convert : correctly handle LLaMA tokenizer for Jamba (#16470)
* fix: convert_hf_to_gguf - change Jamba non-sentencepiece mode (tokenizer.json) vocab construction * fix: convert_hf_to_gguf - jamba non-sentencepiece tokenizer to use _set_vocab_llama_hf func * fix: convert_hf_to_gguf - removed get_vocab_base_pre from jamba
This commit is contained in:
parent
e60f01d941
commit
477a66b035
|
|
@ -5966,20 +5966,12 @@ class Mamba2Model(TextModel):
|
||||||
class JambaModel(TextModel):
|
class JambaModel(TextModel):
|
||||||
model_arch = gguf.MODEL_ARCH.JAMBA
|
model_arch = gguf.MODEL_ARCH.JAMBA
|
||||||
|
|
||||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
|
||||||
del tokenizer # unused
|
|
||||||
|
|
||||||
return "gpt-2"
|
|
||||||
|
|
||||||
def set_vocab(self):
|
def set_vocab(self):
|
||||||
if (self.dir_model / "tokenizer.model").is_file():
|
if (self.dir_model / "tokenizer.model").is_file():
|
||||||
# Using Jamba's tokenizer.json causes errors on model load
|
|
||||||
# (something about "byte not found in vocab"),
|
|
||||||
# but there's a working tokenizer.model
|
|
||||||
self._set_vocab_sentencepiece()
|
self._set_vocab_sentencepiece()
|
||||||
else:
|
else:
|
||||||
# Some Jamba models only have a tokenizer.json, which works.
|
self._set_vocab_llama_hf()
|
||||||
self._set_vocab_gpt2()
|
self.gguf_writer.add_add_space_prefix(False)
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
|
d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue