Vulkan: MMVQ Integer Dot K-Quant and MUL_MAT_ID support (#16900)

* vulkan: split mul_mmq_funcs for mul_mat_vecq use

* add mxfp4 mmvq

* add q2_k mmvq

* add q3_k mmvq

* add q4_k and q5_k mmvq

* add q6_k mmvq

* handle 4x4 quants per mmvq thread

* enable MUL_MAT_ID mmvq support

* enable subgroup optimizations for mul_mat_vec_id shaders

* device tuning

* request prealloc_y sync after quantization

* fix indentation

* fix llvmpipe test failures

* fix mul_mat_id mmvq condition

* fix unused variable warning
This commit is contained in:
Ruben Ortlam 2025-11-29 09:37:22 +01:00 committed by GitHub
parent 59d8d4e963
commit 47a268ea50
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 682 additions and 288 deletions

View File

@ -613,9 +613,10 @@ struct vk_device_struct {
vk_pipeline pipeline_dequant[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant[GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT]; vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT];
vk_pipeline pipeline_dequant_mul_mat_vec_q8_1_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols]; vk_pipeline pipeline_dequant_mul_mat_vec_q8_1_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_id_q8_1_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT];
vk_pipeline pipeline_mul_mat_vec_p021_f16_f32[p021_max_gqa_ratio]; vk_pipeline pipeline_mul_mat_vec_p021_f16_f32[p021_max_gqa_ratio];
vk_pipeline pipeline_mul_mat_vec_nc_f16_f32; vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
@ -1611,7 +1612,7 @@ class vk_perf_logger {
} }
if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) { if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) {
const uint64_t m = node->src[0]->ne[1]; const uint64_t m = node->src[0]->ne[1];
const uint64_t n = node->ne[1]; const uint64_t n = (node->op == GGML_OP_MUL_MAT) ? node->ne[1] : node->ne[2];
const uint64_t k = node->src[1]->ne[0]; const uint64_t k = node->src[1]->ne[0];
const uint64_t batch = node->src[1]->ne[2] * node->src[1]->ne[3]; const uint64_t batch = node->src[1]->ne[2] * node->src[1]->ne[3];
std::string name = ggml_op_name(node->op); std::string name = ggml_op_name(node->op);
@ -3525,13 +3526,18 @@ static void ggml_vk_load_shaders(vk_device& device) {
// the number of rows computed per shader depends on GPU model and quant // the number of rows computed per shader depends on GPU model and quant
uint32_t rm_stdq = 1; uint32_t rm_stdq = 1;
uint32_t rm_kq = 2; uint32_t rm_kq = 2;
uint32_t rm_stdq_int = 1;
uint32_t rm_kq_int = 1;
if (device->vendor_id == VK_VENDOR_ID_AMD) { if (device->vendor_id == VK_VENDOR_ID_AMD) {
if (device->architecture == AMD_GCN) { if (device->architecture == AMD_GCN) {
rm_stdq = 2; rm_stdq = 2;
rm_kq = 4; rm_kq = 4;
rm_stdq_int = 4;
} }
} else if (device->vendor_id == VK_VENDOR_ID_INTEL) } else if (device->vendor_id == VK_VENDOR_ID_INTEL) {
rm_stdq = 2; rm_stdq = 2;
rm_stdq_int = 2;
}
uint32_t rm_iq = 2 * rm_kq; uint32_t rm_iq = 2 * rm_kq;
const bool use_subgroups = device->subgroup_arithmetic && device->architecture != vk_device_architecture::AMD_GCN; const bool use_subgroups = device->subgroup_arithmetic && device->architecture != vk_device_architecture::AMD_GCN;
@ -3612,39 +3618,73 @@ static void ggml_vk_load_shaders(vk_device& device) {
const uint32_t subgroup_size_int = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size; const uint32_t subgroup_size_int = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size;
const uint32_t wg_size_subgroup_int = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_int : (subgroup_size_int * 4); const uint32_t wg_size_subgroup_int = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_int : (subgroup_size_int * 4);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_q8_1_f32", arr_dmmv_q4_0_q8_1_f32_len[reduc], arr_dmmv_q4_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_q8_1_f32", arr_dmmv_q4_0_q8_1_f32_len[reduc], arr_dmmv_q4_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_q8_1_f32", arr_dmmv_q4_1_q8_1_f32_len[reduc], arr_dmmv_q4_1_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_q8_1_f32", arr_dmmv_q4_1_q8_1_f32_len[reduc], arr_dmmv_q4_1_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_q8_1_f32", arr_dmmv_q5_0_q8_1_f32_len[reduc], arr_dmmv_q5_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_q8_1_f32", arr_dmmv_q5_0_q8_1_f32_len[reduc], arr_dmmv_q5_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_q8_1_f32", arr_dmmv_q5_1_q8_1_f32_len[reduc], arr_dmmv_q5_1_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_q8_1_f32", arr_dmmv_q5_1_q8_1_f32_len[reduc], arr_dmmv_q5_1_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_q8_1_f32", arr_dmmv_q8_0_q8_1_f32_len[reduc], arr_dmmv_q8_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_q8_1_f32", arr_dmmv_q8_0_q8_1_f32_len[reduc], arr_dmmv_q8_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_q8_1_f32", arr_dmmv_mxfp4_q8_1_f32_len[reduc], arr_dmmv_mxfp4_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_q8_1_f32", arr_dmmv_q2_k_q8_1_f32_len[reduc], arr_dmmv_q2_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_q8_1_f32", arr_dmmv_q3_k_q8_1_f32_len[reduc], arr_dmmv_q3_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_q8_1_f32", arr_dmmv_q4_k_q8_1_f32_len[reduc], arr_dmmv_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_q8_1_f32", arr_dmmv_q5_k_q8_1_f32_len[reduc], arr_dmmv_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_q8_1_f32", arr_dmmv_q6_k_q8_1_f32_len[reduc], arr_dmmv_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
} }
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT #endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
} }
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", arr_dmmv_id_f32_f32_f32_len[reduc], arr_dmmv_id_f32_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {wg_size_subgroup, 2}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", arr_dmmv_id_f16_f32_f32_len[reduc], arr_dmmv_id_f16_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {wg_size_subgroup, 2}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", arr_dmmv_id_bf16_f32_f32_len[reduc], arr_dmmv_id_bf16_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {wg_size_subgroup, 2}, 1, false, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", arr_dmmv_id_q4_0_f32_f32_len[reduc], arr_dmmv_id_q4_0_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq}, 1, true, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", arr_dmmv_id_q4_1_f32_f32_len[reduc], arr_dmmv_id_q4_1_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq}, 1, true, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", arr_dmmv_id_q5_0_f32_f32_len[reduc], arr_dmmv_id_q5_0_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq}, 1, true, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", arr_dmmv_id_q5_1_f32_f32_len[reduc], arr_dmmv_id_q5_1_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq}, 1, true, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", arr_dmmv_id_q8_0_f32_f32_len[reduc], arr_dmmv_id_q8_0_f32_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq}, 1, true, use_subgroups, force_subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", arr_dmmv_id_q2_k_f32_f32_len[reduc16], arr_dmmv_id_q2_k_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", arr_dmmv_id_q3_k_f32_f32_len[reduc16], arr_dmmv_id_q3_k_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", arr_dmmv_id_q4_k_f32_f32_len[reduc16], arr_dmmv_id_q4_k_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", arr_dmmv_id_q5_k_f32_f32_len[reduc16], arr_dmmv_id_q5_k_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", arr_dmmv_id_q6_k_f32_f32_len[reduc16], arr_dmmv_id_q6_k_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_f32", arr_dmmv_id_iq1_s_f32_f32_len[reduc16], arr_dmmv_id_iq1_s_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_f32", arr_dmmv_id_iq1_m_f32_f32_len[reduc16], arr_dmmv_id_iq1_m_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ2_XXS], "mul_mat_vec_id_iq2_xxs_f32", arr_dmmv_id_iq2_xxs_f32_f32_len[reduc16], arr_dmmv_id_iq2_xxs_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ2_XS], "mul_mat_vec_id_iq2_xs_f32", arr_dmmv_id_iq2_xs_f32_f32_len[reduc16], arr_dmmv_id_iq2_xs_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ2_S], "mul_mat_vec_id_iq2_s_f32", arr_dmmv_id_iq2_s_f32_f32_len[reduc16], arr_dmmv_id_iq2_s_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ3_XXS], "mul_mat_vec_id_iq3_xxs_f32", arr_dmmv_id_iq3_xxs_f32_f32_len[reduc16], arr_dmmv_id_iq3_xxs_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ3_S], "mul_mat_vec_id_iq3_s_f32", arr_dmmv_id_iq3_s_f32_f32_len[reduc16], arr_dmmv_id_iq3_s_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ4_XS], "mul_mat_vec_id_iq4_xs_f32", arr_dmmv_id_iq4_xs_f32_f32_len[reduc16], arr_dmmv_id_iq4_xs_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", arr_dmmv_id_iq4_nl_f32_f32_len[reduc16], arr_dmmv_id_iq4_nl_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[w][GGML_TYPE_MXFP4], "mul_mat_vec_id_mxfp4_f32", arr_dmmv_id_mxfp4_f32_f32_len[reduc16], arr_dmmv_id_mxfp4_f32_f32_data[reduc16], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq}, 1, true, use_subgroups16, force_subgroup_size16);
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (device->integer_dot_product) {
const uint32_t subgroup_size_int = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size;
const uint32_t wg_size_subgroup_int = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_int : (subgroup_size_int * 4);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_q8_1_f32", arr_dmmv_id_q4_0_q8_1_f32_len[reduc], arr_dmmv_id_q4_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_q8_1_f32", arr_dmmv_id_q4_1_q8_1_f32_len[reduc], arr_dmmv_id_q4_1_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_q8_1_f32", arr_dmmv_id_q5_0_q8_1_f32_len[reduc], arr_dmmv_id_q5_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_q8_1_f32", arr_dmmv_id_q5_1_q8_1_f32_len[reduc], arr_dmmv_id_q5_1_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_q8_1_f32", arr_dmmv_id_q8_0_q8_1_f32_len[reduc], arr_dmmv_id_q8_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_MXFP4], "mul_mat_vec_id_mxfp4_q8_1_f32", arr_dmmv_id_mxfp4_q8_1_f32_len[reduc], arr_dmmv_id_mxfp4_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_q8_1_f32", arr_dmmv_id_q2_k_q8_1_f32_len[reduc], arr_dmmv_id_q2_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_q8_1_f32", arr_dmmv_id_q3_k_q8_1_f32_len[reduc], arr_dmmv_id_q3_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_q8_1_f32", arr_dmmv_id_q4_k_q8_1_f32_len[reduc], arr_dmmv_id_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_q8_1_f32", arr_dmmv_id_q5_k_q8_1_f32_len[reduc], arr_dmmv_id_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_q8_1_f32", arr_dmmv_id_q6_k_q8_1_f32_len[reduc], arr_dmmv_id_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
}
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
} }
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); #if !defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); GGML_UNUSED(rm_stdq_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", mul_mat_vec_id_bf16_f32_len, mul_mat_vec_id_bf16_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); GGML_UNUSED(rm_kq_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); #endif
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_f32", mul_mat_vec_id_iq1_s_f32_len, mul_mat_vec_id_iq1_s_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_f32", mul_mat_vec_id_iq1_m_f32_len, mul_mat_vec_id_iq1_m_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_XXS], "mul_mat_vec_id_iq2_xxs_f32", mul_mat_vec_id_iq2_xxs_f32_len, mul_mat_vec_id_iq2_xxs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_XS], "mul_mat_vec_id_iq2_xs_f32", mul_mat_vec_id_iq2_xs_f32_len, mul_mat_vec_id_iq2_xs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_S], "mul_mat_vec_id_iq2_s_f32", mul_mat_vec_id_iq2_s_f32_len, mul_mat_vec_id_iq2_s_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ3_XXS], "mul_mat_vec_id_iq3_xxs_f32", mul_mat_vec_id_iq3_xxs_f32_len, mul_mat_vec_id_iq3_xxs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ3_S], "mul_mat_vec_id_iq3_s_f32", mul_mat_vec_id_iq3_s_f32_len, mul_mat_vec_id_iq3_s_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_XS], "mul_mat_vec_id_iq4_xs_f32", mul_mat_vec_id_iq4_xs_f32_len, mul_mat_vec_id_iq4_xs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_MXFP4], "mul_mat_vec_id_mxfp4_f32", mul_mat_vec_id_mxfp4_f32_len, mul_mat_vec_id_mxfp4_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
// dequant shaders // dequant shaders
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
@ -5453,6 +5493,12 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1: case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break; break;
default: default:
return nullptr; return nullptr;
@ -5592,9 +5638,28 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
} }
} }
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) { static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type, uint32_t m, uint32_t k) {
VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec_id()"); VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec_id()");
GGML_ASSERT(b_type == GGML_TYPE_F32); GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_Q8_1);
if (b_type == GGML_TYPE_Q8_1) {
switch (a_type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break;
default:
return nullptr;
}
}
switch (a_type) { switch (a_type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
@ -5625,7 +5690,31 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
return nullptr; return nullptr;
} }
return ctx->device->pipeline_dequant_mul_mat_vec_id_f32[a_type]; // heuristic to choose workgroup size
uint32_t dmmv_wg = DMMV_WG_SIZE_SUBGROUP;
if ((ctx->device->vendor_id == VK_VENDOR_ID_NVIDIA && ctx->device->architecture != vk_device_architecture::NVIDIA_PRE_TURING) || ctx->device->vendor_id == VK_VENDOR_ID_INTEL) {
// Prefer larger workgroups when M is small, to spread the work out more
// and keep more SMs busy.
// q6_k seems to prefer small workgroup size even for "medium" values of M.
if (a_type == GGML_TYPE_Q6_K) {
if (m < 4096 && k >= 1024) {
dmmv_wg = DMMV_WG_SIZE_LARGE;
}
} else {
if (m <= 8192 && k >= 1024) {
dmmv_wg = DMMV_WG_SIZE_LARGE;
}
}
}
if (b_type == GGML_TYPE_Q8_1) {
if (ctx->device->vendor_id == VK_VENDOR_ID_INTEL) {
dmmv_wg = DMMV_WG_SIZE_SUBGROUP;
}
return ctx->device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[dmmv_wg][a_type];
}
return ctx->device->pipeline_dequant_mul_mat_vec_id_f32[dmmv_wg][a_type];
} }
static void * ggml_vk_host_malloc(vk_device& device, size_t size) { static void * ggml_vk_host_malloc(vk_device& device, size_t size) {
@ -6817,20 +6906,35 @@ static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_
return false; return false;
} }
// General performance issue with q3_k and q6_k due to 2-byte alignment
if (src0_type == GGML_TYPE_Q3_K || src0_type == GGML_TYPE_Q6_K) {
return false;
}
// MMVQ is generally good for batches // MMVQ is generally good for batches
if (n > 1) { if (n > 1) {
return true; return true;
} }
// Quantization overhead is not worth it for small k
switch (device->vendor_id) { switch (device->vendor_id) {
case VK_VENDOR_ID_NVIDIA: case VK_VENDOR_ID_NVIDIA:
if (k <= 4096) {
return false;
}
switch (src0_type) { switch (src0_type) {
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
return device->architecture == vk_device_architecture::NVIDIA_PRE_TURING; return device->architecture == vk_device_architecture::NVIDIA_PRE_TURING;
default: default:
return true; return true;
} }
case VK_VENDOR_ID_AMD: case VK_VENDOR_ID_AMD:
if (k < 2048) {
return false;
}
switch (src0_type) { switch (src0_type) {
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
return device->architecture == vk_device_architecture::AMD_GCN; return device->architecture == vk_device_architecture::AMD_GCN;
@ -6838,6 +6942,10 @@ static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_
return true; return true;
} }
case VK_VENDOR_ID_INTEL: case VK_VENDOR_ID_INTEL:
if (k < 2048) {
return false;
}
switch (src0_type) { switch (src0_type) {
// From tests on A770 Linux, may need more tuning // From tests on A770 Linux, may need more tuning
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
@ -6851,7 +6959,6 @@ static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_
} }
GGML_UNUSED(m); GGML_UNUSED(m);
GGML_UNUSED(k);
} }
static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) { static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) {
@ -7574,7 +7681,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
if (x_non_contig || qx_needs_dequant) { if (x_non_contig || qx_needs_dequant) {
ctx->prealloc_x_need_sync = true; ctx->prealloc_x_need_sync = true;
} }
if (y_non_contig) { if (y_non_contig || quantize_y) {
ctx->prealloc_y_need_sync = true; ctx->prealloc_y_need_sync = true;
} }
} }
@ -7600,7 +7707,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
const uint64_t ne10 = src1->ne[0]; const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1]; const uint64_t ne11 = src1->ne[1];
// const uint64_t ne12 = src1->ne[2]; const uint64_t ne12 = src1->ne[2];
// const uint64_t ne13 = src1->ne[3]; // const uint64_t ne13 = src1->ne[3];
const uint64_t nei0 = ids->ne[0]; const uint64_t nei0 = ids->ne[0];
@ -7617,19 +7724,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1); const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
const bool f16_f32_kernel = src1->type == GGML_TYPE_F32; const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && !y_non_contig && (ne11 * ne10) % 4 == 0 && ggml_vk_should_use_mmvq(ctx->device, ne01, ne12, ne10, src0->type);
const bool qx_needs_dequant = x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint64_t x_ne = ggml_nelements(src0);
const uint64_t y_ne = ggml_nelements(src1);
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
vk_pipeline to_fp16_vk_0 = nullptr; vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr; vk_pipeline to_fp16_vk_1 = nullptr;
@ -7641,11 +7736,38 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
} else { } else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type); to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
} }
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type);
// Check for mmq first
vk_pipeline dmmv = quantize_y ? ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, GGML_TYPE_Q8_1, ne20, ne00) : nullptr;
vk_pipeline to_q8_1 = nullptr;
if (dmmv == nullptr) {
// Fall back to f16 dequant mul mat
dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type, ne20, ne00);
quantize_y = false;
}
if (quantize_y) {
to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
}
const bool qx_needs_dequant = x_non_contig;
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig);
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
GGML_ASSERT(dmmv != nullptr); GGML_ASSERT(dmmv != nullptr);
const uint64_t x_ne = ggml_nelements(src0);
const uint64_t y_ne = ggml_nelements(src1);
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
const uint64_t y_sz = quantize_y ? (ggml_vk_align_size(y_ne, 128) * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) :
(f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne);
{ {
if ( if (
(qx_needs_dequant && x_sz > ctx->device->properties.limits.maxStorageBufferRange) || (qx_needs_dequant && x_sz > ctx->device->properties.limits.maxStorageBufferRange) ||
@ -7656,7 +7778,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
ctx->prealloc_size_x = x_sz; ctx->prealloc_size_x = x_sz;
ggml_vk_preallocate_buffers(ctx, subctx); ggml_vk_preallocate_buffers(ctx, subctx);
} }
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz) { if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz) {
ctx->prealloc_size_y = y_sz; ctx->prealloc_size_y = y_sz;
ggml_vk_preallocate_buffers(ctx, subctx); ggml_vk_preallocate_buffers(ctx, subctx);
} }
@ -7668,6 +7790,9 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
if (qy_needs_dequant) { if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1); ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
} }
if (quantize_y) {
ggml_pipeline_request_descriptor_sets(ctx, to_q8_1, 1);
}
ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1); ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1);
} }
@ -7683,7 +7808,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
} else { } else {
d_X = d_Qx; d_X = d_Qx;
} }
if (qy_needs_dequant) { if (qy_needs_dequant || quantize_y) {
d_Y = { ctx->prealloc_y, 0, ctx->prealloc_y->size }; d_Y = { ctx->prealloc_y, 0, ctx->prealloc_y->size };
} else { } else {
d_Y = d_Qy; d_Y = d_Qy;
@ -7711,6 +7836,17 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
ctx->prealloc_y_last_tensor_used = src1; ctx->prealloc_y_last_tensor_used = src1;
} }
} }
if (quantize_y) {
if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() ||
ctx->prealloc_y_last_tensor_used != src1) {
if (ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_quantize_q8_1(ctx, subctx, d_Qy, d_Y, y_ne);
ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
ctx->prealloc_y_last_tensor_used = src1;
}
}
uint32_t stride_batch_y = ne10*ne11; uint32_t stride_batch_y = ne10*ne11;
@ -7772,7 +7908,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
if (x_non_contig) { if (x_non_contig) {
ctx->prealloc_x_need_sync = true; ctx->prealloc_x_need_sync = true;
} }
if (y_non_contig) { if (y_non_contig || quantize_y) {
ctx->prealloc_y_need_sync = true; ctx->prealloc_y_need_sync = true;
} }
} }

View File

@ -4,13 +4,6 @@
#include "types.glsl" #include "types.glsl"
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
#if defined(DATA_A_F32) #if defined(DATA_A_F32)
vec2 dequantize(uint ib, uint iqs, uint a_offset) { vec2 dequantize(uint ib, uint iqs, uint a_offset) {
return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]); return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]);

View File

@ -22,6 +22,13 @@ layout (push_constant) uniform parameter
#if !RMS_NORM_ROPE_FUSION #if !RMS_NORM_ROPE_FUSION
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#endif #endif

View File

@ -18,6 +18,13 @@ layout (push_constant) uniform parameter
} p; } p;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
uint get_idx() { uint get_idx() {

View File

@ -3,6 +3,7 @@
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#include "mul_mat_vec_base.glsl" #include "mul_mat_vec_base.glsl"
#include "dequant_funcs.glsl"
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

View File

@ -13,8 +13,6 @@
#include "mul_mat_vec_iface.glsl" #include "mul_mat_vec_iface.glsl"
#include "dequant_funcs.glsl"
layout (push_constant) uniform parameter layout (push_constant) uniform parameter
{ {
uint ncols; uint ncols;

View File

@ -5,13 +5,15 @@
#define MAT_VEC_FUSION_FLAGS_SCALE0 0x4 #define MAT_VEC_FUSION_FLAGS_SCALE0 0x4
#define MAT_VEC_FUSION_FLAGS_SCALE1 0x8 #define MAT_VEC_FUSION_FLAGS_SCALE1 0x8
#ifndef MMQ
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#if defined(A_TYPE_VEC4) #if defined(A_TYPE_VEC4)
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];}; layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
#endif #endif
#else #if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];}; layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif #endif
layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];};

View File

@ -10,60 +10,56 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
#if defined(DATA_A_QUANT_LEGACY) || defined(DATA_A_MXFP4)
#define K_PER_ITER 8 #define K_PER_ITER 8
#elif defined(DATA_A_QUANT_K)
#include "mul_mmq_funcs.glsl" #define K_PER_ITER 16
#else
#error unimplemented
#endif
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
int32_t cache_b_qs[2]; int32_t cache_b_qs[K_PER_ITER / 4];
vec2 cache_b_ds; vec2 cache_b_ds;
#include "mul_mat_vecq_funcs.glsl"
void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i) { void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
const uint col = i*BLOCK_SIZE + tid*K_PER_ITER; const uint col = i*BLOCK_SIZE + tid*K_PER_ITER;
// Preload data_b block // Preload data_b block
const uint b_block_idx = (j*p.batch_stride_b + col) / QUANT_K_Q8_1 + b_offset; const uint b_block_idx = (j*p.batch_stride_b + col) / QUANT_K_Q8_1 + b_offset;
const uint b_qs_idx = tid % 4; const uint b_qs_idx = tid % (32 / K_PER_ITER);
const uint b_block_idx_outer = b_block_idx / 4; const uint b_block_idx_outer = b_block_idx / 4;
const uint b_block_idx_inner = b_block_idx % 4; const uint b_block_idx_inner = b_block_idx % 4;
cache_b_ds = vec2(data_b[b_block_idx_outer].ds[b_block_idx_inner]); cache_b_ds = vec2(data_b[b_block_idx_outer].ds[b_block_idx_inner]);
#if QUANT_R == 2 #if QUANT_R == 2
// Assumes K_PER_ITER == 8
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx]; cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx];
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx + 4]; cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx + 4];
#else #else
#if K_PER_ITER == 8
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2]; cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2];
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2 + 1]; cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2 + 1];
#elif K_PER_ITER == 16
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 ];
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 1];
cache_b_qs[2] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 2];
cache_b_qs[3] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 3];
#else
#error unimplemented
#endif
#endif #endif
uint ibi = first_row*p.ncols; uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) { [[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint a_block_idx = (ibi + col)/QUANT_K + a_offset; const uint a_block_idx = (ibi + col)/QUANT_K_Q8_1 + a_offset;
ibi += p.ncols; ibi += p.ncols;
int32_t q_sum = 0; temp[j][n] += mmvq_dot_product(a_block_idx, b_qs_idx);
#if QUANT_R == 2
const i32vec2 data_a_qs = repack(a_block_idx, b_qs_idx);
q_sum += dotPacked4x8EXT(data_a_qs.x,
cache_b_qs[0]);
q_sum += dotPacked4x8EXT(data_a_qs.y,
cache_b_qs[1]);
#else
int32_t data_a_qs = repack(a_block_idx, b_qs_idx * 2);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[0]);
data_a_qs = repack(a_block_idx, b_qs_idx * 2 + 1);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[1]);
#endif
#if QUANT_AUXF == 1
temp[j][n] += mul_q8_1(q_sum, get_d(a_block_idx), cache_b_ds, 4);
#else
temp[j][n] += mul_q8_1(q_sum, get_dm(a_block_idx), cache_b_ds, 4);
#endif
} }
} }
} }
@ -72,7 +68,7 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint tid = gl_LocalInvocationID.x; const uint tid = gl_LocalInvocationID.x;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);
a_offset /= QUANT_K; a_offset /= QUANT_K_Q8_1;
b_offset /= QUANT_K_Q8_1; b_offset /= QUANT_K_Q8_1;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
@ -102,14 +98,6 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
unroll_count = 2; unroll_count = 2;
unrolled_iters = num_iters & ~(unroll_count - 1); unrolled_iters = num_iters & ~(unroll_count - 1);
#if K_PER_ITER == 2
if ((p.ncols & 1) != 0 &&
unrolled_iters == num_iters &&
unrolled_iters > 0) {
unrolled_iters -= unroll_count;
}
#endif
while (i < unrolled_iters) { while (i < unrolled_iters) {
// Manually partially unroll the loop // Manually partially unroll the loop
[[unroll]] for (uint k = 0; k < unroll_count; ++k) { [[unroll]] for (uint k = 0; k < unroll_count; ++k) {
@ -128,6 +116,10 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
void main() { void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
#ifdef NEEDS_INIT_IQ_SHMEM
init_iq_shmem(gl_WorkGroupSize);
#endif
// do NUM_ROWS at a time, unless there aren't enough remaining rows // do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) { if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS); compute_outputs(first_row, NUM_ROWS);

View File

@ -0,0 +1,379 @@
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#include "types.glsl"
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q5_0) || defined(DATA_A_Q8_0) || defined(DATA_A_IQ1_S) || defined(DATA_A_IQ2_XXS) || defined(DATA_A_IQ2_XS) || defined(DATA_A_IQ2_S) || defined(DATA_A_IQ3_XXS) || defined(DATA_A_IQ3_S) || defined(DATA_A_IQ4_XS) || defined(DATA_A_IQ4_NL)
FLOAT_TYPE get_dm(uint ib) {
return FLOAT_TYPE(data_a[ib].d);
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
return FLOAT_TYPE_VEC2(data_a_packed32[ib].dm);
}
#endif
#if defined(DATA_A_MXFP4)
FLOAT_TYPE get_dm(uint ib) {
return FLOAT_TYPE(e8m0_to_fp32(data_a[ib].e));
}
#endif
#if defined(DATA_A_Q2_K)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
const uint ib_k = ib / 8;
return FLOAT_TYPE_VEC2(data_a_packed32[ib_k].dm);
}
#endif
// Each iqs value maps to a 32-bit integer
#if defined(DATA_A_Q4_0)
// 2-byte loads for Q4_0 blocks (18 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(da * (float(q_sum) * dsb.x - (8 / sum_divisor) * dsb.y));
}
#endif
#if defined(DATA_A_Q4_1)
// 4-byte loads for Q4_1 blocks (20 bytes)
i32vec2 repack(uint ib, uint iqs) {
const uint32_t vui = data_a_packed32[ib].qs[iqs];
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#if defined(DATA_A_Q5_0)
// 2-byte loads for Q5_0 blocks (22 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
const int32_t qh = int32_t((uint32_t(data_a_packed16[ib].qh[1]) << 16 | data_a_packed16[ib].qh[0]) >> (4 * iqs));
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(da * (float(q_sum) * dsb.x - (16 / sum_divisor) * dsb.y));
}
#endif
#if defined(DATA_A_Q5_1)
// 4-byte loads for Q5_1 blocks (24 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
const int32_t qh = int32_t(data_a_packed32[ib].qh >> (4 * iqs));
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#if defined(DATA_A_Q8_0)
// 2-byte loads for Q8_0 blocks (34 bytes)
int32_t repack(uint ib, uint iqs) {
return pack32(i16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]));
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(float(q_sum) * da * dsb.x);
}
#endif
#if defined(DATA_A_MXFP4)
// 1-byte loads for mxfp4 blocks (17 bytes)
i32vec2 repack(uint ib, uint iqs) {
const uint32_t qs = pack32(u8vec4(data_a[ib].qs[iqs * 4 ],
data_a[ib].qs[iqs * 4 + 1],
data_a[ib].qs[iqs * 4 + 2],
data_a[ib].qs[iqs * 4 + 3]));
const u8vec4 i_a0 = unpack8( qs & 0x0F0F0F0F);
const u8vec4 i_a1 = unpack8((qs >> 4) & 0x0F0F0F0F);
return i32vec2(pack32(i8vec4(kvalues_mxfp4[i_a0.x], kvalues_mxfp4[i_a0.y], kvalues_mxfp4[i_a0.z], kvalues_mxfp4[i_a0.w])),
pack32(i8vec4(kvalues_mxfp4[i_a1.x], kvalues_mxfp4[i_a1.y], kvalues_mxfp4[i_a1.z], kvalues_mxfp4[i_a1.w])));
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(da * dsb.x * float(q_sum) * 0.5);
}
#endif
#if defined(DATA_A_QUANT_LEGACY) || defined(DATA_A_MXFP4)
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
#if QUANT_R == 2
const i32vec2 data_a_qs = repack(ib_a, iqs);
q_sum += dotPacked4x8EXT(data_a_qs.x,
cache_b_qs[0]);
q_sum += dotPacked4x8EXT(data_a_qs.y,
cache_b_qs[1]);
#else
int32_t data_a_qs = repack(ib_a, iqs * 2);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[0]);
data_a_qs = repack(ib_a, iqs * 2 + 1);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[1]);
#endif
// 2 quants per call => divide sums by 8/2 = 4
return mul_q8_1(q_sum, get_dm(ib_a), cache_b_ds, 4);
}
#endif
#if defined(DATA_A_Q2_K)
// 4-byte loads for Q2_K blocks (84 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 32) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 32) / 8) * 2;
return i32vec4((data_a_packed32[ib_k].qs[qs_idx ] >> qs_shift) & 0x03030303,
(data_a_packed32[ib_k].qs[qs_idx + 1] >> qs_shift) & 0x03030303,
(data_a_packed32[ib_k].qs[qs_idx + 2] >> qs_shift) & 0x03030303,
(data_a_packed32[ib_k].qs[qs_idx + 3] >> qs_shift) & 0x03030303);
}
uint8_t get_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
return data_a[ib_k].scales[iqs_k / 4];
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t sum_d = 0;
int32_t sum_m = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const uint8_t scale = get_scale(ib_a, iqs * 4);
const vec2 dm = vec2(get_dm(ib_a));
const int32_t scale_m = int32_t(scale >> 4) * 0x01010101; // Duplicate 8-bit value across 32-bits.
sum_d += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[0]);
sum_d += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[1]);
sum_d += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[2]);
sum_d += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * (float(dm.x) * float(sum_d) - float(dm.y) * float(sum_m)));
}
#endif
#if defined(DATA_A_Q3_K)
// 2-byte loads for Q3_K blocks (110 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 32) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 32) / 8) * 2;
const uint hm_shift = iqs_k / 8;
// bitwise OR to add 4 if hmask is set, subtract later
const i8vec2 vals00 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 ] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 ] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals01 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 1] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 1] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals10 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 2] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 2] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals11 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 3] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 3] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals20 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 4] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 4] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals21 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 5] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 5] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals30 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 6] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 6] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals31 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 7] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 7] >> hm_shift) & uint16_t(0x0101)) << 2));
return i32vec4(pack32(i8vec4(vals00.x, vals00.y, vals01.x, vals01.y) - int8_t(4)),
pack32(i8vec4(vals10.x, vals10.y, vals11.x, vals11.y) - int8_t(4)),
pack32(i8vec4(vals20.x, vals20.y, vals21.x, vals21.y) - int8_t(4)),
pack32(i8vec4(vals30.x, vals30.y, vals31.x, vals31.y) - int8_t(4)));
}
float get_d_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint is = iqs_k / 4;
const int8_t scale = int8_t(((data_a[ib_k].scales[is % 8 ] >> (4 * (is / 8))) & 0x0F0F) |
(((data_a[ib_k].scales[8 + (is % 4)] >> (2 * (is / 4))) & 0x0303) << 4));
return float(data_a[ib_k].d) * float(scale - 32);
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const float d_scale = get_d_scale(ib_a, iqs * 4);
q_sum += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]);
q_sum += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]);
q_sum += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]);
q_sum += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * d_scale * float(q_sum));
}
#endif
#if defined(DATA_A_Q4_K) || defined(DATA_A_Q5_K)
// 4-byte loads for Q4_K blocks (144 bytes) and Q5_K blocks (176 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 16) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 16) / 8) * 4;
#if defined(DATA_A_Q4_K)
const uint32_t vals0 = (data_a_packed32[ib_k].qs[qs_idx ] >> qs_shift) & 0x0F0F0F0F;
const uint32_t vals1 = (data_a_packed32[ib_k].qs[qs_idx + 1] >> qs_shift) & 0x0F0F0F0F;
const uint32_t vals2 = (data_a_packed32[ib_k].qs[qs_idx + 2] >> qs_shift) & 0x0F0F0F0F;
const uint32_t vals3 = (data_a_packed32[ib_k].qs[qs_idx + 3] >> qs_shift) & 0x0F0F0F0F;
return i32vec4(vals0, vals1, vals2, vals3);
#else // defined(DATA_A_Q5_K)
const uint qh_idx = iqs;
const uint qh_shift = iqs_k / 8;
return i32vec4(((data_a_packed32[ib_k].qs[qs_idx ] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx ] >> qh_shift) & 0x01010101) << 4),
((data_a_packed32[ib_k].qs[qs_idx + 1] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx + 1] >> qh_shift) & 0x01010101) << 4),
((data_a_packed32[ib_k].qs[qs_idx + 2] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx + 2] >> qh_shift) & 0x01010101) << 4),
((data_a_packed32[ib_k].qs[qs_idx + 3] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx + 3] >> qh_shift) & 0x01010101) << 4));
#endif
}
vec2 get_dm_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint is = iqs_k / 8;
u8vec2 scale_dm;
if (is < 4) {
scale_dm = u8vec2(data_a[ib_k].scales[is] & 0x3F, data_a[ib_k].scales[is + 4] & 0x3F);
} else {
scale_dm = u8vec2((data_a[ib_k].scales[is+4] & 0xF) | ((data_a[ib_k].scales[is-4] & 0xC0) >> 2),
(data_a[ib_k].scales[is+4] >> 4) | ((data_a[ib_k].scales[is ] & 0xC0) >> 2));
}
return FLOAT_TYPE_VEC2(data_a_packed32[ib_k].dm) * FLOAT_TYPE_VEC2(scale_dm);
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const vec2 dm_scale = get_dm_scale(ib_a, iqs * 4);
q_sum += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]);
q_sum += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]);
q_sum += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]);
q_sum += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * float(dm_scale.x) * float(q_sum) - float(dm_scale.y) * float(cache_b_ds.y / 2));
}
#endif
#if defined(DATA_A_Q6_K)
// 2-byte loads for Q6_K blocks (210 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint ql_idx = (iqs_k / 32) * 16 + iqs_k % 16;
const uint ql_shift = ((iqs_k % 32) / 16) * 4;
const uint qh_idx = (iqs_k / 32) * 8 + iqs;
const uint qh_shift = ((iqs_k % 32) / 8) * 2;
const i8vec2 vals00 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 ] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 ] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals01 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 1] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 1] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals10 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 2] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 2] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals11 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 3] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 3] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals20 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 4] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 4] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals21 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 5] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 5] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals30 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 6] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 6] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals31 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 7] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 7] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
return i32vec4(pack32(i8vec4(vals00.x, vals00.y, vals01.x, vals01.y)),
pack32(i8vec4(vals10.x, vals10.y, vals11.x, vals11.y)),
pack32(i8vec4(vals20.x, vals20.y, vals21.x, vals21.y)),
pack32(i8vec4(vals30.x, vals30.y, vals31.x, vals31.y)));
}
float get_d_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
return float(data_a[ib_k].d) * float(data_a[ib_k].scales[iqs_k / 4]);
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const float d_scale = get_d_scale(ib_a, iqs * 4);
q_sum += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]);
q_sum += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]);
q_sum += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]);
q_sum += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * float(d_scale) * float(q_sum));
}
#endif

View File

@ -78,8 +78,6 @@ layout (constant_id = 10) const uint WARP = 32;
#define BK 32 #define BK 32
#define MMQ_SHMEM
#include "mul_mmq_shmem_types.glsl" #include "mul_mmq_shmem_types.glsl"
#ifdef MUL_MAT_ID #ifdef MUL_MAT_ID

View File

@ -9,31 +9,6 @@
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q4_1) #if defined(DATA_A_Q4_0) || defined(DATA_A_Q4_1)
// 2-byte loads for Q4_0 blocks (18 bytes) // 2-byte loads for Q4_0 blocks (18 bytes)
// 4-byte loads for Q4_1 blocks (20 bytes) // 4-byte loads for Q4_1 blocks (20 bytes)
i32vec2 repack(uint ib, uint iqs) {
#ifdef DATA_A_Q4_0
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
#else // DATA_A_Q4_1
const uint32_t vui = data_a_packed32[ib].qs[iqs];
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
#endif
}
#ifdef DATA_A_Q4_0
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(da * (float(q_sum) * dsb.x - (8 / sum_divisor) * dsb.y));
}
#else // DATA_A_Q4_1
ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
#ifdef DATA_A_Q4_0 #ifdef DATA_A_Q4_0
buf_a[buf_ib].qs[iqs] = pack32(u16vec2(data_a_packed16[ib].qs[iqs * 2], buf_a[buf_ib].qs[iqs] = pack32(u16vec2(data_a_packed16[ib].qs[iqs * 2],
@ -73,42 +48,17 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a.y, qs_b1); q_sum += dotPacked4x8EXT(qs_a.y, qs_b1);
} }
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1); #ifdef DATA_A_Q4_0
return ACC_TYPE(float(cache_a[ib_a].dm) * (float(q_sum) * float(cache_b.ds.x) - 8.0 * float(cache_b.ds.y)));
#else // DATA_A_Q4_1
return ACC_TYPE(float(q_sum) * float(cache_a[ib_a].dm.x) * float(cache_b.ds.x) + float(cache_a[ib_a].dm.y) * float(cache_b.ds.y));
#endif
} }
#endif // MMQ_SHMEM #endif
#elif defined(DATA_A_Q5_0) || defined(DATA_A_Q5_1) #if defined(DATA_A_Q5_0) || defined(DATA_A_Q5_1)
// 2-byte loads for Q5_0 blocks (22 bytes) // 2-byte loads for Q5_0 blocks (22 bytes)
// 4-byte loads for Q5_1 blocks (24 bytes) // 4-byte loads for Q5_1 blocks (24 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
#ifdef DATA_A_Q5_0
const int32_t qh = int32_t((uint32_t(data_a_packed16[ib].qh[1]) << 16 | data_a_packed16[ib].qh[0]) >> (4 * iqs));
#else // DATA_A_Q5_1
const int32_t qh = int32_t(data_a_packed32[ib].qh >> (4 * iqs));
#endif
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
#ifdef DATA_A_Q5_0
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(da * (float(q_sum) * dsb.x - (16 / sum_divisor) * dsb.y));
}
#else // DATA_A_Q5_1
ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
#ifdef DATA_A_Q5_0 #ifdef DATA_A_Q5_0
buf_a[buf_ib].qs[iqs] = pack32(u16vec2(data_a_packed16[ib].qs[iqs * 2], buf_a[buf_ib].qs[iqs] = pack32(u16vec2(data_a_packed16[ib].qs[iqs * 2],
@ -154,23 +104,16 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a1, qs_b1); q_sum += dotPacked4x8EXT(qs_a1, qs_b1);
} }
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1); #ifdef DATA_A_Q5_0
return ACC_TYPE(float(cache_a[ib_a].dm) * (float(q_sum) * float(cache_b.ds.x) - 16.0 * float(cache_b.ds.y)));
#else // DATA_A_Q5_1
return ACC_TYPE(float(q_sum) * float(cache_a[ib_a].dm.x) * float(cache_b.ds.x) + float(cache_a[ib_a].dm.y) * float(cache_b.ds.y));
#endif
} }
#endif // MMQ_SHMEM
#endif #endif
#if defined(DATA_A_Q8_0) #if defined(DATA_A_Q8_0)
// 2-byte loads for Q8_0 blocks (34 bytes) // 2-byte loads for Q8_0 blocks (34 bytes)
int32_t repack(uint ib, uint iqs) {
return pack32(i16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]));
}
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(float(q_sum) * da * dsb.x);
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
buf_a[buf_ib].qs[iqs] = pack32(i16vec2(data_a_packed16[ib].qs[iqs * 2], buf_a[buf_ib].qs[iqs] = pack32(i16vec2(data_a_packed16[ib].qs[iqs * 2],
data_a_packed16[ib].qs[iqs * 2 + 1])); data_a_packed16[ib].qs[iqs * 2 + 1]));
@ -197,28 +140,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a, qs_b); q_sum += dotPacked4x8EXT(qs_a, qs_b);
} }
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1); return ACC_TYPE(float(q_sum) * float(cache_a[ib_a].dm) * float(cache_b.ds.x));
} }
#endif // MMQ_SHMEM
#endif #endif
#if defined(DATA_A_MXFP4) #if defined(DATA_A_MXFP4)
// 1-byte loads for mxfp4 blocks (17 bytes) // 1-byte loads for mxfp4 blocks (17 bytes)
i32vec2 repack(uint ib, uint iqs) {
const uint32_t quants = pack32(u8vec4(data_a[ib].qs[iqs * 4 ],
data_a[ib].qs[iqs * 4 + 1],
data_a[ib].qs[iqs * 4 + 2],
data_a[ib].qs[iqs * 4 + 3]));
return i32vec2( quants & 0x0F0F0F0F,
(quants >> 4) & 0x0F0F0F0F);
}
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(da * dsb.x * float(q_sum));
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint32_t qs = pack32(u8vec4(data_a[ib].qs[iqs * 4 ], const uint32_t qs = pack32(u8vec4(data_a[ib].qs[iqs * 4 ],
data_a[ib].qs[iqs * 4 + 1], data_a[ib].qs[iqs * 4 + 1],
@ -252,37 +179,14 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a, cache_b.qs[iqs]); q_sum += dotPacked4x8EXT(qs_a, cache_b.qs[iqs]);
} }
return mul_q8_1(q_sum, cache_a[ib_a].d, cache_b.ds, 1); return ACC_TYPE(float(cache_a[ib_a].d) * float(cache_b.ds.x) * float(q_sum));
} }
#endif // MMQ_SHMEM
#endif #endif
// For k-quants, ib and iqs still assume 32-wide blocks, but k-quants are 256-wide // For k-quants, ib and iqs still assume 32-wide blocks, but k-quants are 256-wide
// iqs still refers to a 32-bit integer, meaning 0..7 for 32-wide quants // iqs still refers to a 32-bit integer, meaning 0..7 for 32-wide quants
#if defined(DATA_A_Q2_K) #if defined(DATA_A_Q2_K)
// 4-byte loads for Q2_K blocks (84 bytes) // 4-byte loads for Q2_K blocks (84 bytes)
int32_t repack(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 32) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 32) / 8) * 2;
return int32_t((data_a_packed32[ib_k].qs[qs_idx] >> qs_shift) & 0x03030303);
}
uint8_t get_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
return data_a[ib_k].scales[iqs_k / 4];
}
ACC_TYPE mul_q8_1(const int32_t sum_d, const int32_t sum_m, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(dsb.x * (dma.x * float(sum_d) - dma.y * float(sum_m)));
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8; const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs * QUANT_R_MMQ; const uint iqs_k = (ib % 8) * 8 + iqs * QUANT_R_MMQ;
@ -326,14 +230,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
sum_m += dotPacked4x8EXT(scale_m, cache_b.qs[iqs]); sum_m += dotPacked4x8EXT(scale_m, cache_b.qs[iqs]);
} }
return mul_q8_1(sum_d, sum_m, cache_a[ib_a].dm, cache_b.ds, 1); return ACC_TYPE(float(cache_b.ds.x) * (float(cache_a[ib_a].dm.x) * float(sum_d) - float(cache_a[ib_a].dm.y) * float(sum_m)));
} }
#endif // MMQ_SHMEM
#endif #endif
#if defined(DATA_A_Q3_K) #if defined(DATA_A_Q3_K)
// 2-byte loads for Q3_K blocks (110 bytes) // 2-byte loads for Q3_K blocks (110 bytes)
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8; const uint ib_k = ib / 8;
const uint hm_idx = iqs * QUANT_R_MMQ; const uint hm_idx = iqs * QUANT_R_MMQ;
@ -394,18 +296,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
} }
result += float(cache_a[ib_a].d_scales[1]) * float(q_sum); result += float(cache_a[ib_a].d_scales[1]) * float(q_sum);
return ACC_TYPE(cache_b.ds.x * result); return ACC_TYPE(float(cache_b.ds.x) * result);
} }
#endif // MMQ_SHMEM
#endif #endif
#if defined(DATA_A_Q4_K) || defined(DATA_A_Q5_K) #if defined(DATA_A_Q4_K) || defined(DATA_A_Q5_K)
// 4-byte loads for Q4_K blocks (144 bytes) and Q5_K blocks (176 bytes) // 4-byte loads for Q4_K blocks (144 bytes) and Q5_K blocks (176 bytes)
ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(dsb.x * dma.x * float(q_sum) - dma.y * dsb.y);
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8; const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs * QUANT_R_MMQ; const uint iqs_k = (ib % 8) * 8 + iqs * QUANT_R_MMQ;
@ -427,7 +323,6 @@ void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
(((data_a_packed32[ib_k].qh[qh_idx] >> qh_shift) & 0x01010101) << 4)); (((data_a_packed32[ib_k].qh[qh_idx] >> qh_shift) & 0x01010101) << 4));
#endif #endif
if (iqs == 0) { if (iqs == 0) {
// Scale index // Scale index
const uint is = iqs_k / 8; const uint is = iqs_k / 8;
@ -464,49 +359,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a, cache_b.qs[iqs]); q_sum += dotPacked4x8EXT(qs_a, cache_b.qs[iqs]);
} }
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1); return ACC_TYPE(float(cache_b.ds.x) * float(cache_a[ib_a].dm.x) * float(q_sum) - float(cache_a[ib_a].dm.y) * float(cache_b.ds.y));
}
#endif // MMQ_SHMEM
#endif
#ifdef MMQ_SHMEM
void block_b_to_shmem(const uint buf_ib, const uint ib, const uint iqs, const bool is_in_bounds) {
if (is_in_bounds) {
const uint ib_outer = ib / 4;
const uint ib_inner = ib % 4;
if (iqs == 0) {
buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(data_b[ib_outer].ds[ib_inner]);
}
const ivec4 values = data_b[ib_outer].qs[ib_inner * 2 + iqs];
buf_b[buf_ib].qs[iqs * 4 ] = values.x;
buf_b[buf_ib].qs[iqs * 4 + 1] = values.y;
buf_b[buf_ib].qs[iqs * 4 + 2] = values.z;
buf_b[buf_ib].qs[iqs * 4 + 3] = values.w;
} else {
if (iqs == 0) {
buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(0.0f);
}
buf_b[buf_ib].qs[iqs * 4 ] = 0;
buf_b[buf_ib].qs[iqs * 4 + 1] = 0;
buf_b[buf_ib].qs[iqs * 4 + 2] = 0;
buf_b[buf_ib].qs[iqs * 4 + 3] = 0;
}
}
void block_b_to_registers(const uint ib) {
cache_b.ds = buf_b[ib].ds;
[[unroll]] for (uint iqs = 0; iqs < BK / 4; iqs++) {
cache_b.qs[iqs] = buf_b[ib].qs[iqs];
}
} }
#endif #endif
#if defined(DATA_A_Q6_K) #if defined(DATA_A_Q6_K)
// 2-byte loads for Q6_K blocks (210 bytes) // 2-byte loads for Q6_K blocks (210 bytes)
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) { void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8; const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs; const uint iqs_k = (ib % 8) * 8 + iqs;
@ -558,32 +416,39 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
} }
result += float(cache_a[ib_a].d_scales[1]) * float(q_sum); result += float(cache_a[ib_a].d_scales[1]) * float(q_sum);
return ACC_TYPE(cache_b.ds.x * result); return ACC_TYPE(float(cache_b.ds.x) * result);
}
#endif // MMQ_SHMEM
#endif
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q5_0) || defined(DATA_A_Q8_0) || defined(DATA_A_IQ1_S) || defined(DATA_A_IQ2_XXS) || defined(DATA_A_IQ2_XS) || defined(DATA_A_IQ2_S) || defined(DATA_A_IQ3_XXS) || defined(DATA_A_IQ3_S) || defined(DATA_A_IQ4_XS) || defined(DATA_A_IQ4_NL)
FLOAT_TYPE get_d(uint ib) {
return FLOAT_TYPE(data_a[ib].d);
} }
#endif #endif
#if defined(DATA_A_MXFP4) void block_b_to_shmem(const uint buf_ib, const uint ib, const uint iqs, const bool is_in_bounds) {
FLOAT_TYPE get_d(uint ib) { if (is_in_bounds) {
return FLOAT_TYPE(e8m0_to_fp32(data_a[ib].e)); const uint ib_outer = ib / 4;
} const uint ib_inner = ib % 4;
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1) if (iqs == 0) {
FLOAT_TYPE_VEC2 get_dm(uint ib) { buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(data_b[ib_outer].ds[ib_inner]);
return FLOAT_TYPE_VEC2(data_a_packed32[ib].dm); }
}
#endif
#if defined(DATA_A_Q2_K) const ivec4 values = data_b[ib_outer].qs[ib_inner * 2 + iqs];
FLOAT_TYPE_VEC2 get_dm(uint ib) { buf_b[buf_ib].qs[iqs * 4 ] = values.x;
const uint ib_k = ib / 8; buf_b[buf_ib].qs[iqs * 4 + 1] = values.y;
return FLOAT_TYPE_VEC2(data_a_packed32[ib_k].dm); buf_b[buf_ib].qs[iqs * 4 + 2] = values.z;
buf_b[buf_ib].qs[iqs * 4 + 3] = values.w;
} else {
if (iqs == 0) {
buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(0.0f);
}
buf_b[buf_ib].qs[iqs * 4 ] = 0;
buf_b[buf_ib].qs[iqs * 4 + 1] = 0;
buf_b[buf_ib].qs[iqs * 4 + 2] = 0;
buf_b[buf_ib].qs[iqs * 4 + 3] = 0;
}
}
void block_b_to_registers(const uint ib) {
cache_b.ds = buf_b[ib].ds;
[[unroll]] for (uint iqs = 0; iqs < BK / 4; iqs++) {
cache_b.qs[iqs] = buf_b[ib].qs[iqs];
}
} }
#endif

View File

@ -679,14 +679,20 @@ void process_shaders() {
string_to_spv("mul_mat_vec_" + tname + "_f32_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); string_to_spv("mul_mat_vec_" + tname + "_f32_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}}));
string_to_spv("mul_mat_vec_" + tname + "_f16_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); string_to_spv("mul_mat_vec_" + tname + "_f16_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}}));
string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}})); string_to_spv("mul_mat_vec_id_" + tname + "_f32_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
string_to_spv("mul_mat_vec_id_" + tname + "_f32_f32_subgroup", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}}));
string_to_spv("mul_mat_vec_id_" + tname + "_f32_f32_subgroup_no_shmem", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}}));
// mul mat vec with integer dot product // mul mat vec with integer dot product
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (is_legacy_quant(tname)) { if (is_legacy_quant(tname) || tname == "mxfp4" || is_k_quant(tname)) {
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}})); string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}}));
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}})); string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}}));
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup_no_shmem", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}})); string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup_no_shmem", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}}));
string_to_spv("mul_mat_vec_id_" + tname + "_q8_1_f32", "mul_mat_vecq.comp", merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}}));
string_to_spv("mul_mat_vec_id_" + tname + "_q8_1_f32_subgroup", "mul_mat_vecq.comp", merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}}));
string_to_spv("mul_mat_vec_id_" + tname + "_q8_1_f32_subgroup_no_shmem", "mul_mat_vecq.comp", merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}}));
} }
#endif #endif
@ -1100,7 +1106,7 @@ void write_output_files() {
for (const std::string& btype : btypes) { for (const std::string& btype : btypes) {
for (const auto& tname : type_names) { for (const auto& tname : type_names) {
if (btype == "q8_1" && !is_legacy_quant(tname)) { if (btype == "q8_1" && !is_legacy_quant(tname) && tname != "mxfp4" && !is_k_quant(tname)) {
continue; continue;
} }
hdr << "extern const void * arr_dmmv_" << tname << "_" << btype << "_f32_data[3];\n"; hdr << "extern const void * arr_dmmv_" << tname << "_" << btype << "_f32_data[3];\n";
@ -1109,6 +1115,16 @@ void write_output_files() {
src << "const void * arr_dmmv_" << tname << "_" << btype << "_f32_data[3] = {mul_mat_vec_" << tname << "_" << btype << "_f32_data, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_data, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_no_shmem_data};\n"; src << "const void * arr_dmmv_" << tname << "_" << btype << "_f32_data[3] = {mul_mat_vec_" << tname << "_" << btype << "_f32_data, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_data, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_no_shmem_data};\n";
src << "const uint64_t arr_dmmv_" << tname << "_" << btype << "_f32_len[3] = {mul_mat_vec_" << tname << "_" << btype << "_f32_len, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_len, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_no_shmem_len};\n"; src << "const uint64_t arr_dmmv_" << tname << "_" << btype << "_f32_len[3] = {mul_mat_vec_" << tname << "_" << btype << "_f32_len, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_len, mul_mat_vec_" << tname << "_" << btype << "_f32_subgroup_no_shmem_len};\n";
} }
if (btype == "f16") {
continue;
}
hdr << "extern const void * arr_dmmv_id_" << tname << "_" << btype << "_f32_data[3];\n";
hdr << "extern const uint64_t arr_dmmv_id_" << tname << "_" << btype << "_f32_len[3];\n";
if (basename(input_filepath) == "mul_mat_vec.comp") {
src << "const void * arr_dmmv_id_" << tname << "_" << btype << "_f32_data[3] = {mul_mat_vec_id_" << tname << "_" << btype << "_f32_data, mul_mat_vec_id_" << tname << "_" << btype << "_f32_subgroup_data, mul_mat_vec_id_" << tname << "_" << btype << "_f32_subgroup_no_shmem_data};\n";
src << "const uint64_t arr_dmmv_id_" << tname << "_" << btype << "_f32_len[3] = {mul_mat_vec_id_" << tname << "_" << btype << "_f32_len, mul_mat_vec_id_" << tname << "_" << btype << "_f32_subgroup_len, mul_mat_vec_id_" << tname << "_" << btype << "_f32_subgroup_no_shmem_len};\n";
}
} }
} }