models : Added support for RND1 Diffusion Language Model (#17433)
* Converted RND1 model to GGUF weights * RND1 llama.cpp support v1 * RND1 llama.cpp support v2 non causal bug * RND1 llama.cpp support v3 doccumentation * RND1 llama.cpp support v4 clean code * linting issues * RND1 pr fixes v1 * RND1 pr fixes v2 Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Diffusion documentation edits --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
parent
923ae3c619
commit
4902eebe33
|
|
@ -4183,6 +4183,21 @@ class Qwen3MoeModel(Qwen2MoeModel):
|
||||||
super().set_vocab()
|
super().set_vocab()
|
||||||
|
|
||||||
|
|
||||||
|
@ModelBase.register("RND1")
|
||||||
|
class RND1Model(Qwen2MoeModel):
|
||||||
|
model_arch = gguf.MODEL_ARCH.RND1
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
super().set_gguf_parameters()
|
||||||
|
|
||||||
|
# RND1 specific parameters
|
||||||
|
# RND1 uses bidirectional attention
|
||||||
|
self.gguf_writer.add_causal_attention(False)
|
||||||
|
|
||||||
|
if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
|
||||||
|
self.gguf_writer.add_mask_token_id(mask_token_id)
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
|
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
|
||||||
class Qwen3VLVisionModel(MmprojModel):
|
class Qwen3VLVisionModel(MmprojModel):
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
|
|
|
||||||
|
|
@ -6,8 +6,54 @@ More Info:
|
||||||
- https://github.com/ggml-org/llama.cpp/pull/14644
|
- https://github.com/ggml-org/llama.cpp/pull/14644
|
||||||
- https://github.com/ggml-org/llama.cpp/pull/14771
|
- https://github.com/ggml-org/llama.cpp/pull/14771
|
||||||
|
|
||||||
|
## Parameters
|
||||||
|
The diffusion CLI supports various parameters to control the generation process:
|
||||||
|
|
||||||
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
|
### Core Diffusion Parameters
|
||||||
|
- `--diffusion-steps`: Number of diffusion steps (default: 256)
|
||||||
|
- `--diffusion-algorithm`: Algorithm for token selection
|
||||||
|
- `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
|
||||||
|
- `1`: ENTROPY_BASED - Entropy-based selection
|
||||||
|
- `2`: MARGIN_BASED - Margin-based selection
|
||||||
|
- `3`: RANDOM - Random selection
|
||||||
|
- `4`: CONFIDENCE_BASED - Confidence-based selection (default)
|
||||||
|
- More documentation here https://github.com/DreamLM/Dream
|
||||||
|
- `--diffusion-visual`: Enable live visualization during generation
|
||||||
|
|
||||||
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
|
### Scheduling Parameters
|
||||||
|
Choose one of the following scheduling methods:
|
||||||
|
|
||||||
|
**Timestep-based scheduling:**
|
||||||
|
- `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
|
||||||
|
|
||||||
|
**Block-based scheduling:**
|
||||||
|
- `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
|
||||||
|
|
||||||
|
### Sampling Parameters
|
||||||
|
- `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
|
||||||
|
- `--top-k`: Top-k filtering for sampling
|
||||||
|
- `--top-p`: Top-p (nucleus) filtering for sampling
|
||||||
|
- `--seed`: Random seed for reproducibility
|
||||||
|
|
||||||
|
### Model Parameters
|
||||||
|
- `-m`: Path to the GGUF model file
|
||||||
|
- `-p`: Input prompt text
|
||||||
|
- `-ub`: Maximum sequence length (ubatch size)
|
||||||
|
- `-c`: Context size
|
||||||
|
- `-b`: Batch size
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
#### Dream architechture:
|
||||||
|
```
|
||||||
|
llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LLaDA architechture:
|
||||||
|
```
|
||||||
|
llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
|
||||||
|
```
|
||||||
|
|
||||||
|
#### RND1 architecture:
|
||||||
|
```
|
||||||
|
llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001
|
||||||
|
```
|
||||||
|
|
|
||||||
|
|
@ -427,6 +427,7 @@ class MODEL_ARCH(IntEnum):
|
||||||
APERTUS = auto()
|
APERTUS = auto()
|
||||||
COGVLM = auto()
|
COGVLM = auto()
|
||||||
MINIMAXM2 = auto()
|
MINIMAXM2 = auto()
|
||||||
|
RND1 = auto()
|
||||||
PANGU_EMBED = auto()
|
PANGU_EMBED = auto()
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -797,6 +798,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.APERTUS: "apertus",
|
MODEL_ARCH.APERTUS: "apertus",
|
||||||
MODEL_ARCH.MINIMAXM2: "minimax-m2",
