kv-cache: Fix state restore fragmented cache (#17982)

* kv-cache : fix state restore with fragmented cache (#17527)

Change find_slot to allow non-contiguous allocation during state restore. Fixes 'failed to find available cells in kv cache' error when restoring state to fragmented cache.

* tests : update logic

* cleanup: tightened state_read_meta sig, added is_contiguous case

* fix: state_read_meta arg reorder loose ends

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
ssweens 2025-12-15 09:28:35 -08:00 committed by GitHub
parent 0f4f35e7be
commit 4529c660c8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 213 additions and 29 deletions

View File

@ -1561,9 +1561,11 @@ void llama_kv_cache::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama
const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];
slot_info sinfo;
bool res = true;
res = res && state_read_meta(io, strm, cell_count, seq_id);
res = res && state_read_data(io, strm, cell_count);
res = res && state_read_meta(io, strm, cell_count, sinfo, seq_id);
res = res && state_read_data(io, strm, cell_count, sinfo);
if (!res) {
if (seq_id == -1) {
@ -1702,7 +1704,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
}
}
bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id) {
bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, slot_info & sinfo, llama_seq_id dest_seq_id) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
@ -1739,7 +1741,7 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
ubatch.seq_id[i] = &dest_seq_id;
}
const auto sinfo = find_slot(ubatch, true);
sinfo = find_slot(ubatch, false);
if (sinfo.empty()) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
@ -1749,20 +1751,16 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
// see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
apply_ubatch(sinfo, ubatch);
const auto head_cur = sinfo.head();
LLAMA_LOG_DEBUG("%s: cell_count = %d, dest_seq_id = %d\n", __func__, cell_count, dest_seq_id);
// keep the head at the old position because we will read the KV data into it in state_read_data()
head = head_cur;
LLAMA_LOG_DEBUG("%s: head_cur = %d, head = %d, cell_count = %d, dest_seq_id = %d\n", __func__, head_cur, head, cell_count, dest_seq_id);
// DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head_cur + cell_count <= cells.size());
GGML_ASSERT(cells.pos_get(head_cur) == ubatch.pos[0]);
GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id));
GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
// DEBUG CHECK: verify that all cells were allocated and have correct seq_id and pos values
GGML_ASSERT(sinfo.n_stream() == 1);
GGML_ASSERT(sinfo.idxs[0].size() == cell_count);
for (uint32_t i = 0; i < cell_count; ++i) {
const uint32_t idx = sinfo.idxs[0][i];
GGML_ASSERT(cells.pos_get(idx) == ubatch.pos[i]);
GGML_ASSERT(cells.seq_has(idx, dest_seq_id));
}
} else {
// whole KV cache restore
@ -1795,15 +1793,24 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
}
}
// Create contiguous slot_info for whole cache restore
sinfo.s0 = strm;
sinfo.s1 = strm;
sinfo.resize(1);
sinfo.strm[0] = strm;
sinfo.idxs[0].resize(cell_count);
for (uint32_t i = 0; i < cell_count; ++i) {
sinfo.idxs[0][i] = i;
}
head = 0;
}
return true;
}
bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count) {
bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, const slot_info & sinfo) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
uint32_t v_trans;
uint32_t n_layer;
@ -1853,8 +1860,17 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
if (sinfo.is_contiguous()) {
// Fast path: contiguous cells, single memcpy
ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), sinfo.head() * k_size_row, cell_count * k_size_row);
} else {
// Slow path: scatter to non-contiguous positions
const void * src = io.read(cell_count * k_size_row);
for (uint32_t i = 0; i < cell_count; ++i) {
const size_t dst_offset = sinfo.idxs[0][i] * k_size_row;
ggml_backend_tensor_set(k, (const char*)src + i * k_size_row, dst_offset, k_size_row);
}
}
}
}
@ -1885,8 +1901,17 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
if (sinfo.is_contiguous()) {
// Fast path: contiguous cells, single memcpy
ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), sinfo.head() * v_size_row, cell_count * v_size_row);
} else {
// Slow path: scatter to non-contiguous positions
const void * src = io.read(cell_count * v_size_row);
for (uint32_t i = 0; i < cell_count; ++i) {
const size_t dst_offset = sinfo.idxs[0][i] * v_size_row;
ggml_backend_tensor_set(v, (const char*)src + i * v_size_row, dst_offset, v_size_row);
}
}
}
}
} else {
@ -1925,11 +1950,23 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
if (sinfo.is_contiguous()) {
// Fast path: contiguous cells
const uint32_t h = sinfo.head();
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * cells.size()) * v_size_el;
const size_t dst_offset = (h + j * cells.size()) * v_size_el;
ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
} else {
// Slow path: scatter to non-contiguous positions
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const void * src = io.read(cell_count * v_size_el);
for (uint32_t i = 0; i < cell_count; ++i) {
const size_t dst_offset = (sinfo.idxs[0][i] + j * cells.size()) * v_size_el;
ggml_backend_tensor_set(v, (const char*)src + i * v_size_el, dst_offset, v_size_el);
}
}
}
}
}
}

View File

@ -72,6 +72,23 @@ public:
void clear() {
idxs.clear();
}
// check if indices are contiguous starting from head()
bool is_contiguous() const {
if (idxs.empty() || idxs[0].empty()) {
return true;
}
if (idxs.size() > 1) {
return false;
}
const uint32_t h = idxs[0][0];
for (size_t i = 0; i < idxs[0].size(); ++i) {
if (idxs[0][i] != h + i) {
return false;
}
}
return true;
}
};
using slot_info_vec_t = std::vector<slot_info>;
@ -264,8 +281,8 @@ private:
void state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const;
bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count);
bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, slot_info & sinfo, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, const slot_info & sinfo);
};
class llama_kv_cache_context : public llama_memory_context_i {

View File

@ -222,6 +222,14 @@ llama_build_and_test(test-backend-ops.cpp)
llama_build_and_test(test-model-load-cancel.cpp LABEL "model")
llama_build_and_test(test-autorelease.cpp LABEL "model")
# Test for state restore with fragmented KV cache
# Requires a model, uses same args pattern as test-thread-safety
if (NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
llama_build_and_test(test-state-restore-fragmented.cpp LABEL "model" ARGS -hf ggml-org/models -hff tinyllamas/stories15M-q4_0.gguf)
else()
llama_build_and_test(test-state-restore-fragmented.cpp LABEL "model" ARGS -hf ggml-org/models -hff tinyllamas/stories15M-be.Q4_0.gguf)
endif()
if (NOT GGML_BACKEND_DL)
# these tests use the backends directly and cannot be built with dynamic loading
llama_build_and_test(test-barrier.cpp)

View File

@ -0,0 +1,122 @@
// Test for state restore with fragmented KV cache
// This tests the fix for: https://github.com/ggml-org/llama.cpp/issues/17527
// The issue was that state restore required contiguous KV cache slots,
// which fails when the cache is fragmented.
//
// The fix changes find_slot(ubatch, true) to find_slot(ubatch, false)
// in state_read_meta(), allowing non-contiguous slot allocation.
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <vector>
#include <cstdio>
#include <cstring>
int main(int argc, char ** argv) {
common_params params;
params.sampling.seed = 1234;
params.kv_unified = true;
params.n_parallel = 3;
params.n_ctx = 256;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
common_init();
// init
common_init_result_ptr llama_init = common_init_from_params(params);
llama_model * model = llama_init->model();
llama_context * ctx = llama_init->context();
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1;
}
GGML_UNUSED(model);
// tokenize prompt
std::vector<llama_token> tokens(70, 1);
// interleave the 3 sequences:
// 01201230123...
llama_batch batch = llama_batch_init(params.n_parallel*tokens.size(), 0, 1);
for (size_t i = 0; i < tokens.size(); i++) {
for (int s = 0; s < params.n_parallel; ++s) {
common_batch_add(batch, tokens[i], i, {s}, false);
}
}
batch.logits[batch.n_tokens - 1] = true;
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to decode seq 0\n", __func__);
return 1;
}
fprintf(stderr, "%s : processed prompt on seq 0, 1, 2 (%zu tokens each)\n", __func__, tokens.size());
// Save state of seq 1
std::vector<uint8_t> seq_state(llama_state_seq_get_size(ctx, 1));
const size_t ncopy = llama_state_seq_get_data(ctx, seq_state.data(), seq_state.size(), 1);
if (ncopy != seq_state.size()) {
fprintf(stderr, "%s : failed to save seq 1 state\n", __func__);
return 1;
}
fprintf(stderr, "%s : saved seq 1 state, %zu bytes\n", __func__, ncopy);
// clear seq 1 to create a "hole" in the KV cache (fragmentation)
// 0.20.20.20.2....
llama_memory_t mem = llama_get_memory(ctx);
llama_memory_seq_rm(mem, 1, -1, -1);
fprintf(stderr, "%s : cleared seq 1 to create fragmentation\n", __func__);
// Now the cache has holes where seq 1 was
// This creates fragmentation - there's no contiguous block large enough
// for the seq 1 state if we only look for contiguous slots
// Restore seq 1 state into seq 1 (should work with non-contiguous allocation)
// We use seq 1 since it's a valid sequence ID (0 to n_parallel-1)
// Before the fix, this would fail with "failed to find available cells in kv cache"
const size_t nset = llama_state_seq_set_data(ctx, seq_state.data(), seq_state.size(), 1);
if (nset != seq_state.size()) {
fprintf(stderr, "%s : FAILED to restore seq state into fragmented cache (got %zu, expected %zu)\n",
__func__, nset, seq_state.size());
fprintf(stderr, "%s : This is the bug - state restore fails with fragmented KV cache\n", __func__);
llama_batch_free(batch);
return 1;
}
fprintf(stderr, "%s : restored state into seq 1, %zu bytes\n", __func__, nset);
// Verify we can decode with the restored state
// Generate one token to verify the restored state is usable
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sampling.seed));
auto next_token = llama_sampler_sample(smpl, ctx, -1);
auto next_token_str = common_token_to_piece(ctx, next_token);
common_batch_clear(batch);
common_batch_add(batch, next_token, (int)tokens.size(), {1}, true);
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to decode with restored state\n", __func__);
llama_sampler_free(smpl);
llama_batch_free(batch);
return 1;
}
fprintf(stderr, "%s : successfully decoded with restored state, generated: '%s'\n", __func__, next_token_str.c_str());
fprintf(stderr, "%s : SUCCESS - state restore works with fragmented KV cache\n", __func__);
llama_sampler_free(smpl);
llama_batch_free(batch);
return 0;
}