testing deepseek-ocr

quick and dirty test script comparing results of Qwen2.5-VL vs DeepSeek-OCR
This commit is contained in:
Saba Fallah 2025-12-11 17:00:11 +01:00
parent 4cbbe8ab6f
commit 47f0fee6c9
2 changed files with 216 additions and 0 deletions

View File

@ -0,0 +1,202 @@
#!/usr/bin/env python3
"""
Test script to compare llama.cpp mtmd-cli output with HuggingFace reference implementation
for DeepSeek-OCR model using embedding similarity.
"""
import argparse
import subprocess
import sys
from pathlib import Path
from sentence_transformers import SentenceTransformer
from sentence_transformers import util
def run_mtmd_deepseek_ocr(
model_path: str,
mmproj_path: str,
image_path: str,
bin_path: str
) -> str:
"""
Run inference using llama.cpp mtmd-cli.
"""
cmd = [
bin_path,
"-m", model_path,
"--mmproj", mmproj_path,
"--image", image_path,
# "-p", "<|grounding|>Convert the document to markdown.",
"-p", "Free OCR.",
"--chat-template", "deepseek-ocr",
"--temp", "0",
"-n", "1024",
# "--verbose"
]
print(f"Running llama.cpp command: {' '.join(cmd)}")
result = subprocess.run(
cmd,
capture_output=True,
text=False,
timeout=300
)
if result.returncode != 0:
stderr = result.stderr.decode('utf-8', errors='replace')
print(f"llama.cpp stderr: {stderr}")
raise RuntimeError(f"llama-mtmd-cli failed with code {result.returncode}")
output = result.stdout.decode('utf-8', errors='replace').strip()
print(f"llama.cpp output length: {len(output)} chars")
return output
def run_mtmd_qwen_vl(
model_path: str,
mmproj_path: str,
image_path: str,
prompt: str,
bin_path: str
) -> str:
"""
Run inference using llama.cpp mtmd-cli with Qwen2.5-VL model.
"""
cmd = [
bin_path,
"-m", model_path,
"--mmproj", mmproj_path,
"--image", image_path,
"-p", prompt,
"--temp", "0"
]
print(f"Running llama.cpp command: {' '.join(cmd)}")
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=300
)
if result.returncode != 0:
print(f"llama.cpp stderr: {result.stderr}")
raise RuntimeError(f"llama-mtmd-cli failed with code {result.returncode}")
output = result.stdout.strip()
print(f"llama.cpp output length: {len(output)} chars")
return output
def compute_embedding_similarity(text1: str, text2: str, model_name: str) -> float:
"""
Compute cosine similarity between two texts using embedding model.
"""
print(f"Loading embedding model: {model_name}")
# Use sentence-transformers for easier embedding extraction
# For Gemma embedding, we use the sentence-transformers wrapper
try:
embed_model = SentenceTransformer(model_name, trust_remote_code=True)
except Exception:
# Fallback to a commonly available model if Gemma embedding not available
print(f"Could not load {model_name}, falling back to all-MiniLM-L6-v2")
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
print("Computing embeddings...")
embeddings = embed_model.encode([text1, text2], convert_to_numpy=True)
similarity = util.similarity.cos_sim([embeddings[0]], [embeddings[1]])[0][0]
return float(similarity)
def main():
ap = argparse.ArgumentParser(description="Compare llama.cpp and HuggingFace DeepSeek-OCR outputs")
ap.add_argument("--hf-model", default="Dogacel/DeepSeek-OCR-Metal-MPS",
help="HuggingFace model ID")
ap.add_argument("--llama-model", default="gguf_models/deepseek-ai/deepseek-ocr-f16.gguf",
help="Path to llama.cpp GGUF model")
ap.add_argument("--mmproj", default="gguf_models/deepseek-ai/mmproj-deepseek-ocr-f16.gguf",
help="Path to mmproj GGUF file")
ap.add_argument("--image", default="test-1.jpeg",
help="Path to test image")
ap.add_argument("--llama-bin", default="build/bin/llama-mtmd-cli",
help="Path to llama-mtmd-cli binary")
ap.add_argument("--embedding-model", default="google/embeddinggemma-300m",
help="Embedding model for similarity computation")
ap.add_argument("--threshold", type=float, default=0.7,
help="Minimum similarity threshold for pass")
args = ap.parse_args()
# Validate paths
# script directory + image
mtmd_dir = Path(__file__).parent.parent
args.image = str(mtmd_dir / args.image)
# project directory + llama model
args.llama_model = str(mtmd_dir.parent.parent / args.llama_model)
# project directory + mmproj
args.mmproj = str(mtmd_dir.parent.parent / args.mmproj)
args.llama_bin = str(mtmd_dir.parent.parent / args.llama_bin)
if not Path(args.image).exists():
print(f"Error: Image not found: {args.image}")
sys.exit(1)
if not Path(args.llama_model).exists():
print(f"Error: Model not found: {args.llama_model}")
sys.exit(1)
if not Path(args.mmproj).exists():
print(f"Error: mmproj not found: {args.mmproj}")
sys.exit(1)
print("=" * 60)
print("DeepSeek-OCR: llama.cpp vs HuggingFace Comparison")
print("=" * 60)
# Default paths based on your command
qwen_vl_out = run_mtmd_qwen_vl(
model_path=str(mtmd_dir.parent.parent / "gguf_models/qwen/Qwen2.5-VL-7B-Instruct-f16.gguf"),
mmproj_path=str(mtmd_dir.parent.parent / "gguf_models/qwen/mmproj-Qwen2.5-VL-7B-Instruct-f16.gguf"),
image_path=args.image,
prompt="tell me what do you see in this picture?",
bin_path=args.llama_bin
)
# Run llama.cpp inference
print("\n[2/3] Running llama.cpp implementation...")
llama_output = run_mtmd_deepseek_ocr(
args.llama_model,
args.mmproj,
args.image,
args.llama_bin
)
# Compute similarity
print("\n[3/3] Computing embedding similarity...")
similarity = compute_embedding_similarity(
qwen_vl_out,
llama_output,
args.embedding_model
)
# Results
print("\n" + "=" * 60)
print("RESULTS")
print("=" * 60)
print(f"\nQwen2.5-VL output:\n{'-' * 40}")
print(qwen_vl_out)
print(f"\nDeepSeek-OCR output:\n{'-' * 40}")
print(llama_output)
print(f"\n{'=' * 60}")
print(f"Cosine Similarity: {similarity:.4f}")
print(f"Threshold: {args.threshold}")
print(f"Result: {'PASS' if similarity >= args.threshold else 'FAIL'}")
print("=" * 60)
sys.exit(0 if similarity >= args.threshold else 1)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,14 @@
sentence-transformers
transformers>=4.46.3
tokenizers==0.20.3
torch==2.9.1
torchvision==0.24.1
torchaudio==2.9.1
matplotlib
PyMuPDF
img2pdf
einops
easydict
addict
Pillow
numpy