|
MODEL_ARCH.MINIMAXM2: "minimax-m2",
|
||||||
MODEL_ARCH.COGVLM: "cogvlm",
|
MODEL_ARCH.COGVLM: "cogvlm",
|
||||||
|
MODEL_ARCH.RND1: "rnd1",
|
||||||
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
|
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -2991,6 +2993,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_TENSOR.VISEXP_UP,
|
MODEL_TENSOR.VISEXP_UP,
|
||||||
MODEL_TENSOR.VISEXP_DOWN,
|
MODEL_TENSOR.VISEXP_DOWN,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.RND1: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE_INP,
|
||||||
|
MODEL_TENSOR.FFN_GATE_EXP,
|
||||||
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||||
|
MODEL_TENSOR.FFN_UP_EXP,
|
||||||
|
],
|
||||||
MODEL_ARCH.PANGU_EMBED: [
|
MODEL_ARCH.PANGU_EMBED: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
|
|
||||||
|
|
@ -115,6 +115,7 @@ add_library(llama
|
||||||
models/qwen3vl-moe.cpp
|
models/qwen3vl-moe.cpp
|
||||||
models/qwen3moe.cpp
|
models/qwen3moe.cpp
|
||||||
models/refact.cpp
|
models/refact.cpp
|
||||||
|
models/rnd1.cpp
|
||||||
models/rwkv6-base.cpp
|
models/rwkv6-base.cpp
|
||||||
models/rwkv6.cpp
|
models/rwkv6.cpp
|
||||||
models/rwkv6qwen2.cpp
|
models/rwkv6qwen2.cpp
|
||||||
|
|
|
||||||
|
|
@ -108,6 +108,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_APERTUS, "apertus" },
|
{ LLM_ARCH_APERTUS, "apertus" },
|
||||||
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
|
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
|
||||||
{ LLM_ARCH_COGVLM, "cogvlm" },
|
{ LLM_ARCH_COGVLM, "cogvlm" },
|
||||||
|
{ LLM_ARCH_RND1, "rnd1" },
|
||||||
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
|
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
|
||||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||||
};
|
};
|
||||||
|
|
@ -2446,6 +2447,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||||
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
|
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_RND1,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
{
|
{
|
||||||
|
|
@ -2722,6 +2743,7 @@ bool llm_arch_is_diffusion(const llm_arch & arch) {
|
||||||
case LLM_ARCH_DREAM:
|
case LLM_ARCH_DREAM:
|
||||||
case LLM_ARCH_LLADA:
|
case LLM_ARCH_LLADA:
|
||||||
case LLM_ARCH_LLADA_MOE:
|
case LLM_ARCH_LLADA_MOE:
|
||||||
|
case LLM_ARCH_RND1:
|
||||||
return true;
|
return true;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
|
|
|
||||||
|
|
@ -112,6 +112,7 @@ enum llm_arch {
|
||||||
LLM_ARCH_APERTUS,
|
LLM_ARCH_APERTUS,
|
||||||
LLM_ARCH_MINIMAX_M2,
|
LLM_ARCH_MINIMAX_M2,
|
||||||
LLM_ARCH_COGVLM,
|
LLM_ARCH_COGVLM,
|
||||||
|
LLM_ARCH_RND1,
|
||||||
LLM_ARCH_PANGU_EMBED,
|
LLM_ARCH_PANGU_EMBED,
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
|
||||||
|
|
@ -1036,6 +1036,18 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||||
default: type = LLM_TYPE_UNKNOWN;
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_RND1:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||||
|
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 48: type = LLM_TYPE_30B_A3B; break;
|
||||||
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
|
}
|
||||||
|
// Set non-causal attention for diffusion models
|
||||||
|
hparams.causal_attn = false;
|
||||||
|
} break;
|
||||||
case LLM_ARCH_QWEN2MOE:
|
case LLM_ARCH_QWEN2MOE:
|
||||||
{
|
{
|
||||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||||
|
|
@ -3402,6 +3414,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_QWEN3MOE:
|
case LLM_ARCH_QWEN3MOE:
|
||||||
case LLM_ARCH_QWEN3VLMOE:
|
case LLM_ARCH_QWEN3VLMOE:
|
||||||
|
case LLM_ARCH_RND1:
|
||||||
{
|
{
|
||||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
|
||||||
|
|
@ -6720,7 +6733,7 @@ void llama_model::print_info() const {
|
||||||
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE) {
|
if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
|
||||||
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -6882,6 +6895,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||||
case LLM_ARCH_DREAM:
|
case LLM_ARCH_DREAM:
|
||||||
case LLM_ARCH_LLADA:
|
case LLM_ARCH_LLADA:
|
||||||
case LLM_ARCH_LLADA_MOE:
|
case LLM_ARCH_LLADA_MOE:
|
||||||
|
case LLM_ARCH_RND1:
|
||||||
{
|
{
|
||||||
res = nullptr;
|
res = nullptr;
|
||||||
} break;
|
} break;
|
||||||
|
|
@ -7075,6 +7089,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||||
llm = std::make_unique<llm_build_llada_moe>(*this, params);
|
llm = std::make_unique<llm_build_llada_moe>(*this, params);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
case LLM_ARCH_RND1:
|
||||||
|
{
|
||||||
|
llm = std::make_unique<llm_build_rnd1>(*this, params);
|
||||||
|
}
|
||||||
|
break;
|
||||||
case LLM_ARCH_QWEN2VL:
|
case LLM_ARCH_QWEN2VL:
|
||||||
{
|
{
|
||||||
llm = std::make_unique<llm_build_qwen2vl>(*this, params);
|
llm = std::make_unique<llm_build_qwen2vl>(*this, params);
|
||||||
|
|
@ -7595,6 +7614,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||||
case LLM_ARCH_QWEN3:
|
case LLM_ARCH_QWEN3:
|
||||||
case LLM_ARCH_QWEN3MOE:
|
case LLM_ARCH_QWEN3MOE:
|
||||||
case LLM_ARCH_LLADA_MOE:
|
case LLM_ARCH_LLADA_MOE:
|
||||||
|
case LLM_ARCH_RND1:
|
||||||
case LLM_ARCH_OLMO2:
|
case LLM_ARCH_OLMO2:
|
||||||
case LLM_ARCH_OLMOE:
|
case LLM_ARCH_OLMOE:
|
||||||
case LLM_ARCH_PHI2:
|
case LLM_ARCH_PHI2:
|
||||||
|
|
|
||||||
|
|
@ -431,6 +431,10 @@ struct llm_build_refact : public llm_graph_context {
|
||||||
llm_build_refact(const llama_model & model, const llm_graph_params & params);
|
llm_build_refact(const llama_model & model, const llm_graph_params & params);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct llm_build_rnd1 : public llm_graph_context {
|
||||||
|
llm_build_rnd1(const llama_model & model, const llm_graph_params & params);
|
||||||
|
};
|
||||||
|
|
||||||
struct llm_build_rwkv6 : public llm_build_rwkv6_base {
|
struct llm_build_rwkv6 : public llm_build_rwkv6_base {
|
||||||
llm_build_rwkv6(const llama_model & model, const llm_graph_params & params);
|
llm_build_rwkv6(const llama_model & model, const llm_graph_params & params);
|
||||||
};
|
};
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,126 @@
|
||||||
|
#include "models.h"
|
||||||
|
|
||||||
|
// RND1 is a Qwen3Moe AR model converted to diffusion model.
|
||||||
|
llm_build_rnd1::llm_build_rnd1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
ggml_tensor * cur;
|
||||||
|
ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = build_inp_embd(model.tok_embd);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// Non-causal attention for diffusion
|
||||||
|
auto * inp_attn = build_attn_inp_no_cache();
|
||||||
|
|
||||||
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
cur = build_norm(inpL,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
// self_attention
|
||||||
|
{
|
||||||
|
// compute Q and K and RoPE them
|
||||||
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
||||||
|
cb(Qcur, "Qcur_normed", il);
|
||||||
|
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, Qcur, inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
|
||||||
|
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
||||||
|
cb(Kcur, "Kcur_normed", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, Kcur, inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
cur = build_attn(inp_attn,
|
||||||
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
|
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
||||||
|
}
|
||||||
|
if (il == n_layer - 1 && inp_out_ids) {
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// MoE branch
|
||||||
|
cur = build_norm(ffn_inp,
|
||||||
|
model.layers[il].ffn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
ggml_tensor * moe_out =
|
||||||
|
build_moe_ffn(cur,
|
||||||
|
model.layers[il].ffn_gate_inp,
|
||||||
|
model.layers[il].ffn_up_exps,
|
||||||
|
model.layers[il].ffn_gate_exps,
|
||||||
|
model.layers[il].ffn_down_exps,
|
||||||
|
nullptr,
|
||||||
|
n_expert, n_expert_used,
|
||||||
|
LLM_FFN_SILU, true,
|
||||||
|
false, 0.0,
|
||||||
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||||
|
il);
|
||||||
|
cb(moe_out, "ffn_moe_out", il);
|
||||||
|
cur = moe_out;
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
|
||||||
|
cur = build_cvec(cur, il);
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, -1);
|
||||||
|
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
res->t_embd = cur;
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = build_lora_mm(model.output, cur);
|
||||||
|
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
res->t_logits = cur;
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue