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
|
@ -406,6 +405,11 @@ struct llm_build_plamo : public llm_graph_context {
|
|||
llm_build_plamo(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
template <bool iswa>
|
||||
struct llm_build_plamo3 : public llm_graph_context {
|
||||
llm_build_plamo3(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
struct llm_build_plm : public llm_graph_context {
|
||||
llm_build_plm(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
|
|
|||
|
|
@ -1,7 +1,6 @@
|
|||
#include "models.h"
|
||||
|
||||
template <bool iswa>
|
||||
llm_build_modern_bert<iswa>::llm_build_modern_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
llm_build_modern_bert::llm_build_modern_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
|
|
@ -24,13 +23,7 @@ llm_build_modern_bert<iswa>::llm_build_modern_bert(const llama_model & model, co
|
|||
auto * inp_attn = build_attn_inp_no_cache();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
float freq_base_l = 0.0f;
|
||||
|
||||
if constexpr (iswa) {
|
||||
freq_base_l = model.get_rope_freq_base(cparams, il);
|
||||
} else {
|
||||
freq_base_l = freq_base;
|
||||
}
|
||||
float freq_base_l = model.get_rope_freq_base(cparams, il);
|
||||
|
||||
cur = inpL;
|
||||
|
||||
|
|
@ -120,7 +113,3 @@ llm_build_modern_bert<iswa>::llm_build_modern_bert(const llama_model & model, co
|
|||
res->t_embd = cur;
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template struct llm_build_modern_bert<false>;
|
||||
template struct llm_build_modern_bert<true>;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,128 @@
|
|||
#include "models.h"
|
||||
|
||||
template <bool iswa>
|
||||
llm_build_plamo3<iswa>::llm_build_plamo3(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context(params) {
|
||||
const int64_t head_dim_q = hparams.n_embd_head_k;
|
||||
const int64_t head_dim_v = hparams.n_embd_head_v;
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL = build_inp_embd(model.tok_embd);
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
|
||||
inp_attn_type * inp_attn = nullptr;
|
||||
|
||||
if constexpr (iswa) {
|
||||
inp_attn = build_attn_inp_kv_iswa();
|
||||
} else {
|
||||
inp_attn = build_attn_inp_kv();
|
||||
}
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * residual = inpL;
|
||||
|
||||
float freq_base_l = 0.0f;
|
||||
float freq_scale_l = 0.0f;
|
||||
if constexpr (iswa) {
|
||||
freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
} else {
|
||||
freq_base_l = freq_base;
|
||||
freq_scale_l = freq_scale;
|
||||
}
|
||||
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
|
||||
cb(cur, "wqkv", il);
|
||||
|
||||
const int32_t n_head = hparams.n_head(il);
|
||||
const int32_t n_head_kv = hparams.n_head_kv(il);
|
||||
|
||||
const int64_t q_offset = 0;
|
||||
const int64_t k_offset = head_dim_q * n_head;
|
||||
const int64_t v_offset = k_offset + head_dim_q * n_head_kv;
|
||||
|
||||
ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, head_dim_q, n_head, n_tokens,
|
||||
head_dim_q * sizeof(float), qkv->nb[1], q_offset * ggml_element_size(qkv));
|
||||
ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, head_dim_q, n_head_kv, n_tokens,
|
||||
head_dim_q * sizeof(float), qkv->nb[1], k_offset * ggml_element_size(qkv));
|
||||
ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, head_dim_v, n_head_kv, n_tokens,
|
||||
head_dim_v * sizeof(float), qkv->nb[1], v_offset * ggml_element_size(qkv));
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(Qcur, "attn_q_norm", il);
|
||||
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(Kcur, "attn_k_norm", il);
|
||||
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
const float attn_scale = 1.0f / sqrtf(float(head_dim_q));
|
||||
|
||||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, attn_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
|
||||
}
|
||||
|
||||
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_post_norm", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, residual);
|
||||
cb(cur, "attn_residual", il);
|
||||
|
||||
residual = cur;
|
||||
|
||||
cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
NULL, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_post_norm", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, residual);
|
||||
cb(cur, "ffn_residual", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template struct llm_build_plamo3<false>;
|
||||
template struct llm_build_plamo3<true>;
|
||||
|
|
@ -964,6 +964,11 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
{ "\\p{P}", unicode_cpt_flags::PUNCTUATION },
|
||||
{ "\\p{M}", unicode_cpt_flags::ACCENT_MARK },
|
||||
{ "\\p{S}", unicode_cpt_flags::SYMBOL },
|
||||
{ "\\p{Lu}", unicode_cpt_flags::LETTER }, // Uppercase letter
|
||||
{ "\\p{Ll}", unicode_cpt_flags::LETTER }, // Lowercase letter
|
||||
{ "\\p{Lt}", unicode_cpt_flags::LETTER }, // Titlecase letter
|
||||
{ "\\p{Lm}", unicode_cpt_flags::LETTER }, // Modifier letter
|
||||
{ "\\p{Lo}", unicode_cpt_flags::LETTER }, // Other letter
|
||||
};
|
||||
|
||||
static const std::map<int, int> k_ucat_cpt = {
|
||||
|
|
@ -1074,22 +1079,26 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
continue;
|
||||
}
|
||||
|
||||
if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
|
||||
// Match \p{...} Unicode properties of varying lengths
|
||||
if (regex_expr[i + 0] == '\\' && i + 3 < regex_expr.size() &&
|
||||
regex_expr[i + 1] == 'p' &&
|
||||
regex_expr[i + 2] == '{' &&
|
||||
regex_expr[i + 4] == '}') {
|
||||
const std::string pat = regex_expr.substr(i, 5);
|
||||
if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += '[';
|
||||
regex_expr[i + 2] == '{') {
|
||||
// Find the closing brace
|
||||
size_t closing_brace = regex_expr.find('}', i + 3);
|
||||
if (closing_brace != std::string::npos && closing_brace <= i + 10) { // reasonable limit
|
||||
const std::string pat = regex_expr.substr(i, closing_brace - i + 1);
|
||||
if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += '[';
|
||||
}
|
||||
regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
|
||||
regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += ']';
|
||||
}
|
||||
i = closing_brace;
|
||||
continue;
|
||||
}
|
||||
regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
|
||||
regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += ']';
|
||||
}
|
||||
i += 4;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1158,6 +1158,7 @@ struct test_case {
|
|||
}
|
||||
|
||||
virtual bool run_whole_graph() { return false; }
|
||||
virtual std::vector<ggml_tensor *> fusion_test_nodes() { return {}; }
|
||||
|
||||
ggml_cgraph * gf = nullptr;
|
||||
ggml_cgraph * gb = nullptr;
|
||||
|
|
@ -1391,7 +1392,13 @@ struct test_case {
|
|||
GGML_UNUSED(index);
|
||||
};
|
||||
|
||||
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
|
||||
std::vector<ggml_tensor *> fused_nodes_to_verify = fusion_test_nodes();
|
||||
if (fused_nodes_to_verify.size() == 0 && run_whole_graph()) {
|
||||
fused_nodes_to_verify.push_back(out);
|
||||
}
|
||||
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud,
|
||||
run_whole_graph() ? fused_nodes_to_verify.data() : nullptr,
|
||||
fused_nodes_to_verify.size());
|
||||
|
||||
ggml_backend_buffer_free(buf);
|
||||
|
||||
|
|
@ -5180,6 +5187,8 @@ struct test_topk_moe : public test_case {
|
|||
const bool bias_probs;
|
||||
const MoeGatingFunc gating_func;
|
||||
const float scale_w;
|
||||
ggml_tensor * weights {};
|
||||
ggml_tensor * selected_experts {};
|
||||
|
||||
test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
|
||||
int n_expert_used = 1,
|
||||
|
|
@ -5217,16 +5226,16 @@ struct test_topk_moe : public test_case {
|
|||
|
||||
ggml_tensor * selection_probs = probs;
|
||||
if (bias_probs) {
|
||||
ggml_tensor * exp_probs_b = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
|
||||
ggml_tensor * exp_probs_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]);
|
||||
ggml_set_name(exp_probs_b, "exp_probs_b");
|
||||
selection_probs = ggml_add(ctx, probs, exp_probs_b);
|
||||
ggml_set_name(selection_probs, "selection_probs");
|
||||
}
|
||||
|
||||
ggml_tensor * selected_experts = ggml_argsort_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
selected_experts = ggml_argsort_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
ggml_set_name(selected_experts, "selected_experts");
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
|
||||
weights = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
|
||||
ggml_set_name(weights, "weights");
|
||||
|
||||
if (gating_func == GATING_FUNC_SOFTMAX_WEIGHT) {
|
||||
|
|
@ -5252,6 +5261,21 @@ struct test_topk_moe : public test_case {
|
|||
ggml_set_name(weights, "weights");
|
||||
return weights;
|
||||
}
|
||||
// Verify two outputs
|
||||
std::vector<ggml_tensor *> fusion_test_nodes() override { return { selected_experts, weights }; }
|
||||
|
||||
// allow output in arbitrary order
|
||||
double err(const float * a, const float * b, size_t n) override {
|
||||
std::vector<float> a2(n);
|
||||
std::vector<float> b2(n);
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
a2[i] = a[i];
|
||||
b2[i] = b[i];
|
||||
}
|
||||
std::sort(a2.begin(), a2.end());
|
||||
std::sort(b2.begin(), b2.end());
|
||||
return nmse(a2.data(), b2.data(), n);
|
||||
}
|
||||
};
|
||||
|
||||
struct test_mul_mat_vec_fusion : public test_case {
|
||||
|
|
|
|||
|
|
@ -650,7 +650,7 @@ static void test_msgs_oaicompat_json_conversion() {
|
|||
"[\n"
|
||||
" {\n"
|
||||
" \"role\": \"assistant\",\n"
|
||||
" \"content\": null,\n"
|
||||
" \"content\": \"\",\n"
|
||||
" \"tool_calls\": [\n"
|
||||
" {\n"
|
||||
" \"type\": \"function\",\n"
|
||||
|
|
@ -724,6 +724,30 @@ static void test_tools_oaicompat_json_conversion() {
|
|||
"]"
|
||||
),
|
||||
common_chat_tools_to_json_oaicompat<json>({special_function_tool}).dump(2));
|
||||
|
||||
{
|
||||
auto tools_no_params = common_chat_tools_parse_oaicompat(json::parse(
|
||||
R"([{"type": "function", "function": {"name": "test_func", "description": "A test"}}])"));
|
||||
assert_equals((size_t) 1, tools_no_params.size());
|
||||
assert_equals(std::string("test_func"), tools_no_params[0].name);
|
||||
assert_equals(std::string("A test"), tools_no_params[0].description);
|
||||
assert_equals(std::string("{}"), tools_no_params[0].parameters);
|
||||
}
|
||||
{
|
||||
auto tools_no_desc = common_chat_tools_parse_oaicompat(json::parse(
|
||||
R"([{"type": "function", "function": {"name": "test_func", "parameters": {"type": "object"}}}])"));
|
||||
assert_equals((size_t) 1, tools_no_desc.size());
|
||||
assert_equals(std::string("test_func"), tools_no_desc[0].name);
|
||||
assert_equals(std::string(""), tools_no_desc[0].description);
|
||||
}
|
||||
{
|
||||
auto tools_minimal = common_chat_tools_parse_oaicompat(json::parse(
|
||||
R"([{"type": "function", "function": {"name": "test_func"}}])"));
|
||||
assert_equals((size_t) 1, tools_minimal.size());
|
||||
assert_equals(std::string("test_func"), tools_minimal[0].name);
|
||||
assert_equals(std::string(""), tools_minimal[0].description);
|
||||
assert_equals(std::string("{}"), tools_minimal[0].parameters);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_template_output_parsers() {
|
||||
|
|
@ -906,7 +930,8 @@ static void test_template_output_parsers() {
|
|||
" },\n"
|
||||
" \"id\": \"123456789\"\n"
|
||||
" }\n"
|
||||
" ]\n"
|
||||
" ],\n"
|
||||
" \"content\": \"\"\n"
|
||||
"}");
|
||||
}
|
||||
{
|
||||
|
|
@ -1713,7 +1738,8 @@ static void test_template_output_parsers() {
|
|||
" },\n"
|
||||
" \"id\": \"123456789\"\n"
|
||||
" }\n"
|
||||
" ]\n"
|
||||
" ],\n"
|
||||
" \"content\": \"\"\n"
|
||||
"}",
|
||||
/* expect_grammar_triggered= */ false
|
||||
);
|
||||
|
|
|
|||
|
|
@ -175,7 +175,10 @@ int main(int argc, char ** argv) {
|
|||
struct ggml_threadpool_params tpp =
|
||||
ggml_threadpool_params_from_cpu_params(params.cpuparams);
|
||||
|
||||
set_process_priority(params.cpuparams.priority);
|
||||
if (!set_process_priority(params.cpuparams.priority)) {
|
||||
LOG_ERR("%s: error: failed to set process priority\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
struct ggml_threadpool * threadpool_batch = NULL;
|
||||
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
|
||||
|
|
|
|||
|
|
@ -2037,7 +2037,10 @@ int main(int argc, char ** argv) {
|
|||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
set_process_priority(params.prio);
|
||||
if (!set_process_priority(params.prio)) {
|
||||
fprintf(stderr, "%s: error: failed to set process priority\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// initialize printer
|
||||
std::unique_ptr<printer> p = create_printer(params.output_format);
|
||||
|
|
|
|||
|
|
@ -27,6 +27,7 @@ add_library(mtmd
|
|||
models/qwen3vl.cpp
|
||||
models/siglip.cpp
|
||||
models/whisper-enc.cpp
|
||||
models/youtuvl.cpp
|
||||
)
|
||||
|
||||
set_target_properties(mtmd PROPERTIES
|
||||
|
|
|
|||
|
|
@ -45,13 +45,14 @@
|
|||
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
|
||||
#define KEY_IS_DEEPSTACK_LAYERS "clip.vision.is_deepstack_layers"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
|
||||
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_MINICPMV_QUERY_NUM "clip.minicpmv_query_num"
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
|
||||
#define KEY_WIN_ATTN_LAYER_INDEXES "clip.vision.wa_layer_indexes"
|
||||
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_MINICPMV_QUERY_NUM "clip.minicpmv_query_num"
|
||||
|
||||
// audio-specific
|
||||
#define KEY_AUDIO_PROJ_TYPE "clip.audio.projector_type" // for models with mixed modalities
|
||||
|
|
@ -180,6 +181,7 @@ enum projector_type {
|
|||
PROJECTOR_TYPE_GLMA,
|
||||
PROJECTOR_TYPE_QWEN25O, // will be replaced by QWEN2A or QWEN25VL depending on clip_ctx
|
||||
PROJECTOR_TYPE_VOXTRAL,
|
||||
PROJECTOR_TYPE_MUSIC_FLAMINGO,
|
||||
PROJECTOR_TYPE_LFM2,
|
||||
PROJECTOR_TYPE_KIMIVL,
|
||||
PROJECTOR_TYPE_LIGHTONOCR,
|
||||
|
|
@ -187,6 +189,7 @@ enum projector_type {
|
|||
PROJECTOR_TYPE_JANUS_PRO,
|
||||
PROJECTOR_TYPE_LFM2A,
|
||||
PROJECTOR_TYPE_GLM4V,
|
||||
PROJECTOR_TYPE_YOUTUVL,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
@ -209,6 +212,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
|||
{ PROJECTOR_TYPE_GLMA, "glma"},
|
||||
{ PROJECTOR_TYPE_QWEN25O, "qwen2.5o"},
|
||||
{ PROJECTOR_TYPE_VOXTRAL, "voxtral"},
|
||||
{ PROJECTOR_TYPE_MUSIC_FLAMINGO, "musicflamingo"},
|
||||
{ PROJECTOR_TYPE_LFM2, "lfm2"},
|
||||
{ PROJECTOR_TYPE_KIMIVL, "kimivl"},
|
||||
{ PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"},
|
||||
|
|
@ -216,6 +220,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
|||
{ PROJECTOR_TYPE_JANUS_PRO, "janus_pro"},
|
||||
{ PROJECTOR_TYPE_LFM2A, "lfm2a"},
|
||||
{ PROJECTOR_TYPE_GLM4V, "glm4v"},
|
||||
{ PROJECTOR_TYPE_YOUTUVL, "youtuvl"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
|
|
|
|||
|
|
@ -61,6 +61,7 @@ struct clip_hparams {
|
|||
std::unordered_set<int32_t> vision_feature_layer;
|
||||
int32_t attn_window_size = 0;
|
||||
int32_t n_wa_pattern = 0;
|
||||
std::unordered_set<int32_t> wa_layer_indexes; // explicit layer indexes that use full attention (for irregular patterns like YoutuVL)
|
||||
|
||||
// audio
|
||||
int32_t n_mel_bins = 0; // whisper preprocessor
|
||||
|
|
@ -319,7 +320,8 @@ struct clip_model {
|
|||
|
||||
bool audio_has_avgpool() const {
|
||||
return proj_type == PROJECTOR_TYPE_QWEN2A
|
||||
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
|
||||
|| proj_type == PROJECTOR_TYPE_VOXTRAL
|
||||
|| proj_type == PROJECTOR_TYPE_MUSIC_FLAMINGO;
|
||||
}
|
||||
|
||||
bool audio_has_stack_frames() const {
|
||||
|
|
|
|||
|
|
@ -818,6 +818,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
case PROJECTOR_TYPE_GLMA:
|
||||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
{
|
||||
builder = std::make_unique<clip_graph_whisper_enc>(ctx, img);
|
||||
} break;
|
||||
|
|
@ -845,6 +846,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
{
|
||||
builder = std::make_unique<clip_graph_glm4v>(ctx, img);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
builder = std::make_unique<clip_graph_youtuvl>(ctx, img);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("missing cgraph builder");
|
||||
}
|
||||
|
|
@ -1158,6 +1163,20 @@ struct clip_model_loader {
|
|||
LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
|
||||
}
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
hparams.n_merge = 2;
|
||||
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
|
||||
get_u32(KEY_ATTN_WINDOW_SIZE, hparams.attn_window_size, true);
|
||||
std::vector<int> wa_layer_indexes_vec;
|
||||
get_arr_int(KEY_WIN_ATTN_LAYER_INDEXES, wa_layer_indexes_vec, true);
|
||||
for (auto & layer : wa_layer_indexes_vec) {
|
||||
hparams.wa_layer_indexes.insert(layer);
|
||||
}
|
||||
// support max_height * max_width = 8000 * 8000. 8000/16/2 = 250 image tokens
|
||||
hparams.set_limit_image_tokens(1, 62500);
|
||||
hparams.set_warmup_n_tokens(16*16); // avoid OOM on warmup
|
||||
} break;
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
{
|
||||
hparams.rope_theta = 10000.0f;
|
||||
|
|
@ -1176,6 +1195,7 @@ struct clip_model_loader {
|
|||
case PROJECTOR_TYPE_QWEN2A:
|
||||
case PROJECTOR_TYPE_GLMA:
|
||||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
{
|
||||
bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
|
||||
model.proj_type == PROJECTOR_TYPE_VOXTRAL ||
|
||||
|
|
@ -1225,7 +1245,14 @@ struct clip_model_loader {
|
|||
LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
|
||||
LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
|
||||
LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
|
||||
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
|
||||
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
|
||||
if (!hparams.wa_layer_indexes.empty()) {
|
||||
LOG_INF("%s: wa_layer_indexes: ", __func__);
|
||||
for (auto & layer : hparams.wa_layer_indexes) {
|
||||
LOG_INF("%d ", layer);
|
||||
}
|
||||
LOG_INF("\n");
|
||||
}
|
||||
if (hparams.image_min_pixels > 0) {
|
||||
LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
|
||||
}
|
||||
|
|
@ -1493,6 +1520,14 @@ struct clip_model_loader {
|
|||
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
|
||||
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM); // merger.ln_q (RMS norm)
|
||||
model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); // merger.mlp.0
|
||||
model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
|
||||
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); // merger.mlp.2
|
||||
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
{
|
||||
model.projection = get_tensor(TN_MM_PROJECTOR);
|
||||
|
|
@ -1576,6 +1611,17 @@ struct clip_model_loader {
|
|||
model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
|
||||
model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
{
|
||||
model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
|
||||
model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
|
||||
model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
|
||||
model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
|
||||
model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
|
||||
model.mm_1_b = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "bias"));
|
||||
model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
|
||||
model.mm_2_b = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "bias"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
{
|
||||
model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
|
||||
|
|
@ -2684,6 +2730,57 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
|||
// res_imgs->data[0] = *res;
|
||||
res_imgs->entries.push_back(std::move(img_f32));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
const int patch_size = params.patch_size; // typically 16
|
||||
const int merge_size = params.n_merge; // typically 2
|
||||
const int align_size = patch_size * merge_size; // 32
|
||||
|
||||
const int max_num_patches = params.image_max_pixels > 0 ?
|
||||
params.image_max_pixels / (patch_size * patch_size) : 256;
|
||||
|
||||
// Linear search for optimal scale to fit within max_num_patches
|
||||
float scale = 1.0f;
|
||||
int target_height = original_size.height;
|
||||
int target_width = original_size.width;
|
||||
|
||||
auto get_scaled_image_size = [align_size](float scale, int size) -> int {
|
||||
float scaled_size = size * scale;
|
||||
// Round up to nearest multiple of align_size
|
||||
int aligned = static_cast<int>(std::ceil(scaled_size / align_size)) * align_size;
|
||||
// Ensure at least one patch
|
||||
return std::max(align_size, aligned);
|
||||
};
|
||||
|
||||
// Linear search with 0.02 step size
|
||||
while (scale > 0.0f) {
|
||||
target_height = get_scaled_image_size(scale, original_size.height);
|
||||
target_width = get_scaled_image_size(scale, original_size.width);
|
||||
|
||||
int num_patches_h = target_height / patch_size;
|
||||
int num_patches_w = target_width / patch_size;
|
||||
int num_patches = num_patches_h * num_patches_w;
|
||||
|
||||
if (num_patches > max_num_patches) {
|
||||
scale -= 0.02f;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
clip_image_size new_size = {target_width, target_height};
|
||||
|
||||
// Resize the image
|
||||
clip_image_u8 resized;
|
||||
img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
|
||||
|
||||
// Normalize to float32
|
||||
clip_image_f32_ptr img_f32(clip_image_f32_init());
|
||||
normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
|
||||
|
||||
// Add to results
|
||||
res_imgs->entries.push_back(std::move(img_f32));
|
||||
} break;
|
||||
|
||||
case PROJECTOR_TYPE_IDEFICS3:
|
||||
{
|
||||
|
|
@ -2916,6 +3013,7 @@ int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 *
|
|||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
return (img->nx / params.patch_size) / 2;
|
||||
default:
|
||||
break;
|
||||
|
|
@ -2931,6 +3029,7 @@ int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 *
|
|||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
return (img->ny / params.patch_size) / 2;
|
||||
default:
|
||||
break;
|
||||
|
|
@ -2991,6 +3090,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
|||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
// dynamic size (2 conv, so double patch size)
|
||||
int x_patch = img->nx / (params.patch_size * 2);
|
||||
|
|
@ -3031,6 +3131,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
|||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
{
|
||||
n_patches = img->nx;
|
||||
|
||||
|
|
@ -3117,7 +3218,6 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
const int pos_w = image_size_width / patch_size;
|
||||
const int pos_h = image_size_height / patch_size;
|
||||
|
||||
const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
|
||||
|
||||
auto get_inp_tensor = [&gf](const char * name) {
|
||||
ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
|
||||
|
|
@ -3266,9 +3366,11 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
set_input_i32("positions", positions);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
// pw * ph = number of tokens output by ViT after apply patch merger
|
||||
// ipw * ipw = number of vision token been processed inside ViT
|
||||
const bool use_window_attn = ctx->model.proj_type == PROJECTOR_TYPE_QWEN25VL ? hparams.n_wa_pattern > 0 : !hparams.wa_layer_indexes.empty();
|
||||
const int merge_ratio = 2;
|
||||
const int pw = image_size_width / patch_size / merge_ratio;
|
||||
const int ph = image_size_height / patch_size / merge_ratio;
|
||||
|
|
@ -3279,7 +3381,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
std::vector<int> inv_idx(ph * pw);
|
||||
|
||||
if (use_window_attn) {
|
||||
const int attn_window_size = 112;
|
||||
const int attn_window_size = hparams.attn_window_size > 0 ? hparams.attn_window_size : 112;
|
||||
const int grid_window = attn_window_size / patch_size / merge_ratio;
|
||||
int dst = 0;
|
||||
// [num_vision_tokens, num_vision_tokens] attention mask tensor
|
||||
|
|
@ -3403,6 +3505,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_LFM2:
|
||||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
case PROJECTOR_TYPE_COGVLM:
|
||||
{
|
||||
|
|
@ -3516,6 +3619,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||
case PROJECTOR_TYPE_QWEN2VL:
|
||||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
return ctx->model.mm_1_b->ne[0];
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
// main path + deepstack paths
|
||||
|
|
@ -3526,6 +3630,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||
return ctx->model.projection->ne[1];
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
return ctx->model.mm_2_w->ne[1];
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
return ctx->model.mm_3_w->ne[1];
|
||||
|
|
@ -3587,7 +3692,8 @@ bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
|
|||
return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
|
||||
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
|
||||
|| ctx->proj_type() == PROJECTOR_TYPE_GLMA
|
||||
|| ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
|
||||
|| ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL
|
||||
|| ctx->proj_type() == PROJECTOR_TYPE_MUSIC_FLAMINGO;
|
||||
}
|
||||
|
||||
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
|
||||
|
|
|
|||
|
|
@ -2,6 +2,11 @@
|
|||
|
||||
#include "../clip-graph.h"
|
||||
|
||||
/*
|
||||
* IMPORTANT: The mtmd module does NOT accept pull requests that are fully or predominantly AI-generated.
|
||||
* We encourage human contributors to ensure the quality and reliability of the codebase.
|
||||
*/
|
||||
|
||||
struct clip_graph_siglip : clip_graph {
|
||||
clip_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
|
||||
ggml_cgraph * build() override;
|
||||
|
|
@ -22,6 +27,11 @@ struct clip_graph_qwen3vl : clip_graph {
|
|||
ggml_cgraph * build() override;
|
||||
};
|
||||
|
||||
struct clip_graph_youtuvl : clip_graph {
|
||||
clip_graph_youtuvl(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
|
||||
ggml_cgraph * build() override;
|
||||
};
|
||||
|
||||
struct clip_graph_minicpmv : clip_graph {
|
||||
clip_graph_minicpmv(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
|
||||
ggml_cgraph * build() override;
|
||||
|
|
|
|||
|
|
@ -86,6 +86,15 @@ ggml_cgraph * clip_graph_whisper_enc::build() {
|
|||
FFN_GELU_ERF,
|
||||
-1);
|
||||
|
||||
} else if (proj_type == PROJECTOR_TYPE_MUSIC_FLAMINGO) {
|
||||
// projector
|
||||
cur = build_ffn(cur,
|
||||
model.mm_1_w, model.mm_1_b,
|
||||
nullptr, nullptr,
|
||||
model.mm_2_w, model.mm_2_b,
|
||||
FFN_GELU_ERF,
|
||||
-1);
|
||||
|
||||
} else if (proj_type == PROJECTOR_TYPE_GLMA) {
|
||||
cur = ggml_norm(ctx0, cur, hparams.eps);
|
||||
cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
|
||||
|
|
|
|||
|
|
@ -0,0 +1,179 @@
|
|||
#include "models.h"
|
||||
|
||||
ggml_cgraph * clip_graph_youtuvl::build() {
|
||||
GGML_ASSERT(model.class_embedding == nullptr);
|
||||
const int batch_size = 1;
|
||||
const bool use_window_attn = !hparams.wa_layer_indexes.empty();
|
||||
const int n_pos = n_patches;
|
||||
const int num_position_ids = n_pos * 4;
|
||||
const int m = 2;
|
||||
const int Wp = n_patches_x;
|
||||
const int Hp = n_patches_y;
|
||||
const int Hm = Hp / m;
|
||||
const int Wm = Wp / m;
|
||||
norm_type norm_t = NORM_TYPE_NORMAL;
|
||||
|
||||
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
|
||||
|
||||
ggml_tensor * inp = build_inp_raw();
|
||||
|
||||
// change conv3d to linear
|
||||
// reshape and permute to get patches, permute from (patch_size, m, Wm, patch_size, m, Hm, C) to (C, patch_size, patch_size, m, m, Wm, Hm)
|
||||
{
|
||||
inp = ggml_reshape_4d(
|
||||
ctx0, inp,
|
||||
Wm * m * patch_size, m * patch_size, Hm, 3);
|
||||
inp = ggml_permute(ctx0, inp, 1, 2, 3, 0);
|
||||
inp = ggml_cont_4d(
|
||||
ctx0, inp,
|
||||
m * patch_size * 3, Wm, m * patch_size, Hm);
|
||||
|
||||
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
|
||||
inp = ggml_cont_4d(
|
||||
ctx0, inp,
|
||||
m * patch_size * 3, patch_size, m, Hm * Wm);
|
||||
|
||||
inp = ggml_permute(ctx0, inp, 1, 0, 2, 3);
|
||||
inp = ggml_cont_4d(
|
||||
ctx0, inp,
|
||||
patch_size, 3, patch_size, Hm * Wm * m * m);
|
||||
|
||||
inp = ggml_permute(ctx0, inp, 2, 0, 1, 3);
|
||||
inp = ggml_cont_3d(
|
||||
ctx0, inp,
|
||||
3*patch_size* patch_size, Hm * Wm * m * m, 1);
|
||||
}
|
||||
inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
|
||||
|
||||
if (model.patch_bias) {
|
||||
inp = ggml_add(ctx0, inp, model.patch_bias);
|
||||
}
|
||||
|
||||
inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
|
||||
|
||||
ggml_tensor * inpL = inp;
|
||||
ggml_tensor * window_mask = nullptr;
|
||||
ggml_tensor * window_idx = nullptr;
|
||||
ggml_tensor * inv_window_idx = nullptr;
|
||||
|
||||
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
|
||||
ggml_set_name(positions, "positions");
|
||||
ggml_set_input(positions);
|
||||
|
||||
// pre-layernorm
|
||||
if (model.pre_ln_w) {
|
||||
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
|
||||
}
|
||||
if (use_window_attn) {
|
||||
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
|
||||
ggml_set_name(inv_window_idx, "inv_window_idx");
|
||||
ggml_set_input(inv_window_idx);
|
||||
// mask for window attention
|
||||
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
|
||||
ggml_set_name(window_mask, "window_mask");
|
||||
ggml_set_input(window_mask);
|
||||
|
||||
// if flash attn is used, we need to pad the mask and cast to f16
|
||||
if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
|
||||
window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
|
||||
}
|
||||
|
||||
// inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
|
||||
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
|
||||
}
|
||||
|
||||
// loop over layers
|
||||
for (int il = 0; il < n_layer; il++) {
|
||||
const auto & layer = model.layers[il];
|
||||
const bool full_attn = use_window_attn ? hparams.wa_layer_indexes.count(il) > 0 : true;
|
||||
|
||||
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
|
||||
|
||||
// layernorm1
|
||||
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
|
||||
// self-attention
|
||||
{
|
||||
ggml_tensor * Qcur = ggml_add(ctx0,
|
||||
ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
|
||||
ggml_tensor * Kcur = ggml_add(ctx0,
|
||||
ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
|
||||
ggml_tensor * Vcur = ggml_add(ctx0,
|
||||
ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
|
||||
|
||||
Qcur = ggml_rope_multi(
|
||||
ctx0, Qcur, positions, nullptr,
|
||||
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
||||
Kcur = ggml_rope_multi(
|
||||
ctx0, Kcur, positions, nullptr,
|
||||
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
||||
|
||||
ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
|
||||
|
||||
cur = build_attn(layer.o_w, layer.o_b,
|
||||
Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
|
||||
}
|
||||
// re-add the layer input, e.g., residual
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
inpL = cur; // inpL = residual, cur = hidden_states
|
||||
|
||||
// layernorm2
|
||||
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
|
||||
|
||||
// ffn
|
||||
cur = build_ffn(cur,
|
||||
layer.ff_up_w, layer.ff_up_b,
|
||||
nullptr, nullptr,
|
||||
layer.ff_down_w, layer.ff_down_b,
|
||||
hparams.ffn_op, il);
|
||||
|
||||
// residual 2
|
||||
cur = ggml_add(ctx0, inpL, cur);
|
||||
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
ggml_tensor * embeddings = inpL;
|
||||
if (use_window_attn) {
|
||||
const int spatial_merge_unit = 4;
|
||||
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / spatial_merge_unit);
|
||||
ggml_set_name(window_idx, "window_idx");
|
||||
ggml_set_input(window_idx);
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, n_embd * spatial_merge_unit, n_patches / spatial_merge_unit);
|
||||
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd, n_patches, batch_size);
|
||||
cb(embeddings, "window_order_restored", -1);
|
||||
}
|
||||
|
||||
// post-layernorm (part of Siglip2VisionTransformer, applied after encoder)
|
||||
if (model.post_ln_w) {
|
||||
embeddings = build_norm(embeddings, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
|
||||
}
|
||||
|
||||
// Now apply merger (VLPatchMerger):
|
||||
// 1. Apply RMS norm (ln_q in VLPatchMerger)
|
||||
embeddings = build_norm(embeddings, model.mm_input_norm_w, nullptr, NORM_TYPE_RMS, 1e-6, -1);
|
||||
cb(embeddings, "merger_normed", -1);
|
||||
|
||||
// 2. First reshape for spatial merge (merge 2x2 patches)
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
|
||||
cb(embeddings, "merger_reshaped", -1);
|
||||
|
||||
embeddings = build_ffn(embeddings,
|
||||
model.mm_0_w, model.mm_0_b,
|
||||
nullptr, nullptr,
|
||||
model.mm_1_w, model.mm_1_b,
|
||||
FFN_GELU,
|
||||
-1);
|
||||
ggml_build_forward_expand(gf, embeddings);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
|
@ -283,7 +283,7 @@ struct mtmd_context {
|
|||
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
|
||||
img_end = "[IMG_END]";
|
||||
|
||||
} else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL || proj == PROJECTOR_TYPE_QWEN3VL) {
|
||||
} else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL || proj == PROJECTOR_TYPE_QWEN3VL || proj == PROJECTOR_TYPE_YOUTUVL) {
|
||||
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
|
||||
img_beg = "<|vision_start|>";
|
||||
img_end = "<|vision_end|>";
|
||||
|
|
@ -330,6 +330,7 @@ struct mtmd_context {
|
|||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_GLMA:
|
||||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
audio_preproc = std::make_unique<mtmd_audio_preprocessor_whisper>(ctx_a);
|
||||
break;
|
||||
case PROJECTOR_TYPE_LFM2A:
|
||||
|
|
@ -352,6 +353,9 @@ struct mtmd_context {
|
|||
// [BEGIN_AUDIO] ... (embeddings) ...
|
||||
aud_beg = "[BEGIN_AUDIO]";
|
||||
|
||||
} else if (proj == PROJECTOR_TYPE_MUSIC_FLAMINGO) {
|
||||
// <sound> ... (embeddings) ...
|
||||
aud_beg = "<sound>";
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -27,6 +27,9 @@
|
|||
* - Make sure the C API is aligned with the libllama C API (as in llama.h)
|
||||
* - Do not include model name (e.g., qwen, gemma) in the API, use generic terms instead
|
||||
* - Keep the API minimal, do not expose internal details unless necessary
|
||||
*
|
||||
* IMPORTANT: The mtmd module does NOT accept pull requests that are fully or predominantly AI-generated.
|
||||
* We encourage human contributors to ensure the quality and reliability of the codebase.
|
||||
*/
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue