Merge branch 'master' into imatrix

This commit is contained in:
Ed Addario 2025-11-30 13:00:52 +00:00
commit 44a67210f5
No known key found for this signature in database
GPG Key ID: E7875815A3230993
160 changed files with 18113 additions and 9083 deletions

View File

@ -50,6 +50,7 @@ WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
build-essential \
git \
python3 \
python3-pip \

View File

@ -2,10 +2,8 @@
# multiplie collaborators per item can be specified
/.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren @CISC
/.github/actions/ @CISC
/.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
/ci/ @ggerganov
/cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov
@ -40,21 +38,14 @@
/examples/passkey/ @ggerganov
/examples/retrieval/ @ggerganov
/examples/save-load-state/ @ggerganov
/examples/simple-chat/ @slaren
/examples/simple/ @slaren
/examples/speculative-simple/ @ggerganov
/examples/speculative/ @ggerganov
/ggml/cmake/ @ggerganov
/ggml/include/ @ggerganov @slaren
/ggml/src/ggml-alloc.c @slaren
/ggml/src/ggml-backend* @slaren
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/include/ @ggerganov
/ggml/src/ggml-common.h @ggerganov
/ggml/src/ggml-cpu/ @ggerganov
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
@ -62,19 +53,19 @@
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-impl.h @ggerganov
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren
/ggml/src/ggml-threading.* @ggerganov
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren
/ggml/src/ggml.cpp @ggerganov @slaren
/ggml/src/ggml.c @ggerganov
/ggml/src/ggml.cpp @ggerganov
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
/gguf-py/ @CISC
/media/ @ggerganov
@ -86,15 +77,11 @@
/src/llama-arch.* @CISC
/src/llama-chat.* @ngxson
/src/llama-graph.* @CISC
/src/llama-model-loader.* @slaren
/src/llama-model.* @CISC
/src/llama-vocab.* @CISC
/src/models/ @CISC
/tests/ @ggerganov
/tests/test-backend-ops.cpp @slaren
/tests/test-thread-safety.cpp @slaren
/tools/batched-bench/ @ggerganov
/tools/llama-bench/ @slaren
/tools/main/ @ggerganov
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
@ -106,8 +93,6 @@
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov
/vendor/ @ggerganov
/.clang-format @slaren
/.clang-tidy @slaren
/AUTHORS @ggerganov
/CMakeLists.txt @ggerganov
/CONTRIBUTING.md @ggerganov

View File

@ -45,7 +45,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_SCHED_NO_REALLOC=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
@ -428,8 +428,8 @@ function gg_run_qwen3_0_6b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
@ -523,8 +523,8 @@ function gg_run_embd_bge_small {
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
@ -564,7 +564,7 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --no-op-offload --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029

View File

@ -694,6 +694,12 @@ static bool is_autoy(const std::string & value) {
}
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
// default values specific to example
// note: we place it here instead of inside server.cpp to allow llama-gen-docs to pick it up
if (ex == LLAMA_EXAMPLE_SERVER) {
params.use_jinja = true;
}
// load dynamic backends
ggml_backend_load_all();
@ -974,7 +980,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.kv_unified = true;
}
).set_env("LLAMA_ARG_KV_SPLIT"));
).set_env("LLAMA_ARG_KV_UNIFIED"));
add_opt(common_arg(
{"--no-context-shift"},
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
@ -1232,6 +1238,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
const auto sampler_names = string_split<std::string>(value, ';');
params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS;
}
).set_sparam());
add_opt(common_arg(
@ -1261,6 +1268,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.sampling.temp = std::stof(value);
params.sampling.temp = std::max(params.sampling.temp, 0.0f);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP;
}
).set_sparam());
add_opt(common_arg(
@ -1268,6 +1276,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
[](common_params & params, int value) {
params.sampling.top_k = value;
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
}
).set_sparam());
add_opt(common_arg(
@ -1275,6 +1284,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
[](common_params & params, const std::string & value) {
params.sampling.top_p = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
}
).set_sparam());
add_opt(common_arg(
@ -1282,6 +1292,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
[](common_params & params, const std::string & value) {
params.sampling.min_p = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
}
).set_sparam());
add_opt(common_arg(
@ -1296,6 +1307,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
[](common_params & params, const std::string & value) {
params.sampling.xtc_probability = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
}
).set_sparam());
add_opt(common_arg(
@ -1303,6 +1315,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
[](common_params & params, const std::string & value) {
params.sampling.xtc_threshold = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
}
).set_sparam());
add_opt(common_arg(
@ -1321,6 +1334,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
params.sampling.penalty_last_n = value;
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N;
}
).set_sparam());
add_opt(common_arg(
@ -1328,6 +1342,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
[](common_params & params, const std::string & value) {
params.sampling.penalty_repeat = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
}
).set_sparam());
add_opt(common_arg(
@ -1425,6 +1440,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
[](common_params & params, int value) {
params.sampling.mirostat = value;
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT;
}
).set_sparam());
add_opt(common_arg(
@ -1432,6 +1448,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
[](common_params & params, const std::string & value) {
params.sampling.mirostat_eta = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
}
).set_sparam());
add_opt(common_arg(
@ -1439,6 +1456,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
[](common_params & params, const std::string & value) {
params.sampling.mirostat_tau = std::stof(value);
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
}
).set_sparam());
add_opt(common_arg(
@ -2476,11 +2494,18 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--jinja"},
"use jinja template for chat (default: disabled)",
string_format("use jinja template for chat (default: %s)\n", params.use_jinja ? "enabled" : "disabled"),
[](common_params & params) {
params.use_jinja = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg(
{"--no-jinja"},
string_format("disable jinja template for chat (default: %s)\n", params.use_jinja ? "enabled" : "disabled"),
[](common_params & params) {
params.use_jinja = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_NO_JINJA"));
add_opt(common_arg(
{"--reasoning-format"}, "FORMAT",
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
@ -2614,7 +2639,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params &, const std::string & value) {
common_log_set_file(common_log_main(), value.c_str());
}
));
).set_env("LLAMA_LOG_FILE"));
add_opt(common_arg(
{"--log-colors"}, "[on|off|auto]",
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"

View File

@ -13,6 +13,120 @@
using json = nlohmann::ordered_json;
static void parse_prefixed_json_tool_call_array(common_chat_msg_parser & builder,
const common_regex & prefix,
size_t rstrip_prefix = 0) {
static const std::vector<std::vector<std::string>> args_paths = { { "arguments" } };
if (auto res = builder.try_find_regex(prefix)) {
builder.move_back(rstrip_prefix);
auto tool_calls = builder.consume_json_with_dumped_args(args_paths);
if (!builder.add_tool_calls(tool_calls.value) || tool_calls.is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call array");
}
} else {
builder.add_content(builder.consume_rest());
}
}
static std::string wrap_code_as_arguments(common_chat_msg_parser & builder, const std::string & code) {
std::string arguments;
if (builder.is_partial()) {
arguments = (json{
{ "code", code + builder.healing_marker() }
})
.dump();
auto idx = arguments.find(builder.healing_marker());
if (idx != std::string::npos) {
arguments.resize(idx);
}
} else {
arguments = (json{
{ "code", code }
})
.dump();
}
return arguments;
}
/**
* Takes a prefix regex that must have 1 group to capture the function name, a closing suffix, and expects json parameters in between.
* Aggregates the prefix, suffix and in-between text into the content.
*/
static void parse_json_tool_calls(
common_chat_msg_parser & builder,
const std::optional<common_regex> & block_open,
const std::optional<common_regex> & function_regex_start_only,
const std::optional<common_regex> & function_regex,
const common_regex & close_regex,
const std::optional<common_regex> & block_close,
bool allow_raw_python = false,
const std::function<std::string(const common_chat_msg_parser::find_regex_result & fres)> & get_function_name =
nullptr) {
auto parse_tool_calls = [&]() {
size_t from = std::string::npos;
auto first = true;
while (true) {
auto start_pos = builder.pos();
auto res = function_regex_start_only && first ? builder.try_consume_regex(*function_regex_start_only) :
function_regex ? builder.try_find_regex(*function_regex, from) :
std::nullopt;
if (res) {
std::string name;
if (get_function_name) {
name = get_function_name(*res);
} else {
GGML_ASSERT(res->groups.size() == 2);
name = builder.str(res->groups[1]);
}
first = false;
if (name.empty()) {
// get_function_name signalled us that we should skip this match and treat it as content.
from = res->groups[0].begin + 1;
continue;
}
from = std::string::npos;
auto maybe_raw_python = name == "python" && allow_raw_python;
if (builder.input()[builder.pos()] == '{' || !maybe_raw_python) {
if (auto arguments = builder.try_consume_json_with_dumped_args({ {} })) {
if (!builder.add_tool_call(name, "", arguments->value) || arguments->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
builder.consume_regex(close_regex);
}
continue;
}
if (maybe_raw_python) {
auto arguments = wrap_code_as_arguments(builder, builder.consume_rest());
if (!builder.add_tool_call(name, "", arguments)) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
return;
}
throw common_chat_msg_partial_exception("incomplete tool call");
} else {
builder.move_to(start_pos);
}
break;
}
if (block_close) {
builder.consume_regex(*block_close);
}
builder.consume_spaces();
builder.add_content(builder.consume_rest());
};
if (block_open) {
if (auto res = builder.try_find_regex(*block_open)) {
parse_tool_calls();
} else {
builder.add_content(builder.consume_rest());
}
} else {
parse_tool_calls();
}
}
common_chat_msg_parser::common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax)
: input_(input), is_partial_(is_partial), syntax_(syntax)
{
@ -532,3 +646,857 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
void common_chat_msg_parser::clear_tools() {
result_.tool_calls.clear();
}
/**
* All common_chat_parse_* moved from chat.cpp to chat-parser.cpp below
* to reduce incremental compile time for parser changes.
*/
static void common_chat_parse_generic(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const std::vector<std::vector<std::string>> content_paths = {
{"response"},
};
static const std::vector<std::vector<std::string>> args_paths = {
{"tool_call", "arguments"},
{"tool_calls", "arguments"},
};
auto data = builder.consume_json_with_dumped_args(args_paths, content_paths);
if (data.value.contains("tool_calls")) {
if (!builder.add_tool_calls(data.value.at("tool_calls")) || data.is_partial) {
throw common_chat_msg_partial_exception("incomplete tool calls");
}
} else if (data.value.contains("tool_call")) {
if (!builder.add_tool_call(data.value.at("tool_call")) || data.is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
} else if (data.value.contains("response")) {
const auto & response = data.value.at("response");
builder.add_content(response.is_string() ? response.template get<std::string>() : response.dump(2));
if (data.is_partial) {
throw common_chat_msg_partial_exception("incomplete response");
}
} else {
throw common_chat_msg_partial_exception("Expected 'tool_call', 'tool_calls' or 'response' in JSON");
}
}
static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex prefix(regex_escape("[TOOL_CALLS]"));
parse_prefixed_json_tool_call_array(builder, prefix);
}
static void common_chat_parse_magistral(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("[THINK]", "[/THINK]");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex prefix(regex_escape("[TOOL_CALLS]"));
parse_prefixed_json_tool_call_array(builder, prefix);
}
static void common_chat_parse_command_r7b(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<|START_THINKING|>", "<|END_THINKING|>");
static const common_regex start_action_regex("<\\|START_ACTION\\|>");
static const common_regex end_action_regex("<\\|END_ACTION\\|>");
static const common_regex start_response_regex("<\\|START_RESPONSE\\|>");
static const common_regex end_response_regex("<\\|END_RESPONSE\\|>");
if (auto res = builder.try_find_regex(start_action_regex)) {
// If we didn't extract thoughts, prelude includes them.
auto tool_calls = builder.consume_json_with_dumped_args({{"parameters"}});
for (const auto & tool_call : tool_calls.value) {
std::string name = tool_call.contains("tool_name") ? tool_call.at("tool_name") : "";
std::string id = tool_call.contains("tool_call_id") ? tool_call.at("tool_call_id") : "";
std::string arguments = tool_call.contains("parameters") ? tool_call.at("parameters") : "";
if (!builder.add_tool_call(name, id, arguments) || tool_calls.is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
}
if (tool_calls.is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
builder.consume_regex(end_action_regex);
} else if (auto res = builder.try_find_regex(start_response_regex)) {
if (!builder.try_find_regex(end_response_regex)) {
builder.add_content(builder.consume_rest());
throw common_chat_msg_partial_exception(end_response_regex.str());
}
} else {
builder.add_content(builder.consume_rest());
}
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex function_regex(
"\\s*\\{\\s*(?:\"type\"\\s*:\\s*\"function\"\\s*,\\s*)?\"name\"\\s*:\\s*\"([^\"]+)\"\\s*,\\s*\"parameters\"\\s*: ");
static const common_regex close_regex("\\}\\s*");
static const common_regex function_name_regex("\\s*(\\w+)\\s*\\.\\s*call\\(");
static const common_regex arg_name_regex("\\s*(\\w+)\\s*=\\s*");
if (with_builtin_tools) {
static const common_regex builtin_call_regex("<\\|python_tag\\|>");
if (auto res = builder.try_find_regex(builtin_call_regex)) {
auto fun_res = builder.consume_regex(function_name_regex);
auto function_name = builder.str(fun_res.groups[1]);
common_healing_marker healing_marker;
json args = json::object();
while (true) {
if (auto arg_res = builder.try_consume_regex(arg_name_regex)) {
auto arg_name = builder.str(arg_res->groups[1]);
auto partial = builder.consume_json();
args[arg_name] = partial.json;
healing_marker.marker = partial.healing_marker.marker;
healing_marker.json_dump_marker = partial.healing_marker.json_dump_marker;
builder.consume_spaces();
if (!builder.try_consume_literal(",")) {
break;
}
} else {
break;
}
}
builder.consume_literal(")");
builder.consume_spaces();
auto arguments = args.dump();
if (!builder.add_tool_call(function_name, "", arguments)) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
return;
}
}
parse_json_tool_calls(
builder,
/* block_open= */ std::nullopt,
/* function_regex_start_only= */ function_regex,
/* function_regex= */ std::nullopt,
close_regex,
std::nullopt);
}
static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex tool_calls_begin("(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>|<tool▁calls>)");
static const common_regex tool_calls_end("<tool▁calls▁end>");
static const common_regex function_regex("(?:<tool▁call▁begin>)?function<toolsep>([^\n]+)\n```json\n");
static const common_regex close_regex("```[\\s\\r\\n]*<tool▁call▁end>");
parse_json_tool_calls(
builder,
/* block_open= */ tool_calls_begin,
/* function_regex_start_only= */ std::nullopt,
function_regex,
close_regex,
tool_calls_end);
}
static void common_chat_parse_deepseek_v3_1_content(common_chat_msg_parser & builder) {
static const common_regex function_regex("(?:<tool▁call▁begin>)?([^\\n<]+)(?:<toolsep>)");
static const common_regex close_regex("(?:[\\s]*)?<toolcallend>");
static const common_regex tool_calls_begin("(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>|<tool▁calls>)");
static const common_regex tool_calls_end("<tool▁calls▁end>");
if (!builder.syntax().parse_tool_calls) {
LOG_DBG("%s: not parse_tool_calls\n", __func__);
builder.add_content(builder.consume_rest());
return;
}
LOG_DBG("%s: parse_tool_calls\n", __func__);
parse_json_tool_calls(
builder,
/* block_open= */ tool_calls_begin,
/* function_regex_start_only= */ std::nullopt,
function_regex,
close_regex,
tool_calls_end);
}
static void common_chat_parse_deepseek_v3_1(common_chat_msg_parser & builder) {
// DeepSeek V3.1 outputs reasoning content between "<think>" and "</think>" tags, followed by regular content
// First try to parse using the standard reasoning parsing method
LOG_DBG("%s: thinking_forced_open: %s\n", __func__, std::to_string(builder.syntax().thinking_forced_open).c_str());
auto start_pos = builder.pos();
auto found_end_think = builder.try_find_literal("</think>");
builder.move_to(start_pos);
if (builder.syntax().thinking_forced_open && !builder.is_partial() && !found_end_think) {
LOG_DBG("%s: no end_think, not partial, adding content\n", __func__);
common_chat_parse_deepseek_v3_1_content(builder);
} else if (builder.try_parse_reasoning("<think>", "</think>")) {
// If reasoning was parsed successfully, the remaining content is regular content
LOG_DBG("%s: parsed reasoning, adding content\n", __func__);
// </think><tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>NAME\n```json\nJSON\n```<tool▁call▁end><tool▁calls▁end>
common_chat_parse_deepseek_v3_1_content(builder);
} else {
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE) {
LOG_DBG("%s: reasoning_format none, adding content\n", __func__);
common_chat_parse_deepseek_v3_1_content(builder);
return;
}
// If no reasoning tags found, check if we should treat everything as reasoning
if (builder.syntax().thinking_forced_open) {
// If thinking is forced open but no tags found, treat everything as reasoning
LOG_DBG("%s: thinking_forced_open, adding reasoning content\n", __func__);
builder.add_reasoning_content(builder.consume_rest());
} else {
LOG_DBG("%s: no thinking_forced_open, adding content\n", __func__);
// <tool▁call▁begin>NAME<tool▁sep>JSON<tool▁call▁end>
common_chat_parse_deepseek_v3_1_content(builder);
}
}
}
static void common_chat_parse_minimax_m2(common_chat_msg_parser & builder) {
static const xml_tool_call_format form {
/* form.scope_start = */ "<minimax:tool_call>",
/* form.tool_start = */ "<invoke name=\"",
/* form.tool_sep = */ "\">",
/* form.key_start = */ "<parameter name=\"",
/* form.key_val_sep = */ "\">",
/* form.val_end = */ "</parameter>",
/* form.tool_end = */ "</invoke>",
/* form.scope_end = */ "</minimax:tool_call>",
};
builder.consume_reasoning_with_xml_tool_calls(form, "<think>", "</think>");
}
static void common_chat_parse_qwen3_coder_xml(common_chat_msg_parser & builder) {
static const xml_tool_call_format form = ([]() {
xml_tool_call_format form {};
form.scope_start = "<tool_call>";
form.tool_start = "<function=";
form.tool_sep = ">";
form.key_start = "<parameter=";
form.key_val_sep = ">";
form.val_end = "</parameter>";
form.tool_end = "</function>";
form.scope_end = "</tool_call>";
form.trim_raw_argval = true;
return form;
})();
builder.consume_reasoning_with_xml_tool_calls(form);
}
static void common_chat_parse_kimi_k2(common_chat_msg_parser & builder) {
static const xml_tool_call_format form = ([]() {
xml_tool_call_format form {};
form.scope_start = "<|tool_calls_section_begin|>";
form.tool_start = "<|tool_call_begin|>";
form.tool_sep = "<|tool_call_argument_begin|>{";
form.key_start = "\"";
form.key_val_sep = "\": ";
form.val_end = ", ";
form.tool_end = "}<|tool_call_end|>";
form.scope_end = "<|tool_calls_section_end|>";
form.raw_argval = false;
form.last_val_end = "";
return form;
})();
builder.consume_reasoning_with_xml_tool_calls(form, "<think>", "</think>");
}
static void common_chat_parse_apriel_1_5(common_chat_msg_parser & builder) {
static const xml_tool_call_format form = ([]() {
xml_tool_call_format form {};
form.scope_start = "<tool_calls>[";
form.tool_start = "{\"name\": \"";
form.tool_sep = "\", \"arguments\": {";
form.key_start = "\"";
form.key_val_sep = "\": ";
form.val_end = ", ";
form.tool_end = "}, ";
form.scope_end = "]</tool_calls>";
form.raw_argval = false;
form.last_val_end = "";
form.last_tool_end = "}";
return form;
})();
builder.consume_reasoning_with_xml_tool_calls(form, "<thinking>", "</thinking>");
}
static void common_chat_parse_xiaomi_mimo(common_chat_msg_parser & builder) {
static const xml_tool_call_format form = ([]() {
xml_tool_call_format form {};
form.scope_start = "";
form.tool_start = "<tool_call>\n{\"name\": \"";
form.tool_sep = "\", \"arguments\": {";
form.key_start = "\"";
form.key_val_sep = "\": ";
form.val_end = ", ";
form.tool_end = "}\n</tool_call>";
form.scope_end = "";
form.raw_argval = false;
form.last_val_end = "";
return form;
})();
builder.consume_reasoning_with_xml_tool_calls(form);
}
static void common_chat_parse_gpt_oss(common_chat_msg_parser & builder) {
static const std::string constraint = "(?: (<\\|constrain\\|>)?([a-zA-Z0-9_-]+))";
static const std::string recipient("(?: to=functions\\.([^<\\s]+))");
static const common_regex start_regex("<\\|start\\|>assistant");
static const common_regex analysis_regex("<\\|channel\\|>analysis");
static const common_regex final_regex("<\\|channel\\|>final" + constraint + "?");
static const common_regex preamble_regex("<\\|channel\\|>commentary");
static const common_regex tool_call1_regex(recipient + "<\\|channel\\|>(analysis|commentary)" + constraint + "?");
static const common_regex tool_call2_regex("<\\|channel\\|>(analysis|commentary)" + recipient + constraint + "?");
auto consume_end = [&](bool include_end = false) {
if (auto res = builder.try_find_literal("<|end|>")) {
return res->prelude + (include_end ? builder.str(res->groups[0]) : "");
}
return builder.consume_rest();
};
auto handle_tool_call = [&](const std::string & name) {
if (auto args = builder.try_consume_json_with_dumped_args({{}})) {
if (builder.syntax().parse_tool_calls) {
if (!builder.add_tool_call(name, "", args->value) || args->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
} else if (args->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
}
};
auto regex_match = [](const common_regex & regex, const std::string & input) -> std::optional<common_regex_match> {
auto match = regex.search(input, 0, true);
if (match.type == COMMON_REGEX_MATCH_TYPE_FULL) {
return match;
}
return std::nullopt;
};
do {
auto header_start_pos = builder.pos();
auto content_start = builder.try_find_literal("<|message|>");
if (!content_start) {
throw common_chat_msg_partial_exception("incomplete header");
}
auto header = content_start->prelude;
if (auto match = regex_match(tool_call1_regex, header)) {
auto group = match->groups[1];
auto name = header.substr(group.begin, group.end - group.begin);
handle_tool_call(name);
continue;
}
if (auto match = regex_match(tool_call2_regex, header)) {
auto group = match->groups[2];
auto name = header.substr(group.begin, group.end - group.begin);
handle_tool_call(name);
continue;
}
if (regex_match(analysis_regex, header)) {
builder.move_to(header_start_pos);
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE || builder.syntax().reasoning_in_content) {
builder.add_content(consume_end(true));
} else {
builder.try_parse_reasoning("<|channel|>analysis<|message|>", "<|end|>");
}
continue;
}
if(regex_match(final_regex, header) || regex_match(preamble_regex, header)) {
builder.add_content(consume_end());
continue;
}
// Possibly a malformed message, attempt to recover by rolling
// back to pick up the next <|start|>
LOG_DBG("%s: unknown header from message: %s\n", __func__, header.c_str());
builder.move_to(header_start_pos);
} while (builder.try_find_regex(start_regex, std::string::npos, false));
auto remaining = builder.consume_rest();
if (!remaining.empty()) {
LOG_DBG("%s: content after last message: %s\n", __func__, remaining.c_str());
}
}
static void common_chat_parse_glm_4_5(common_chat_msg_parser & builder) {
static const xml_tool_call_format form {
/* form.scope_start = */ "",
/* form.tool_start = */ "<tool_call>",
/* form.tool_sep = */ "",
/* form.key_start = */ "<arg_key>",
/* form.key_val_sep = */ "</arg_key>",
/* form.val_end = */ "</arg_value>",
/* form.tool_end = */ "</tool_call>",
/* form.scope_end = */ "",
/* form.key_val_sep2 = */ "<arg_value>",
};
builder.consume_reasoning_with_xml_tool_calls(form, "<think>", "</think>");
}
static void common_chat_parse_firefunction_v2(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex prefix(regex_escape(" functools["));
parse_prefixed_json_tool_call_array(builder, prefix, /* rstrip_prefix= */ 1);
}
static void common_chat_parse_functionary_v3_2(common_chat_msg_parser & builder) {
static const common_regex function_regex_start_only(R"((\w+\n\{|python\n|all\n))");
static const common_regex function_regex(R"(>>>(\w+\n\{|python\n|all\n))");
static const common_regex close_regex(R"(\s*)");
parse_json_tool_calls(
builder,
std::nullopt,
function_regex_start_only,
function_regex,
close_regex,
std::nullopt,
/* allow_raw_python= */ true,
/* get_function_name= */ [&](const auto & res) -> std::string {
auto at_start = res.groups[0].begin == 0;
auto name = builder.str(res.groups[1]);
if (!name.empty() && name.back() == '{') {
// Unconsume the opening brace '{' to ensure the JSON parsing goes well.
builder.move_back(1);
}
auto idx = name.find_last_not_of("\n{");
name = name.substr(0, idx + 1);
if (at_start && name == "all") {
return "";
}
return name;
});
}
static void common_chat_parse_functionary_v3_1_llama_3_1(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// This version of Functionary still supports the llama 3.1 tool call format for the python tool.
static const common_regex python_tag_regex(regex_escape("<|python_tag|>"));
static const common_regex function_regex(R"(<function=(\w+)>)");
static const common_regex close_regex(R"(</function>)");
parse_json_tool_calls(
builder,
/* block_open= */ std::nullopt,
/* function_regex_start_only= */ std::nullopt,
function_regex,
close_regex,
std::nullopt);
if (auto res = builder.try_find_regex(python_tag_regex)) {
auto arguments = wrap_code_as_arguments(builder, builder.consume_rest());
builder.add_tool_call("python", "", arguments);
return;
}
}
static void common_chat_parse_hermes_2_pro(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex open_regex(
"(?:"
"(```(?:xml|json)?\\n\\s*)?" // match 1 (block_start)
"(" // match 2 (open_tag)
"<tool_call>"
"|<function_call>"
"|<tool>"
"|<tools>"
"|<response>"
"|<json>"
"|<xml>"
"|<JSON>"
")?"
"(\\s*\\{\\s*\"name\")" // match 3 (named tool call)
")"
"|<function=([^>]+)>" // match 4 (function name)
"|<function name=\"([^\"]+)\">" // match 5 (function name again)
);
while (auto res = builder.try_find_regex(open_regex)) {
const auto & block_start = res->groups[1];
std::string block_end = block_start.empty() ? "" : "```";
const auto & open_tag = res->groups[2];
std::string close_tag;
if (!res->groups[3].empty()) {
builder.move_to(res->groups[3].begin);
close_tag = open_tag.empty() ? "" : "</" + builder.str(open_tag).substr(1);
if (auto tool_call = builder.try_consume_json_with_dumped_args({{"arguments"}})) {
if (!builder.add_tool_call(tool_call->value) || tool_call->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
builder.consume_spaces();
builder.consume_literal(close_tag);
builder.consume_spaces();
if (!block_end.empty()) {
builder.consume_literal(block_end);
builder.consume_spaces();
}
} else {
throw common_chat_msg_partial_exception("failed to parse tool call");
}
} else {
auto function_name = builder.str(res->groups[4]);
if (function_name.empty()) {
function_name = builder.str(res->groups[5]);
}
GGML_ASSERT(!function_name.empty());
close_tag = "</function>";
if (auto arguments = builder.try_consume_json_with_dumped_args({{}})) {
if (!builder.add_tool_call(function_name, "", arguments->value) || arguments->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
builder.consume_spaces();
builder.consume_literal(close_tag);
builder.consume_spaces();
if (!block_end.empty()) {
builder.consume_literal(block_end);
builder.consume_spaces();
}
}
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_granite(common_chat_msg_parser & builder) {
// Parse thinking tags
static const common_regex start_think_regex(regex_escape("<think>"));
static const common_regex end_think_regex(regex_escape("</think>"));
// Granite models output partial tokens such as "<" and "<think".
// By leveraging try_consume_regex()/try_find_regex() throwing
// common_chat_msg_partial_exception for these partial tokens,
// processing is interrupted and the tokens are not passed to add_content().
if (auto res = builder.try_consume_regex(start_think_regex)) {
// Restore position for try_parse_reasoning()
builder.move_to(res->groups[0].begin);
builder.try_find_regex(end_think_regex, std::string::npos, false);
// Restore position for try_parse_reasoning()
builder.move_to(res->groups[0].begin);
}
builder.try_parse_reasoning("<think>", "</think>");
// Parse response tags
static const common_regex start_response_regex(regex_escape("<response>"));
static const common_regex end_response_regex(regex_escape("</response>"));
// Granite models output partial tokens such as "<" and "<response".
// Same hack as reasoning parsing.
if (builder.try_consume_regex(start_response_regex)) {
builder.try_find_regex(end_response_regex);
}
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<|tool_call|>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
// Expect JSON array of tool calls
if (auto tool_call = builder.try_consume_json_with_dumped_args({{{"arguments"}}})) {
if (!builder.add_tool_calls(tool_call->value) || tool_call->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
}
} else {
builder.add_content(builder.consume_rest());
}
}
static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<TOOLCALL>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
// Expect JSON array of tool calls
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
if (!builder.try_consume_literal("</TOOLCALL>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
builder.add_tool_calls(tool_calls_data.json);
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_apertus(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<|inner_prefix|>", "<|inner_suffix|>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<|tools_prefix|>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
builder.consume_spaces();
if (!builder.try_consume_literal("<|tools_suffix|>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
for (const auto & value : tool_calls_data.json) {
if (value.is_object()) {
builder.add_tool_call_short_form(value);
}
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_lfm2(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// LFM2 format: <|tool_call_start|>[{"name": "get_current_time", "arguments": {"location": "Paris"}}]<|tool_call_end|>
static const common_regex tool_call_start_regex(regex_escape("<|tool_call_start|>"));
static const common_regex tool_call_end_regex(regex_escape("<|tool_call_end|>"));
// Loop through all tool calls
while (auto res = builder.try_find_regex(tool_call_start_regex, std::string::npos, /* add_prelude_to_content= */ true)) {
builder.move_to(res->groups[0].end);
// Parse JSON array format: [{"name": "...", "arguments": {...}}]
auto tool_calls_data = builder.consume_json();
// Consume end marker
builder.consume_spaces();
if (!builder.try_consume_regex(tool_call_end_regex)) {
throw common_chat_msg_partial_exception("Expected <|tool_call_end|>");
}
// Process each tool call in the array
if (tool_calls_data.json.is_array()) {
for (const auto & tool_call : tool_calls_data.json) {
if (!tool_call.is_object()) {
throw common_chat_msg_partial_exception("Tool call must be an object");
}
if (!tool_call.contains("name")) {
throw common_chat_msg_partial_exception("Tool call missing 'name' field");
}
std::string function_name = tool_call.at("name");
std::string arguments = "{}";
if (tool_call.contains("arguments")) {
if (tool_call.at("arguments").is_object()) {
arguments = tool_call.at("arguments").dump();
} else if (tool_call.at("arguments").is_string()) {
arguments = tool_call.at("arguments");
}
}
if (!builder.add_tool_call(function_name, "", arguments)) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
} else {
throw common_chat_msg_partial_exception("Expected JSON array for tool calls");
}
// Consume any trailing whitespace after this tool call
builder.consume_spaces();
}
// Consume any remaining content after all tool calls
auto remaining = builder.consume_rest();
if (!string_strip(remaining).empty()) {
builder.add_content(remaining);
}
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
static const xml_tool_call_format form {
/* form.scope_start = */ "<seed:tool_call>",
/* form.tool_start = */ "<function=",
/* form.tool_sep = */ ">",
/* form.key_start = */ "<parameter=",
/* form.key_val_sep = */ ">",
/* form.val_end = */ "</parameter>",
/* form.tool_end = */ "</function>",
/* form.scope_end = */ "</seed:tool_call>",
};
builder.consume_reasoning_with_xml_tool_calls(form, "<seed:think>", "</seed:think>");
}
static void common_chat_parse_content_only(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
builder.add_content(builder.consume_rest());
}
static void common_chat_parse(common_chat_msg_parser & builder) {
LOG_DBG("Parsing input with format %s: %s\n", common_chat_format_name(builder.syntax().format), builder.input().c_str());
switch (builder.syntax().format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY:
common_chat_parse_content_only(builder);
break;
case COMMON_CHAT_FORMAT_GENERIC:
common_chat_parse_generic(builder);
break;
case COMMON_CHAT_FORMAT_MISTRAL_NEMO:
common_chat_parse_mistral_nemo(builder);
break;
case COMMON_CHAT_FORMAT_MAGISTRAL:
common_chat_parse_magistral(builder);
break;
case COMMON_CHAT_FORMAT_LLAMA_3_X:
common_chat_parse_llama_3_1(builder);
break;
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS:
common_chat_parse_llama_3_1(builder, /* with_builtin_tools= */ true);
break;
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
common_chat_parse_deepseek_r1(builder);
break;
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1:
common_chat_parse_deepseek_v3_1(builder);
break;
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
common_chat_parse_functionary_v3_2(builder);
break;
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
common_chat_parse_functionary_v3_1_llama_3_1(builder);
break;
case COMMON_CHAT_FORMAT_HERMES_2_PRO:
common_chat_parse_hermes_2_pro(builder);
break;
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
common_chat_parse_firefunction_v2(builder);
break;
case COMMON_CHAT_FORMAT_COMMAND_R7B:
common_chat_parse_command_r7b(builder);
break;
case COMMON_CHAT_FORMAT_GRANITE:
common_chat_parse_granite(builder);
break;
case COMMON_CHAT_FORMAT_GPT_OSS:
common_chat_parse_gpt_oss(builder);
break;
case COMMON_CHAT_FORMAT_SEED_OSS:
common_chat_parse_seed_oss(builder);
break;
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
case COMMON_CHAT_FORMAT_APERTUS:
common_chat_parse_apertus(builder);
break;
case COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS:
common_chat_parse_lfm2(builder);
break;
case COMMON_CHAT_FORMAT_MINIMAX_M2:
common_chat_parse_minimax_m2(builder);
break;
case COMMON_CHAT_FORMAT_GLM_4_5:
common_chat_parse_glm_4_5(builder);
break;
case COMMON_CHAT_FORMAT_KIMI_K2:
common_chat_parse_kimi_k2(builder);
break;
case COMMON_CHAT_FORMAT_QWEN3_CODER_XML:
common_chat_parse_qwen3_coder_xml(builder);
break;
case COMMON_CHAT_FORMAT_APRIEL_1_5:
common_chat_parse_apriel_1_5(builder);
break;
case COMMON_CHAT_FORMAT_XIAOMI_MIMO:
common_chat_parse_xiaomi_mimo(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}
builder.finish();
}
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax) {
common_chat_msg_parser builder(input, is_partial, syntax);
try {
common_chat_parse(builder);
} catch (const common_chat_msg_partial_exception & ex) {
LOG_DBG("Partial parse: %s\n", ex.what());
if (!is_partial) {
builder.clear_tools();
builder.move_to(0);
common_chat_parse_content_only(builder);
}
}
auto msg = builder.result();
if (!is_partial) {
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
}
return msg;
}

File diff suppressed because it is too large Load Diff

View File

@ -8,6 +8,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cinttypes>
@ -949,6 +950,58 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
// Model utils
//
static inline void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) dst = v;
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) dst = v;
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
@ -960,6 +1013,8 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
common_init_sampler_from_model(model, params.sampling);
const llama_vocab * vocab = llama_model_get_vocab(model);
auto cparams = common_context_params_to_llama(params);

View File

@ -140,6 +140,22 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL;
};
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@ -172,6 +188,8 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY

View File

@ -517,16 +517,18 @@ static bool common_pull_file(httplib::Client & cli,
headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-");
}
std::atomic<size_t> downloaded{existing_size};
const char * func = __func__; // avoid __func__ inside a lambda
size_t downloaded = existing_size;
size_t progress_step = 0;
auto res = cli.Get(resolve_path, headers,
[&](const httplib::Response &response) {
if (existing_size > 0 && response.status != 206) {
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status);
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", func, response.status);
return false;
}
if (existing_size == 0 && response.status != 200) {
LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status);
LOG_WRN("%s: download received non-successful status code: %d\n", func, response.status);
return false;
}
if (total_size == 0 && response.has_header("Content-Length")) {
@ -534,7 +536,7 @@ static bool common_pull_file(httplib::Client & cli,
size_t content_length = std::stoull(response.get_header_value("Content-Length"));
total_size = existing_size + content_length;
} catch (const std::exception &e) {
LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what());
LOG_WRN("%s: invalid Content-Length header: %s\n", func, e.what());
}
}
return true;
@ -542,11 +544,16 @@ static bool common_pull_file(httplib::Client & cli,
[&](const char *data, size_t len) {
ofs.write(data, len);
if (!ofs) {
LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str());
LOG_ERR("%s: error writing to file: %s\n", func, path_tmp.c_str());
return false;
}
downloaded += len;
progress_step += len;
if (progress_step >= total_size / 1000 || downloaded == total_size) {
print_progress(downloaded, total_size);
progress_step = 0;
}
return true;
},
nullptr

View File

@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};

View File

@ -565,7 +565,7 @@ class ModelBase:
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
)
)
or not new_name.endswith(".weight")
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
):
data_qtype = gguf.GGMLQuantizationType.F32
@ -4183,6 +4183,51 @@ class Qwen3MoeModel(Qwen2MoeModel):
super().set_vocab()
@ModelBase.register("Qwen3NextForCausalLM")
class Qwen3NextModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3NEXT
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("mtp"):
return [] # ignore MTP layers for now
if name.endswith(".A_log"):
data_torch = -torch.exp(data_torch)
elif name.endswith(".dt_bias"):
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
elif "conv1d" in name:
data_torch = data_torch.squeeze()
elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
data_torch = data_torch + 1
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("RND1")
class RND1Model(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.RND1
def set_gguf_parameters(self):
super().set_gguf_parameters()
# RND1 specific parameters
# RND1 uses bidirectional attention
self.gguf_writer.add_causal_attention(False)
if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
self.gguf_writer.add_mask_token_id(mask_token_id)
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
class Qwen3VLVisionModel(MmprojModel):
def __init__(self, *args, **kwargs):
@ -10046,6 +10091,25 @@ class LazyTorchTensor(gguf.LazyBase):
torch.uint8: np.uint8,
}
# only used when byteswapping data. Only correct size is needed
_dtype_byteswap_map: dict[torch.dtype, type] = {
torch.float64: np.float64,
torch.float32: np.float32,
torch.bfloat16: np.float16,
torch.float16: np.float16,
torch.int64: np.int64,
torch.uint64: np.uint64,
torch.int32: np.int32,
torch.uint32: np.uint32,
torch.int16: np.int16,
torch.uint16: np.uint16,
torch.int8: np.int8,
torch.uint8: np.uint8,
torch.bool: np.uint8,
torch.float8_e4m3fn: np.uint8,
torch.float8_e5m2: np.uint8,
}
# used for safetensors slices
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
@ -10089,8 +10153,14 @@ class LazyTorchTensor(gguf.LazyBase):
@classmethod
def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
if sys.byteorder == 'big':
# switch data back to big endian
tensor = tensor.view(dtype).byteswap(inplace=False)
return tensor
dtype = cls._dtype_str_map[tensor.dtype]
return torch.from_numpy(tensor.mmap_bytes()).view(dtype).reshape(tensor.shape)
numpy_dtype = cls._dtype_byteswap_map[dtype]
return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
dtype = cls._dtype_str_map[t.dtype]
shape = t.shape
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
@ -10098,10 +10168,16 @@ class LazyTorchTensor(gguf.LazyBase):
@classmethod
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
if sys.byteorder == 'big':
# switch data back to big endian
tensor = tensor.view(dtype).byteswap(inplace=False)
return tensor
dtype = cls._dtype_str_map[remote_tensor.dtype]
numpy_dtype = cls._dtype_byteswap_map[dtype]
shape = remote_tensor.shape
meta = cls.meta_with_dtype_and_shape(dtype, shape)
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
return cast(torch.Tensor, lazy)
@classmethod

View File

@ -242,7 +242,7 @@ def parse_args() -> argparse.Namespace:
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f32",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(

View File

@ -42,6 +42,9 @@ The following releases are verified and recommended:
## News
- 2025.11
- Support malloc memory on device more than 4GB.
- 2025.2
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|GPU|Base tokens/s|Increased tokens/s|Percent|
@ -789,6 +792,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
## Known Issues
@ -835,6 +840,14 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
| The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|
- `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 5000000000 Bytes of memory on device`
You need to enable to support 4GB memory malloc by:
```
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
```
### **GitHub contribution**:
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.

View File

@ -3,7 +3,7 @@
The example demonstrates batched generation from a given prompt
```bash
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4 --kv-unified
...

View File

@ -6,8 +6,54 @@ More Info:
- https://github.com/ggml-org/llama.cpp/pull/14644
- https://github.com/ggml-org/llama.cpp/pull/14771
## Parameters
The diffusion CLI supports various parameters to control the generation process:
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
### Core Diffusion Parameters
- `--diffusion-steps`: Number of diffusion steps (default: 256)
- `--diffusion-algorithm`: Algorithm for token selection
- `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
- `1`: ENTROPY_BASED - Entropy-based selection
- `2`: MARGIN_BASED - Margin-based selection
- `3`: RANDOM - Random selection
- `4`: CONFIDENCE_BASED - Confidence-based selection (default)
- More documentation here https://github.com/DreamLM/Dream
- `--diffusion-visual`: Enable live visualization during generation
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
### Scheduling Parameters
Choose one of the following scheduling methods:
**Timestep-based scheduling:**
- `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
**Block-based scheduling:**
- `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
### Sampling Parameters
- `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
- `--top-k`: Top-k filtering for sampling
- `--top-p`: Top-p (nucleus) filtering for sampling
- `--seed`: Random seed for reproducibility
### Model Parameters
- `-m`: Path to the GGUF model file
- `-p`: Input prompt text
- `-ub`: Maximum sequence length (ubatch size)
- `-c`: Context size
- `-b`: Batch size
### Examples
#### Dream architechture:
```
llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
```
#### LLaDA architechture:
```
llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
```
#### RND1 architecture:
```
llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001
```

View File

@ -104,12 +104,16 @@ int main(int argc, char ** argv) {
params.embedding = true;
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
// in order to support any number of prompts
if (params.n_parallel == 1) {
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
params.kv_unified = true;
params.n_parallel = n_seq_max;
}
// utilize the full context
@ -123,9 +127,6 @@ int main(int argc, char ** argv) {
params.n_ubatch = params.n_batch;
}
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
llama_backend_init();
llama_numa_init(params.numa);

View File

@ -231,9 +231,9 @@ DOT = '[^\\x0A\\x0D]'
RESERVED_NAMES = set(["root", "dot", *PRIMITIVE_RULES.keys(), *STRING_FORMAT_RULES.keys()])
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\\]')
GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]', '\\': '\\\\'}
NON_LITERAL_SET = set('|.()[]{}*+?')
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('^$.[]()|{}*+?')

View File

@ -4,6 +4,11 @@ set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
MODEL_TESTING_PROMPT="${2:-"$MODEL_TESTING_PROMPT"}"
if [ -z "$MODEL_TESTING_PROMPT"]; then
MODEL_TESTING_PROMPT="Hello, my name is"
fi
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
@ -14,7 +19,8 @@ if [ -z "$CONVERTED_MODEL" ]; then
fi
echo $CONVERTED_MODEL
echo $MODEL_TESTING_PROMPT
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "Hello, my name is"
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "$MODEL_TESTING_PROMPT"

View File

@ -184,8 +184,12 @@ model_name = os.path.basename(model_path)
# of using AutoModelForCausalLM.
print(f"Model class: {model.__class__.__name__}")
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
device = next(model.parameters()).device
if os.getenv("MODEL_TESTING_PROMPT"):
prompt = os.getenv("MODEL_TESTING_PROMPT")
else:
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")

View File

@ -15,6 +15,9 @@ MODEL_FILE=models/llama-2-7b.Q4_0.gguf
NGL=99
CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "use $GGML_SYCL_DEVICE as main GPU"

View File

@ -6,7 +6,7 @@
# If you want more control, DPC++ Allows selecting a specific device through the
# following environment variable
#export ONEAPI_DEVICE_SELECTOR="level_zero:0"
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
source /opt/intel/oneapi/setvars.sh
#export GGML_SYCL_DEBUG=1
@ -18,11 +18,14 @@ MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "Using $GGML_SYCL_DEVICE as the main GPU"
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
else
#use multiple GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT}
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
fi

View File

@ -5,5 +5,7 @@
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 99 -s 0

View File

@ -5,5 +5,7 @@
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -e -ngl 99
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -s 0 -e -ngl 99

View File

@ -25,16 +25,17 @@ if(GIT_EXE)
)
endif()
# Build the version string with optional dirty flag
set(GGML_VERSION "${GGML_VERSION_BASE}")
if(GGML_GIT_DIRTY AND NOT GGML_GIT_DIRTY EQUAL 0)
set(GGML_VERSION "${GGML_VERSION}-dirty")
endif()
if(NOT GGML_BUILD_COMMIT)
set(GGML_BUILD_COMMIT "unknown")
endif()
# Build the commit string with optional dirty flag
if(DEFINED GGML_GIT_DIRTY AND GGML_GIT_DIRTY EQUAL 1)
set(GGML_BUILD_COMMIT "${GGML_BUILD_COMMIT}-dirty")
endif()
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@ -182,6 +183,7 @@ endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(GGML_CPU "ggml: enable CPU backend" ON)
option(GGML_SCHED_NO_REALLOC "ggml: disallow reallocations in ggml-alloc (for debugging)" OFF)
# 3rd party libs / backends
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)

View File

@ -8,7 +8,7 @@ extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 3
#define RPC_PROTO_MINOR_VERSION 0
#define RPC_PROTO_MINOR_VERSION 5
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16

View File

@ -530,6 +530,7 @@ extern "C" {
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
GGML_OP_TOP_K,
GGML_OP_LEAKY_RELU,
GGML_OP_TRI,
GGML_OP_FILL,
@ -2258,18 +2259,25 @@ extern "C" {
struct ggml_tensor * a,
enum ggml_sort_order order);
// similar to ggml_top_k but implemented as `argsort` + `view`
GGML_API struct ggml_tensor * ggml_argsort_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k);
// top k elements per row
// note: the resulting top k indices are in no particular order
GGML_API struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k);
GGML_API struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step);
// top k elements per row
GGML_API struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k);
#define GGML_KQ_MASK_PAD 64
// q: [n_embd_k, n_batch, n_head, ne3 ]

View File

@ -221,6 +221,10 @@ if (GGML_BACKEND_DL)
target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
endif()
if (GGML_SCHED_NO_REALLOC)
target_compile_definitions(ggml-base PUBLIC GGML_SCHED_NO_REALLOC)
endif()
add_library(ggml
ggml-backend-reg.cpp)
add_library(ggml::ggml ALIAS ggml)
@ -270,10 +274,13 @@ function(ggml_add_backend_library backend)
endif()
# Set versioning properties for all backend libraries
# Building a MODULE library with a version is not supported on macOS (https://gitlab.kitware.com/cmake/cmake/-/issues/20782)
if (NOT (APPLE AND GGML_BACKEND_DL))
set_target_properties(${backend} PROPERTIES
VERSION ${GGML_VERSION}
SOVERSION ${GGML_VERSION_MAJOR}
)
endif()
if(NOT GGML_AVAILABLE_BACKENDS)
set(GGML_AVAILABLE_BACKENDS "${backend}"
@ -328,6 +335,14 @@ function(ggml_add_cpu_backend_variant tag_name)
set(GGML_INTERNAL_${feat} OFF)
endforeach()
foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON)
endforeach()
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
foreach (feat RVV)
set(GGML_INTERNAL_${feat} OFF)
endforeach()
foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON)
endforeach()
@ -402,6 +417,13 @@ if (GGML_CPU_ALL_VARIANTS)
else()
message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}")
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
ggml_add_cpu_backend_variant(riscv64_0)
ggml_add_cpu_backend_variant(riscv64_v RVV)
else()
message(FATAL_ERROR "Unsupported RISC-V target OS: ${CMAKE_SYSTEM_NAME}")
endif()
else()
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
endif()

View File

@ -921,10 +921,15 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
if (realloc) {
#ifndef NDEBUG
{
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
if (cur_size > 0) {
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n",
__func__, ggml_backend_buft_name(galloc->bufts[i]),
cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
}
}
#endif
ggml_vbuffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
if (galloc->buffers[i] == NULL) {

View File

@ -1395,14 +1395,20 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
#ifdef GGML_SCHED_NO_REALLOC
GGML_ABORT("%s: failed to allocate graph, but graph re-allocation is disabled by GGML_SCHED_NO_REALLOC\n", __func__);
#endif
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
// the re-allocation may cause the split inputs to be moved to a different address
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);

View File

@ -42,6 +42,7 @@
#include <aclnnop/aclnn_exp.h>
#include <aclnnop/aclnn_fill_scalar.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <aclnnop/aclnn_ger.h>
#include <aclnnop/aclnn_group_norm.h>
#include <aclnnop/aclnn_grouped_matmul_v3.h>
#include <aclnnop/aclnn_gt_scalar.h>
@ -2206,78 +2207,120 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context & ctx,
}
/**
* @brief Initializes and caches sine/cosine positional encoding values
* (used in RoPE, Rotary Position Embedding) for attention layers.
* @brief Initializes and caches all intermediate tensors required for RoPE
* (Rotary Position Embedding), including support for Yarn, mRoPE,
* i-mRoPE, Neox repeat strategy, independent sectors, frequency factors
* and multi-section rotary groups.
*
* This function computes and caches the sin/cos values of
* θ = position * theta_scale for RoPE encoding. The cache is shared
* across attention layers, and only the first attention layer will
* trigger initialization. The cache includes repeated sin/cos values
* with different repeat methods depending on the @param is_neox flag.
* This function computes and caches the per-dimension θ coefficients used for
* Q/K rotary embedding. The cache is shared across layers, and recomputed only
* when any dependent parameter changes.
*
* Steps performed by this function:
* 1. Identify whether the target tensor belongs to Q/K in attention
* and restrict computation to the first layer only.
* 2. Initialize the theta scale array (arange power freq scaling).
* 3. Allocate sin/cos caches if the max prompt length increases.
* 4. Compute θ = position * theta_scale.
* 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor.
* 6. Expand sin/cos values by repeat or repeat_interleave depending
* on whether @param is_neox is enabled.
* The function now supports:
* - Yarn RoPE extrapolation (via @param corr_dims and @param ext_factor)
* - Per-dimension independent sector exponent rules (indep_sects + sections[])
* - Multi-section RoPE (mRoPE) index mapping (mrope_used + is_imrope)
* - Frequency factor division (src2)
* - Neox / normal repeat expansion modes
*
* @param ctx The CANN backend context, holding memory pool,
* stream, and persistent buffers for rope init/cache.
* @param dst The destination ggml_tensor whose computation
* depends on the RoPE values (usually Qcur/Kcur).
* @param theta_scale Scalar exponent base for computing theta scale values.
* @param freq_scale Frequency scaling factor, applied to theta scale.
* @param attn_factor Attention scaling factor, applied to sin/cos.
* @param is_neox Whether to use Neox-style repeat strategy
* (dim expansion vs repeat_interleave).
* @param ctx CANN backend context, containing memory pool,
* cached buffers, and runtime stream.
* @param dst Destination ggml_tensor whose computation
* depends on RoPE (typically Qcur or Kcur).
* @param corr_dims [low, high] Yarn correction range.
* @param ext_factor Yarn extrapolation strength. 0 = disabled.
* @param theta_scale Base multiplier for per-dimension θ exponent.
* @param freq_scale Global frequency scaling factor.
* @param attn_factor Optional scaling applied to sin/cos (if needed).
* @param is_neox Whether to use Neox-style dimension interleave.
* @param sections 4-way sector sizes for independent-section RoPE
* and multi-section mRoPE (t/h/w/e).
* @param mrope_used Whether to enable multi-section rotary embedding.
* @param is_imrope Whether to apply interleaved mRoPE rules.
* @param indep_sects Whether each dimension runs independent exponent
* resets based on @p sections.
*/
static void aclnn_cache_init(ggml_backend_cann_context & ctx,
static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
ggml_tensor * dst,
float * corr_dims,
float ext_factor,
float theta_scale,
float freq_scale,
float attn_factor,
bool is_neox) {
bool is_neox,
int sections[4],
bool mrope_used,
bool is_imrope,
bool indep_sects) {
ggml_tensor * src0 = dst->src[0]; // input
ggml_tensor * src1 = dst->src[1]; // position
ggml_tensor * src2 = dst->src[2]; // freq_factors
if (src2 == nullptr && ctx.rope_cache.cached && ctx.rope_cache.ext_factor == ext_factor &&
ctx.rope_cache.theta_scale == theta_scale && ctx.rope_cache.freq_scale == freq_scale &&
ctx.rope_cache.attn_factor == attn_factor && ctx.rope_cache.is_neox == is_neox) {
int64_t theta_scale_length = src0->ne[0] / 2;
int64_t position_length = dst->ne[2];
// TODO: check theta_scale_length and position_length.
if (src2 == nullptr && ctx.rope_cache.cached &&
ctx.rope_cache.equal(theta_scale_length, position_length, ext_factor, theta_scale, freq_scale, attn_factor,
is_neox, indep_sects, mrope_used, is_imrope, sections)) {
// use cache.
return;
}
int64_t theta_scale_length = src0->ne[0] / 2;
// Step0: calculate tensor shape.
int64_t theta_scale_ne[] = { theta_scale_length, 1, 1, 1 };
size_t theta_scale_nb[] = { sizeof(float), sizeof(float), sizeof(float), theta_scale_length * sizeof(float) };
size_t theta_scale_nb[] = { sizeof(float), theta_scale_length * sizeof(float), theta_scale_length * sizeof(float),
theta_scale_length * sizeof(float) };
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t position_length = src1->ne[0];
int64_t position_ne[] = { 1, 1, position_length, 1 };
size_t position_nb[] = { sizeof(int32_t), sizeof(int32_t), sizeof(int32_t), sizeof(int32_t) * position_length };
int64_t theta_ne[] = { theta_scale_length, 1, position_length, 1 };
size_t theta_nb[GGML_MAX_DIMS];
theta_nb[0] = sizeof(float);
int64_t cache_ne[] = { theta_scale_length, 1, position_length, 1 };
size_t cache_nb[GGML_MAX_DIMS];
cache_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
cache_nb[i] = cache_nb[i - 1] * cache_ne[i - 1];
}
// theta_scale arange, [0,1,...,ne00/2 - 1]
// Step1: Compute the coefficient of theta. During the cache_init process, aside from
// (1) multiplying by the position,
// (2) dividing by freq_factors,
// (3) computing the sine and cosine,
// the other parameters used in the computation generally do not change in most scenarios.
// Therefore, we can first compute this part of the result and then cache it.
// Step1.1: prepare theta_scale exponent. if this exponent updated, should update theta_scale_tensor.
acl_tensor_ptr acl_theta_scale_tensor;
// cache theta scale
if (ctx.rope_cache.theta_scale_length != theta_scale_length ||
// theta_scale and freq_scale should not change during the current token inference process,
// so we can directly use == here instead of comparing the absolute difference.
ctx.rope_cache.theta_scale != theta_scale || ctx.rope_cache.freq_scale != freq_scale) {
ctx.rope_cache.theta_scale_length = theta_scale_length;
bool theta_scale_updated = false;
if (ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.theta_scale != theta_scale ||
ctx.rope_cache.indep_sects != indep_sects) {
theta_scale_updated = true;
if (ctx.rope_cache.theta_scale_exp_host != nullptr) {
free(ctx.rope_cache.theta_scale_exp_host);
}
ctx.rope_cache.theta_scale_exp_host = (float *) malloc(theta_scale_length * sizeof(float));
GGML_ASSERT(ctx.rope_cache.theta_scale_exp_host != nullptr);
if (!indep_sects) {
ctx.rope_cache.theta_scale_exp_host[0] = 1;
for (int i = 1; i < theta_scale_length; i++) {
ctx.rope_cache.theta_scale_exp_host[i] = ctx.rope_cache.theta_scale_exp_host[i - 1] * theta_scale;
}
} else {
int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
int sec_w = sections[1] + sections[0];
int sec_e = sections[2] + sec_w;
ctx.rope_cache.theta_scale_exp_host[0] = 1;
for (int i = 1; i < theta_scale_length; i++) {
int sector = i % sect_dims;
if (sector == 0 || sector == sections[0] || sector == sec_w || sector == sec_e) {
ctx.rope_cache.theta_scale_exp_host[i] = 1;
continue;
}
ctx.rope_cache.theta_scale_exp_host[i] = ctx.rope_cache.theta_scale_exp_host[i - 1] * theta_scale;
}
}
if (ctx.rope_cache.theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache));
@ -2285,18 +2328,23 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float),
ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float),
ctx.rope_cache.theta_scale_exp_host, theta_scale_length * sizeof(float),
ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream()));
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, 1);
}
float start = 0;
float step = 1;
float stop = theta_scale_length;
float n_elements = theta_scale_length;
aclnn_arange(ctx, acl_theta_scale_tensor.get(), start, stop, step, n_elements);
// Step1.2: prepare rope_yarn_ramp, if this part updated, should update theta_scale_tensor.
bool yarn_ramp_tensor_updated = false;
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
acl_tensor_ptr acl_yarn_ramp_tensor;
if (ext_factor != 0) {
if (ext_factor != 0 &&
// TODO: check more parameter.
(ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.freq_scale != freq_scale)) {
yarn_ramp_tensor_updated = true;
// -rope_yarn_ramp
// const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
// return MIN(1, MAX(0, y)) - 1;
@ -2312,8 +2360,8 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
acl_scalar_ptr denom_safe = ggml_cann_create_scalar(&denom_safe_value, aclDataType::ACL_FLOAT);
acl_scalar_ptr ext_factor_sc = ggml_cann_create_scalar(&ext_factor, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, Subs, acl_theta_scale_tensor.get(), low.get(), one.get(),
acl_yarn_ramp_tensor.get());
aclnn_arange(ctx, acl_yarn_ramp_tensor.get(), 0, theta_scale_length, 1, theta_scale_length);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor.get(), low.get(), one.get());
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor.get(), denom_safe.get());
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor.get(), zero.get(), zero.get());
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor.get(), one.get());
@ -2335,24 +2383,83 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor.get(), freq_scale_sc.get(), one.get());
}
// power
acl_scalar_ptr acl_theta_scale = ggml_cann_create_scalar(&theta_scale, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale.get(), acl_theta_scale_tensor.get(),
acl_theta_scale_tensor.get());
// Step 1.3: update theta_scale_tensor according to ext_factor or freq_scale.
if (ext_factor != 0) {
if (theta_scale_updated || yarn_ramp_tensor_updated) {
theta_scale_updated = true;
aclnn_mul(ctx, acl_theta_scale_tensor.get(), acl_yarn_ramp_tensor.get());
} else if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor.get(), freq_scale, nullptr, true);
}
} else {
// use cache
if (freq_scale != 1 && (ctx.rope_cache.freq_scale != freq_scale || theta_scale_updated)) {
theta_scale_updated = true;
aclnn_muls(ctx, acl_theta_scale_tensor.get(), freq_scale, nullptr, true);
}
}
// Nothing changed, use cache.
if (!theta_scale_updated) {
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
}
// Step 1.4: prepare select index if mrope
acl_tensor_ptr position_select_index_tensor;
if (mrope_used) {
if (ctx.rope_cache.sections[0] != sections[0] || ctx.rope_cache.sections[1] != sections[1] ||
ctx.rope_cache.sections[2] != sections[2] || ctx.rope_cache.sections[3] != sections[3] ||
ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.is_imrope != is_imrope) {
if (ctx.rope_cache.position_select_index_host != nullptr) {
free(ctx.rope_cache.position_select_index_host);
}
ctx.rope_cache.position_select_index_host = (int *) malloc(theta_scale_length * sizeof(int));
GGML_ASSERT(ctx.rope_cache.position_select_index_host != nullptr);
int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
int sec_w = sections[1] + sections[0];
int sec_e = sections[2] + sec_w;
// t,h,w,e
for (int i = 0; i < theta_scale_length; i++) {
int sector = i % sect_dims;
if (is_imrope) { // qwen3vl apply interleaved mrope
if (sector % 3 == 1 && sector < 3 * sections[1]) {
ctx.rope_cache.position_select_index_host[i] = 1;
} else if (sector % 3 == 2 && sector < 3 * sections[2]) {
ctx.rope_cache.position_select_index_host[i] = 2;
} else if (sector % 3 == 0 && sector < 3 * sections[0]) {
ctx.rope_cache.position_select_index_host[i] = 0;
} else {
ctx.rope_cache.position_select_index_host[i] = 3;
}
} else {
if (sector >= sections[0] && sector < sec_w) {
ctx.rope_cache.position_select_index_host[i] = 1;
} else if (sector >= sec_w && sector < sec_e) {
ctx.rope_cache.position_select_index_host[i] = 2;
} else if (sector >= sec_e) {
ctx.rope_cache.position_select_index_host[i] = 3;
} else {
ctx.rope_cache.position_select_index_host[i] = 0;
}
}
}
if (ctx.rope_cache.position_select_index != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_cache.position_select_index));
}
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.position_select_index, theta_scale_length * sizeof(int),
ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.position_select_index, theta_scale_length * sizeof(int),
ctx.rope_cache.position_select_index_host, theta_scale_length * sizeof(int),
ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream()));
}
position_select_index_tensor = ggml_cann_create_tensor(ctx.rope_cache.position_select_index, ACL_INT32,
sizeof(int), theta_scale_ne, theta_scale_nb, 1);
}
// Step2: divide by freq_factors
ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool());
// freq_factors
if (src2) {
freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float));
void * freq_fac_res_ptr = freq_fac_res_allocator.get();
@ -2365,6 +2472,85 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor);
}
// Step3: prepare position_tensor
acl_tensor_ptr acl_position_tensor;
ggml_cann_pool_alloc mrope_position_acllocator(ctx.pool());
if (mrope_used) {
// Step3.1: select current position;
// position :
// pos1: [[0, 1 ,2 ,3 ],
// pos2: [4, 5 ,6 ,7 ],
// pos3: [8, 9 ,10,11],
// pos4: [12,13,14,15] ]
//
// select index = [0, 1, 2, 2, 1, 0]
//
// selected_tensor:
// [[0, 1 ,2 ,3 ],
// [4, 5 ,6 ,7 ],
// [8, 9 ,10,11],
// [8, 9 ,10,11],
// [4, 5 ,6 ,7 ],
// [0, 1 ,2 ,3 ]]
//
// transpose, from [seq_len:dims] to [dims:seq_len]
// [0, 4, 8 ,8 ,4, 0],
// [1, 5, 9, 9, 5, 1],
// [2, 6, 10,10,6 ,2],
// [3, 7, 11,11,7 3 ]]
//
// multipy by theta_scale_tensor
// [theta_scale^0, theta_scale^1, ..., theta_scale ^ n]
int64_t mrope_position_ne[] = { position_length, 4 };
size_t mrope_position_nb[] = { sizeof(int), position_length * sizeof(int) };
acl_tensor_ptr mrope_position =
ggml_cann_create_tensor(src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type),
mrope_position_ne, mrope_position_nb, 2);
// selected position tensor's shape is a transpose of cache tensor.
int64_t selected_position_ne[] = { position_length, theta_scale_length };
size_t selected_position_nb[] = { sizeof(float), position_length * sizeof(float) };
mrope_position_acllocator.alloc(theta_scale_length * position_length * sizeof(float));
void * mrope_position_buffer = mrope_position_acllocator.get();
acl_position_tensor =
ggml_cann_create_tensor(mrope_position_buffer, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), selected_position_ne, selected_position_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, mrope_position.get(), 0, position_select_index_tensor.get(),
acl_position_tensor.get());
// transpose
int64_t transposed_ne[] = { position_length, 1, theta_scale_length, 1 };
size_t transposed_nb[GGML_MAX_DIMS];
transposed_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
transposed_nb[i] = transposed_nb[i - 1] * transposed_ne[i - 1];
}
std::swap(transposed_ne[0], transposed_ne[2]);
std::swap(transposed_nb[0], transposed_nb[2]);
acl_position_tensor =
ggml_cann_create_tensor(mrope_position_buffer, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), transposed_ne, transposed_nb, GGML_MAX_DIMS);
} else {
// auto bcast.
acl_position_tensor =
ggml_cann_create_tensor(src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type),
position_ne, position_nb, GGML_MAX_DIMS);
}
// Step4: multiply by the position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(), theta_length * sizeof(float));
void * theta_buffer = theta_allocator.get();
acl_tensor_ptr acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float), cache_ne, cache_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor.get(), acl_theta_scale_tensor.get(), acl_theta_tensor.get());
// Step5: calculate sin cos.
// init sin_repeat && cos_repeat, only to accelerate first layer on each device
if (position_length > ctx.rope_cache.position_length) {
ctx.rope_cache.position_length = position_length;
@ -2381,44 +2567,30 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
aclrtMalloc(&ctx.rope_cache.cos_cache, repeat_theta_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST));
}
// position
acl_tensor_ptr acl_position_tensor =
ggml_cann_create_tensor(src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type), position_ne,
position_nb, GGML_MAX_DIMS);
// power * position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(), theta_length * sizeof(float));
void * theta_buffer = theta_allocator.get();
acl_tensor_ptr acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor.get(), acl_theta_scale_tensor.get(), acl_theta_tensor.get());
// sin/cos
ggml_cann_pool_alloc sin_allocator(ctx.pool(), theta_length * sizeof(float));
void * sin_buffer = sin_allocator.get();
acl_tensor_ptr acl_sin_tensor =
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float), cache_ne, cache_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_theta_tensor.get(), acl_sin_tensor.get());
ggml_cann_pool_alloc cos_allocator(ctx.pool(), theta_length * sizeof(float));
void * cos_buffer = cos_allocator.get();
acl_tensor_ptr acl_cos_tensor =
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float), cache_ne, cache_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_theta_tensor.get(), acl_cos_tensor.get());
if (ext_factor != 0) {
attn_factor *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
// attn_factor
// Step 5: multiply by attn_factor
if (attn_factor != 1) {
aclnn_muls(ctx, acl_sin_tensor.get(), attn_factor, nullptr, true);
aclnn_muls(ctx, acl_cos_tensor.get(), attn_factor, nullptr, true);
}
int64_t sin_reshape_ne[4] = { src0->ne[0], 1, src0->ne[2], 1 };
int64_t sin_reshape_ne[4] = { src0->ne[0], 1, dst->ne[2], 1 };
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
@ -2429,8 +2601,9 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
acl_tensor_ptr acl_cos_repeat_tensor = ggml_cann_create_tensor(ctx.rope_cache.cos_cache, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
// repeat
// Step 6: repeat
if (is_neox) {
// [sinθ1, sinθ1, sinθ2, sinθ2, ..., sinθn, sinθn]
int64_t repeatsArray[] = { 1, 1, 1, 2 };
aclnn_repeat(ctx, acl_sin_tensor.get(), acl_sin_repeat_tensor.get(), repeatsArray);
aclnn_repeat(ctx, acl_cos_tensor.get(), acl_cos_repeat_tensor.get(), repeatsArray);
@ -2438,17 +2611,15 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
int64_t num_repeats = 2;
int64_t dim = 3;
int64_t output_size = theta_scale_length * num_repeats;
// [sinθ1, sinθ2, ..., sinθn, sinθ1, sinθ2, ..., sinθn]
aclnn_repeat_interleave(ctx, acl_sin_tensor.get(), acl_sin_repeat_tensor.get(), dim, num_repeats, output_size);
aclnn_repeat_interleave(ctx, acl_cos_tensor.get(), acl_cos_repeat_tensor.get(), dim, num_repeats, output_size);
}
// Other layers use cache except first layer.
// Update cached value.
ctx.rope_cache.cached = true;
ctx.rope_cache.ext_factor = ext_factor;
ctx.rope_cache.theta_scale = theta_scale;
ctx.rope_cache.freq_scale = freq_scale;
ctx.rope_cache.attn_factor = attn_factor;
ctx.rope_cache.is_neox = is_neox;
ctx.rope_cache.set(theta_scale_length, position_length, ext_factor, theta_scale, freq_scale, attn_factor, is_neox,
indep_sects, mrope_used, is_imrope, sections);
}
#ifdef __cplusplus
@ -2474,6 +2645,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
// param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
int sections[4];
// const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
@ -2488,6 +2660,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
// TODO: n_dims <= ne0
GGML_ASSERT(n_dims == ne0);
@ -2498,10 +2671,25 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, note: also true for vision (24 & 8 == true) and for imrope
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (mrope_used) {
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne0/2);
}
if (is_imrope || mrope_used) {
is_neox = true;
}
// init ctx.rope_cos/rope_sin cache
aclnn_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox);
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections, mrope_used, is_imrope, is_vision);
int64_t sin_reshape_ne[4] = { ne00, 1, ne02, 1 };
size_t sin_reshape_nb[GGML_MAX_DIMS];
@ -2657,8 +2845,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
return;
#endif
// ggml_mode = 0 --> aclnn_model = 1
int64_t acl_mode = mode == 0 ? 1 : mode;
int64_t acl_mode = is_neox ? 0 : 1;
switch (src0->type) {
case GGML_TYPE_F32:
@ -3236,3 +3423,64 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst
GGML_ABORT("Function is not implemented.");
}
}
static void ggml_cann_out_prod_fp(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src0 = dst->src[0]; // weight
ggml_tensor * src1 = dst->src[1]; // input
GGML_TENSOR_BINARY_OP_LOCALS
acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceZero, acl_dst.get());
const int64_t dps2 = ne2 / ne02;
const int64_t dps3 = ne3 / ne03;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
const int64_t i02 = i2 / dps2;
const int64_t i03 = i3 / dps3;
const int64_t i12 = i2;
const int64_t i13 = i3;
acl_tensor_ptr accumulator =
ggml_cann_create_tensor((char *) dst->data + i2 * nb2 + i3 * nb3, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), dst->ne, dst->nb, 2);
// The outer product needs to be accumulated in this dimension.
for (int64_t i1 = 0; i1 < ne11; i1++) {
acl_tensor_ptr acl_input = ggml_cann_create_tensor(
(char *) src1->data + i1 * nb11 + i12 * nb12 + i13 * nb13, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src1->ne, src1->nb, 1);
acl_tensor_ptr acl_weight = ggml_cann_create_tensor(
(char *) src0->data + i1 * nb01 + i02 * nb02 + i03 * nb03, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, src0->nb, 1);
ggml_cann_pool_alloc output_allocator(ctx.pool());
void * output_buffer = output_allocator.alloc(ggml_nbytes(dst));
acl_tensor_ptr acl_out = ggml_cann_create_tensor(output_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), dst->ne, dst->nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, Ger, acl_input.get(), acl_weight.get(), acl_out.get());
float alpha_value = 1.0f;
aclScalar * alpha = aclCreateScalar(&alpha_value, ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdd, accumulator.get(), acl_out.get(), alpha);
}
}
}
}
void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src0 = dst->src[0];
const enum ggml_type type = src0->type;
switch (type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
ggml_cann_out_prod_fp(ctx, dst);
break;
default:
GGML_ABORT("Unsupport type for GGML_OP_OUT_PROD");
break;
}
}

View File

@ -1125,3 +1125,23 @@ void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, ac
} while (0)
#endif // CANN_ACLNN_OPS
/**
* @brief Performs outer product operation on two ggml tensors using the CANN backend.
*
* @details This function computes the outer product of two input tensors (src0 and src1)
* and stores the result in the destination tensor. The outer product operation is defined as:
* dst[i,j,k,l] = sum_m (src0[i,m,k,l] * src1[j,m,k,l])
*
* The function supports multiple data types including F32, F16. For floating-point
* types, it uses batch matrix multiplication for efficient computation.
*
* The implementation handles 4D tensor broadcasting and batch processing automatically.
*
* @param ctx The CANN backend context for operation execution and memory management.
* @param dst The destination ggml_tensor where the outer product result will be stored.
* The input tensors are assumed to be `dst->src[0]` and `dst->src[1]`.
*
* @see GGML_CANN_CALL_ACLNN_OP for CANN operator invocation
*/
void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst);

View File

@ -300,30 +300,92 @@ struct ggml_cann_graph_lru_cache {
struct ggml_cann_rope_cache {
~ggml_cann_rope_cache() {
if (theta_scale_cache != nullptr) {
if (theta_scale_cache) {
ACL_CHECK(aclrtFree(theta_scale_cache));
}
if (sin_cache != nullptr) {
if (sin_cache) {
ACL_CHECK(aclrtFree(sin_cache));
}
if (cos_cache != nullptr) {
if (cos_cache) {
ACL_CHECK(aclrtFree(cos_cache));
}
if (position_select_index) {
ACL_CHECK(aclrtFree(position_select_index));
}
if (theta_scale_exp_host) {
free(theta_scale_exp_host);
}
if(position_select_index_host) {
free(position_select_index_host);
}
}
bool equal(int64_t theta_scale_length,
int64_t position_length,
float ext_factor,
float theta_scale,
float freq_scale,
float attn_factor,
bool is_neox,
bool indep_sects,
bool mrope_used,
bool is_imrope,
int sections[4]) {
return this->theta_scale_length == theta_scale_length && this->position_length == position_length &&
this->ext_factor == ext_factor && this->theta_scale == theta_scale && this->freq_scale == freq_scale &&
this->attn_factor == attn_factor && this->is_neox == is_neox && this->indep_sects == indep_sects &&
this->mrope_used == mrope_used && this->is_imrope == is_imrope && this->sections[0] == sections[0] &&
this->sections[1] == sections[1] && this->sections[2] == sections[2] && this->sections[3] == sections[3];
}
void set(int64_t theta_scale_length,
int64_t position_length,
float ext_factor,
float theta_scale,
float freq_scale,
float attn_factor,
bool is_neox,
bool indep_sects,
bool mrope_used,
bool is_imrope,
int sections[4]) {
this->theta_scale_length = theta_scale_length;
this->position_length = position_length;
this->ext_factor = ext_factor;
this->theta_scale = theta_scale;
this->freq_scale = freq_scale;
this->attn_factor = attn_factor;
this->is_neox = is_neox;
this->indep_sects = indep_sects;
this->mrope_used = mrope_used;
this->is_imrope = is_imrope;
this->sections[0] = sections[0];
this->sections[1] = sections[1];
this->sections[2] = sections[2];
this->sections[3] = sections[3];
}
// memory cache, prepare before inferencing.
void * theta_scale_cache = nullptr;
int64_t theta_scale_length = 0;
float * theta_scale_exp_host = nullptr;
int * position_select_index_host = nullptr;
void * position_select_index = nullptr;
// sin/cos cache, used only to accelerate first layer on each device
void * sin_cache = nullptr;
void * cos_cache = nullptr;
int64_t position_length = 0;
// Properties to check before reusing the sincos cache
int64_t theta_scale_length = 0;
int64_t position_length = 0;
bool cached = false;
float ext_factor = 0.0f;
float theta_scale = 0.0f;
float freq_scale = 0.0f;
float attn_factor = 0.0f;
bool is_neox = false;
bool indep_sects = false;
bool mrope_used = false;
int sections[4] = { 0, 0, 0, 0 };
bool is_imrope = false;
};
struct ggml_cann_tensor_cache {

View File

@ -1886,6 +1886,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
case GGML_OP_FLASH_ATTN_EXT:
ggml_cann_flash_attn_ext(ctx, dst);
break;
case GGML_OP_OUT_PROD:
ggml_cann_out_prod(ctx, dst);
break;
default:
return false;
}
@ -2303,9 +2306,9 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
// calculate rope cache for fist layer in current device.
cann_ctx->rope_cache.cached = false;
bool cann_graph_update_required = false;
#ifdef USE_ACL_GRAPH
bool use_cann_graph = true;
bool cann_graph_update_required = false;
static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
if (!prefill_use_graph) {
@ -2336,7 +2339,6 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
}
#else
bool use_cann_graph = false;
bool cann_graph_update_required = false;
#endif // USE_ACL_GRAPH
evaluate_and_capture_cann_graph(cann_ctx, cgraph, use_cann_graph, cann_graph_update_required);
@ -2478,13 +2480,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
return false;
}
const int mode = ((const int32_t *) op->op_params)[2];
if (mode & GGML_ROPE_TYPE_MROPE) {
return false;
}
if (mode & GGML_ROPE_TYPE_VISION) {
return false;
}
if (op->src[0]->ne[0] > 896) {
return false;
}
@ -2564,6 +2559,16 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
case GGML_OP_OUT_PROD:
{
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
default:
return false;
}
}
case GGML_OP_CONV_TRANSPOSE_1D:
// TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
return (op->src[0]->ne[0] - 1) <= 255;

View File

@ -224,7 +224,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
include(CheckCXXSourceCompiles)
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "${ARCH_FLAGS}")
string(REPLACE ";" " " ARCH_FLAGS_STR "${ARCH_FLAGS}")
set(CMAKE_REQUIRED_FLAGS "${ARCH_FLAGS_STR}")
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
set(ARM_FEATURE "HAVE_${feature}")
check_cxx_source_compiles(
@ -452,6 +453,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/spacemit/ime_kernels.h
)
endif()
if(NOT GGML_CPU_ALL_VARIANTS)
set(MARCH_STR "rv64gc")
if (GGML_RV_ZFH)
string(APPEND MARCH_STR "_zfh")
@ -468,6 +470,18 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
string(APPEND MARCH_STR "_zicbop")
endif()
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
else()
# Begin with the lowest baseline
set(ARCH_DEFINITIONS "")
if (GGML_INTERNAL_RVV)
message(STATUS "RVV enabled")
list(APPEND ARCH_DEFINITIONS GGML_USE_RVV)
list(APPEND ARCH_FLAGS -march=rv64gc_v -mabi=lp64d)
endif()
ggml_add_cpu_backend_features(${GGML_CPU_NAME} riscv ${ARCH_DEFINITIONS})
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected")
list(APPEND GGML_CPU_SOURCES

View File

@ -33,10 +33,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@ -44,27 +46,30 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
// repack.cpp
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__POWERPC__) || defined(__powerpc__)
// ref: https://github.com/ggml-org/llama.cpp/pull/14146#issuecomment-2972561679
@ -76,10 +81,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@ -87,6 +94,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@ -101,10 +109,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@ -112,6 +122,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@ -134,15 +145,18 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@ -163,10 +177,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@ -174,6 +190,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@ -196,10 +213,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@ -207,6 +226,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0

View File

@ -24,6 +24,29 @@
#define UNUSED GGML_UNUSED
static inline void decode_q4_Kx8_scales_mins(const uint8_t * scales_in,
int16x8_t * out_mins,
int8_t * out_scales) {
constexpr uint32_t kmask1 = 0x3f3f3f3f;
constexpr uint32_t kmask2 = 0x0f0f0f0f;
constexpr uint32_t kmask3 = 0x03030303;
constexpr uint8_t scales_size = 12;
uint32_t sm[3];
memcpy(sm, scales_in, scales_size);
const uint32_t mins_0_3 = sm[1] & kmask1;
const uint32_t mins_4_7 = ((sm[2] >> 4) & kmask2) | (((sm[1] >> 6) & kmask3) << 4);
const uint32x2_t mins_u32 = { mins_0_3, mins_4_7 };
*out_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins_u32)));
uint32_t scales_u32[2];
scales_u32[0] = sm[0] & kmask1;
scales_u32[1] = (sm[2] & kmask2) | (((sm[0] >> 6) & kmask3) << 4);
memcpy(out_scales, scales_u32, 8);
}
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
@ -474,6 +497,295 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
constexpr int col_groups = ncols_interleaved / 4; // 0123 and 4567
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 1x8 tile = 2 x 4
float32x4_t acc_f32[col_groups];
const block_q8_K * GGML_RESTRICT q8_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < col_groups; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
float32x4_t q4_d_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d)); // d0 d1 d2 d3
float32x4_t q4_d_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4)); // d4 d5 d6 d7
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d);
float32x4_t sb_scale_0123 = vmulq_f32(q4_d_0, q8_d);
float32x4_t sb_scale_4567 = vmulq_f32(q4_d_1, q8_d);
float32x4_t q4_dmin_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin)); // dmin 0..3
float32x4_t q4_dmin_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4)); // dmin 4..7
float32x4_t sb_min_0123 = vmulq_f32(q4_dmin_0, q8_d);
float32x4_t sb_min_4567 = vmulq_f32(q4_dmin_1, q8_d);
// interleaved bias_acc: [0]->r0 0123, [1]->r0 4567
int32x4_t bias_acc[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int32x4_t acc_lo[col_groups];
int32x4_t acc_hi[col_groups];
// Each bsum is 16 elements, pairwise add leaves us with the 8 bsums of the entire block
const int16x8_t bsums = vpaddq_s16(vld1q_s16(q8_ptr[b].bsums), vld1q_s16(q8_ptr[b].bsums + 8));
int16_t bsums_arr[8];
vst1q_s16(bsums_arr, bsums);
for (int sb = 0; sb < QK_K / 64; sb++) {
for (int i = 0; i < col_groups; i++) {
acc_lo[i] = vdupq_n_s32(0);
acc_hi[i] = vdupq_n_s32(0);
}
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int16x8_t q4sb_mins[2];
int16x8_t q4sb_scales[2];
for (int i = 0; i < 2; i++) {
int8_t aux_q4sb[8];
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
}
int8x16_t q8_qs[64 / 16];
for (int i = 0; i < 64 / 16; i++) {
q8_qs[i] = vld1q_s8(q8_ptr[b].qs + sb * 64 + i * 16);
}
for (int c = 0; c < col_groups; c++) {
uint8x16_t q4_cols[8];
for (int i = 0; i < 8; i++) {
q4_cols[i] = vld1q_u8(q4_ptr[b].qs + sb * QK_K + i * 32 + 16 * c);
}
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[0], m4b)), q8_qs[0], 0);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[1], m4b)), q8_qs[0], 1);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[2], m4b)), q8_qs[0], 2);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[3], m4b)), q8_qs[0], 3);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[4], m4b)), q8_qs[1], 0);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[5], m4b)), q8_qs[1], 1);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[6], m4b)), q8_qs[1], 2);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[7], m4b)), q8_qs[1], 3);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[0], 4)), q8_qs[2], 0);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[1], 4)), q8_qs[2], 1);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[2], 4)), q8_qs[2], 2);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[3], 4)), q8_qs[2], 3);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[4], 4)), q8_qs[3], 0);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[5], 4)), q8_qs[3], 1);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[6], 4)), q8_qs[3], 2);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[7], 4)), q8_qs[3], 3);
}
// Scales
// row c0123 blk0 and blk1
const int16x4_t sc_0123_lo = vget_low_s16(q4sb_scales[0]);
const int16x4_t sc_0123_hi = vget_low_s16(q4sb_scales[1]);
const float32x4_t sumf_0123 = vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_0123_lo), acc_lo[0]),
vmulq_s32(vmovl_s16(sc_0123_hi), acc_hi[0])));
acc_f32[0] = vfmaq_f32(acc_f32[0], sb_scale_0123, sumf_0123);
// row c4567 blk0 and blk1
const int16x4_t sc_4567_lo = vget_high_s16(q4sb_scales[0]);
const int16x4_t sc_4567_hi = vget_high_s16(q4sb_scales[1]);
const float32x4_t sumf_4567 = vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_4567_lo), acc_lo[1]),
vmulq_s32(vmovl_s16(sc_4567_hi), acc_hi[1])));
acc_f32[1] = vfmaq_f32(acc_f32[1], sb_scale_4567, sumf_4567);
// Bias Correction
const int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[2 * sb + 0]);
const int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[2 * sb + 1]);
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
} // for sb
acc_f32[0] = vmlsq_f32(acc_f32[0], vcvtq_f32_s32(bias_acc[0]), sb_min_0123);
acc_f32[1] = vmlsq_f32(acc_f32[1], vcvtq_f32_s32(bias_acc[1]), sb_min_4567);
} // for b
int base = x * ncols_interleaved;
vst1q_f32(s + base, acc_f32[0]);
vst1q_f32(s + base + 4, acc_f32[1]);
} // for x
return;
#endif // #if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
ggml_gemv_q4_K_8x4_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_q4_K_8x8_q8_K(int n,
float * GGML_RESTRICT s,
size_t bs,
const void * GGML_RESTRICT vx,
const void * GGML_RESTRICT vy,
int nr,
int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
constexpr int col_pairs = ncols_interleaved / 2;
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 1x8 tile = 2 x 4
float32x4_t acc_f32[ncols_interleaved / 4];
const block_q8_K * GGML_RESTRICT q8_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < ncols_interleaved / 4; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
float32x4_t q4_d_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d)); // d0 d1 d2 d3
float32x4_t q4_d_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4)); // d4 d5 d6 d7
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d);
float32x4_t sb_scale_0 = vmulq_f32(q4_d_0, q8_d);
float32x4_t sb_scale_1 = vmulq_f32(q4_d_1, q8_d);
float32x4_t q4_dmin_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin)); // dmin 0..3
float32x4_t q4_dmin_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4)); // dmin 4..7
float32x4_t sb_min_0 = vmulq_f32(q4_dmin_0, q8_d);
float32x4_t sb_min_1 = vmulq_f32(q4_dmin_1, q8_d);
// interleaved bias_acc: [0]->r0 0123, [1]->r0 4567
int32x4_t bias_acc[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// 2 sb each iteration
int32x4_t acc_lo[col_pairs];
int32x4_t acc_hi[col_pairs];
// Each bsum is 16 elements, pairwise add leaves us with the 8 bsums of the entire block
const int16x8_t bsums = vpaddq_s16(vld1q_s16(q8_ptr[b].bsums), vld1q_s16(q8_ptr[b].bsums + 8));
int16_t bsums_arr[8];
vst1q_s16(bsums_arr, bsums);
for (int sb = 0; sb < QK_K / 64; sb++) {
for (int i = 0; i < col_pairs; i++) {
acc_lo[i] = vdupq_n_s32(0);
acc_hi[i] = vdupq_n_s32(0);
}
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
int16x8_t q4sb_scales[2];
for (int i = 0; i < 2; i++) {
int8_t aux_q4sb[8];
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
}
const uint8_t * q4_base = q4_ptr[b].qs + sb * QK_K;
// Load the 64 quants from q8K duplicated to use vecdots with the interelaved columns
// but still need the qs to use the low and hi bits from q4
const int8_t * q8_base = q8_ptr[b].qs + sb * 64;
int8x16_t q8_qs[8];
for (int i = 0; i < 8; i++) {
q8_qs[i] = (int8x16_t) vld1q_dup_s64((const int64_t *) (q8_base + i * 8));
}
// Q4s columns iterated in pairs (01, 23, 45, 67)
for (int cp = 0; cp < col_pairs; cp++) {
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_base + 16 * cp);
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_base + 16 * cp + 64);
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_base + 16 * cp + 128);
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_base + 16 * cp + 192);
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)), q8_qs[0]); // 0 .. 7
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)), q8_qs[1]); // 8 ..15
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)), q8_qs[2]); // 16..23
acc_lo[cp] =
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)), q8_qs[3]); // 24..31
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)), q8_qs[4]); // 32..39
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)), q8_qs[5]); // 40..47
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)), q8_qs[6]); // 48..55
acc_hi[cp] =
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)), q8_qs[7]); // 56..63
}
// Iterates over a pair of column pairs (4 columns) to use a single 128 register
// p = 0 -> 0123 p2 -> 4567
for (int i = 0, p = 0; p < col_pairs; i++, p += 2) {
int16x4_t group_scales_lo = p == 0 ? vget_low_s16(q4sb_scales[0]) : vget_high_s16(q4sb_scales[0]);
int16x4_t group_scales_hi = p == 0 ? vget_low_s16(q4sb_scales[1]) : vget_high_s16(q4sb_scales[1]);
float32x4_t sb_scale = p == 0 ? sb_scale_0 : sb_scale_1;
// 0123 or 4567
float32x4_t sumf_0 =
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_lo), vpaddq_s32(acc_lo[p], acc_lo[p + 1])));
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_0);
float32x4_t sumf_1 =
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_hi), vpaddq_s32(acc_hi[p], acc_hi[p + 1])));
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_1);
}
// Multiply Acc bsum + mins
// Each pair of subblocks share the same bsums
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[2 * sb + 0]);
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[2 * sb + 1]);
// cols 0-3 bias
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
// cols 4-7 bias
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
} // for sb
acc_f32[0] = vmlsq_f32(acc_f32[0], vcvtq_f32_s32(bias_acc[0]), sb_min_0);
acc_f32[1] = vmlsq_f32(acc_f32[1], vcvtq_f32_s32(bias_acc[1]), sb_min_1);
} // for b
int base = x * ncols_interleaved;
vst1q_f32(s + base, acc_f32[0]);
vst1q_f32(s + base + 4, acc_f32[1]);
} // for x
return;
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
ggml_gemv_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
@ -1889,3 +2201,412 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 4;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
constexpr int q8_k_blocklen = 4;
constexpr int acc_size = 2 * 4; // 2 row pairs × 4 col pairs
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 8 accumulators: 2 row pairs × 4 col pairs
float32x4_t acc_f32[acc_size];
for (int y = 0; y < nr / q8_k_blocklen; y++) {
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < acc_size; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
// d4 0 1 2 3, 4 5 6 7
float32x4_t q4_d_0123 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d));
float32x4_t q4_d_4567 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4));
// d8 0 1 2 3
float32x4_t q8_d_0123 = vld1q_f32(q8_ptr[b].d);
// mins
float32x4_t q4_dmin_0123 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin));
float32x4_t q4_dmin_4567 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4));
// Precomputation of scales and mins
float32x4_t sbd_scale_0123[q8_k_blocklen];
float32x4_t sbd_scale_4567[q8_k_blocklen];
float32x4_t sbd_min_0123[q8_k_blocklen];
float32x4_t sbd_min_4567[q8_k_blocklen];
sbd_scale_0123[0] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 0);
sbd_scale_4567[0] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 0);
sbd_min_0123[0] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 0);
sbd_min_4567[0] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 0);
sbd_scale_0123[1] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 1);
sbd_scale_4567[1] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 1);
sbd_min_0123[1] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 1);
sbd_min_4567[1] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 1);
sbd_scale_0123[2] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 2);
sbd_scale_4567[2] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 2);
sbd_min_0123[2] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 2);
sbd_min_4567[2] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 2);
sbd_scale_0123[3] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 3);
sbd_scale_4567[3] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 3);
sbd_min_0123[3] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 3);
sbd_min_4567[3] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 3);
// Precomputation of bsums, each vpaddq calcs all the bsums for each row
const int16x8_t bsums[q8_k_blocklen] = {
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
};
int16_t bsums_arr[QK_K / 64][8];
for (int q8_row = 0; q8_row < 4; q8_row++) {
vst1q_s16(bsums_arr[q8_row], bsums[q8_row]);
}
// interleaved bias_acc: [0]->r0 0123, [1]->r1 0123, .., [4]->r0 4567, [5]->r1 4567 ..
int32x4_t bias_acc[acc_size];
for (int i = 0; i < acc_size; i++) {
bias_acc[i] = vdupq_n_s32(0);
}
for (int sb = 0; sb < QK_K / 64; sb++) {
// Int accumulators for qs vecdot (4 row x 2 col quartets)
int32x4_t acc_lo[acc_size];
int32x4_t acc_hi[acc_size];
for (int i = 0; i < acc_size; i++) {
acc_lo[i] = vdupq_n_s32(0);
acc_hi[i] = vdupq_n_s32(0);
}
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int16x8_t q4sb_scales[2];
int16x8_t q4sb_mins[2];
for (int i = 0; i < 2; i++) {
int8_t aux_q4sb[8];
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
}
constexpr int reads_per_sb = 8; // 8 * 16 bytes each => 32 qs * 4 rows
for (int k = 0; k < reads_per_sb; k++) {
const int8x16_t q8_blk0 = vld1q_s8(q8_ptr[b].qs + sb * 256 + 16 * k);
const int8x16_t q8_blk1 = vld1q_s8(q8_ptr[b].qs + sb * 256 + 16 * k + 128);
// 0..3 & 32..35
const uint8x16_t q4_0123 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 32 * k);
const uint8x16_t q4_4567 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 32 * k + 16);
const int8x16_t q4_0123_lo = vreinterpretq_s8_u8(vandq_u8(q4_0123, m4b));
const int8x16_t q4_0123_hi = vreinterpretq_s8_u8(vshrq_n_u8(q4_0123, 4));
acc_lo[0] = vdotq_laneq_s32(acc_lo[0], q4_0123_lo, q8_blk0, 0); // 0..3 r0 c0123
acc_lo[1] = vdotq_laneq_s32(acc_lo[1], q4_0123_lo, q8_blk0, 1); // 0..3 r1 c0123
acc_lo[2] = vdotq_laneq_s32(acc_lo[2], q4_0123_lo, q8_blk0, 2); // 0..3 r2 c0123
acc_lo[3] = vdotq_laneq_s32(acc_lo[3], q4_0123_lo, q8_blk0, 3); // 0..3 r3 c0123
acc_hi[0] = vdotq_laneq_s32(acc_hi[0], q4_0123_hi, q8_blk1, 0); // 32..35 r0 c0123
acc_hi[1] = vdotq_laneq_s32(acc_hi[1], q4_0123_hi, q8_blk1, 1); // 32..35 r1 c0123
acc_hi[2] = vdotq_laneq_s32(acc_hi[2], q4_0123_hi, q8_blk1, 2); // 32..35 r2 c0123
acc_hi[3] = vdotq_laneq_s32(acc_hi[3], q4_0123_hi, q8_blk1, 3); // 32..35 r3 c0123
const int8x16_t q4_4567_lo = vreinterpretq_s8_u8(vandq_u8(q4_4567, m4b));
const int8x16_t q4_4567_hi = vreinterpretq_s8_u8(vshrq_n_u8(q4_4567, 4));
acc_lo[4] = vdotq_laneq_s32(acc_lo[4], q4_4567_lo, q8_blk0, 0); // 0..3 r0 c4567
acc_lo[5] = vdotq_laneq_s32(acc_lo[5], q4_4567_lo, q8_blk0, 1); // 0..3 r1 c4567
acc_lo[6] = vdotq_laneq_s32(acc_lo[6], q4_4567_lo, q8_blk0, 2); // 0..3 r2 c4567
acc_lo[7] = vdotq_laneq_s32(acc_lo[7], q4_4567_lo, q8_blk0, 3); // 0..3 r3 c4567
acc_hi[4] = vdotq_laneq_s32(acc_hi[4], q4_4567_hi, q8_blk1, 0); // 32..35 r0 c4567
acc_hi[5] = vdotq_laneq_s32(acc_hi[5], q4_4567_hi, q8_blk1, 1); // 32..35 r1 c4567
acc_hi[6] = vdotq_laneq_s32(acc_hi[6], q4_4567_hi, q8_blk1, 2); // 32..35 r2 c4567
acc_hi[7] = vdotq_laneq_s32(acc_hi[7], q4_4567_hi, q8_blk1, 3); // 32..35 r3 c4567
}
// Scale and bias application
// acc is stored interleaved to match output layout
const int16x4_t sc_0123_lo = vget_low_s16(q4sb_scales[0]);
const int16x4_t sc_4567_lo = vget_high_s16(q4sb_scales[0]);
const int16x4_t sc_0123_hi = vget_low_s16(q4sb_scales[1]);
const int16x4_t sc_4567_hi = vget_high_s16(q4sb_scales[1]);
for (int row = 0; row < q8_k_blocklen; row++) {
// Bias correction
// row c0123 blk0 and blk1
const float32x4_t sumf_0123 =
vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_0123_lo), acc_lo[row]),
vmulq_s32(vmovl_s16(sc_0123_hi), acc_hi[row])));
acc_f32[2 * row] = vfmaq_f32(acc_f32[2 * row], sbd_scale_0123[row], sumf_0123);
// row c4567 blk0 and blk1
const float32x4_t sumf_4567 =
vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_4567_lo), acc_lo[row + 4]),
vmulq_s32(vmovl_s16(sc_4567_hi), acc_hi[row + 4])));
acc_f32[2 * row + 1] = vfmaq_f32(acc_f32[2 * row + 1], sbd_scale_4567[row], sumf_4567);
// Bias
const int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[sb][row * 2]);
const int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[sb][row * 2 + 1]);
// row c0123 blk0 and blk1
bias_acc[2 * row] = vmlal_s16(bias_acc[2 * row], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[2 * row] = vmlal_s16(bias_acc[2 * row], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
// row c4567 blk0 and blk1
bias_acc[2 * row + 1] =
vmlal_s16(bias_acc[2 * row + 1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[2 * row + 1] =
vmlal_s16(bias_acc[2 * row + 1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
}
} // for sb
for (int row = 0; row < q8_k_blocklen; row++) {
acc_f32[2 * row] = vmlsq_f32(acc_f32[2 * row], vcvtq_f32_s32(bias_acc[2 * row]), sbd_min_0123[row]);
acc_f32[2 * row + 1] =
vmlsq_f32(acc_f32[2 * row + 1], vcvtq_f32_s32(bias_acc[2 * row + 1]), sbd_min_4567[row]);
}
} // for b
for (int i = 0; i < q8_k_blocklen; i++) {
int row = y * q8_k_blocklen + i;
for (int j = 0; j < 2; j++) {
int col = x * ncols_interleaved + j * 4;
int offset = row * bs + col;
vst1q_f32(s + offset, acc_f32[2 * i + j]);
}
}
} // for x
} // for y
return;
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
ggml_gemm_q4_K_8x4_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_K_8x8_q8_K(int n,
float * GGML_RESTRICT s,
size_t bs,
const void * GGML_RESTRICT vx,
const void * GGML_RESTRICT vy,
int nr,
int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
constexpr int q8_k_blocklen = 4;
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 8 accumulators: 2 row pairs × 4 col pairs
float32x4_t acc_f32[blocklen];
for (int y = 0; y < nr / q8_k_blocklen; y++) {
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < blocklen; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
// bsums pairs belongs to the same q8_k subblock
const int16x8_t bsums[4]{
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
};
int16_t bsums_arr[4][8];
for (int q8_row = 0; q8_row < 4; q8_row++) {
vst1q_s16(bsums_arr[q8_row], bsums[q8_row]);
}
int32x4_t sb_acc[4]; // Aux accumulators to store subblock (partial) results
int32x4_t acc[8]; // rows 01 stored in [0][1][2][3] rows 23 stored in [4][5][6][7]
int32x4_t bias_acc[8]; // interleaved bias_acc: [0]->r0 0123, [1]->r0 4567, [2]->r1 0123 ...
for (int i = 0; i < 8; i++) {
acc[i] = vdupq_n_s32(0);
bias_acc[i] = vdupq_n_s32(0);
}
for (int sb = 0; sb < QK_K / 64; sb++) {
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int8_t q4sb_scales[2][8];
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
for (int i = 0; i < 2; i++) {
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], q4sb_scales[i]);
}
// q8_ptr[b].qs has interleaved Q8 rows (01, 23)
const int8_t * q8_base = q8_ptr[b].qs + sb * 256;
int8x16_t q8_qs_01[8];
int8x16_t q8_qs_23[8];
// Load 32-byte per row pair, 1 subblock each time
for (int i = 0; i < 8; i++) {
const int offset = i * 32; // 16 for row 01, 16 for row 23
q8_qs_01[i] = vld1q_s8(q8_base + offset);
q8_qs_23[i] = vld1q_s8(q8_base + offset + 16);
}
const int8x16_t q8s[2][8] = {
{ q8_qs_01[0], q8_qs_01[1], q8_qs_01[2], q8_qs_01[3],
q8_qs_01[4], q8_qs_01[5], q8_qs_01[6], q8_qs_01[7] },
{ q8_qs_23[0], q8_qs_23[1], q8_qs_23[2], q8_qs_23[3],
q8_qs_23[4], q8_qs_23[5], q8_qs_23[6], q8_qs_23[7] },
};
// Q4s columns iterated in pairs (01, 23, 45, 67)
for (int cp = 0; cp < ncols_interleaved / 2; cp++) {
for (int i = 0; i < 4; i++) {
sb_acc[i] = vdupq_n_s32(0);
}
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 0); // 0 .. 7 & 32..39
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 64); // 8 ..15 & 40..47
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 128); // 16..23 & 48..55
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 192); // 24..31 & 56..63
const int8x16_t q4_nibbles[2][4] = {
{
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)),
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)),
},
{
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)),
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)),
}
};
// Calculates the Qs muladd of every row pair (rp) rows 01 and 23 of q8
// for each of the internal 32 qs subblock (blk)
for (int rp = 0; rp < 2; rp++) {
for (int blk = 0; blk < 2; blk++) {
const int8x16_t * q8 = &q8s[rp][4 * blk];
const int8x16_t * q4 = q4_nibbles[blk];
int32x4_t acc = sb_acc[2 * rp + blk];
// mul add for each qs in the same subblock
for (int qs_offset = 0; qs_offset < 4; qs_offset++) {
acc = vmmlaq_s32(acc, q4[qs_offset], q8[qs_offset]);
}
sb_acc[2 * rp + blk] = acc;
}
}
// Scales[i] corresponds to column i
const int scale_offset = cp * 2;
for (int blk = 0; blk < 2; blk++) {
const int32x4_t block_scale = {
(int32_t) q4sb_scales[blk][scale_offset],
(int32_t) q4sb_scales[blk][scale_offset],
(int32_t) q4sb_scales[blk][scale_offset + 1],
(int32_t) q4sb_scales[blk][scale_offset + 1],
};
acc[cp] = vmlaq_s32(acc[cp], sb_acc[blk], block_scale);
acc[cp + 4] = vmlaq_s32(acc[cp + 4], sb_acc[blk + 2], block_scale);
}
}
// Multiply Acc bsum + mins
for (int q8_row = 0; q8_row < 4; q8_row++) {
// Each pair of subblocks share the same bsums
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[sb][q8_row * 2]);
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[sb][q8_row * 2 + 1]);
bias_acc[2 * q8_row] =
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[2 * q8_row] =
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
bias_acc[2 * q8_row + 1] =
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[2 * q8_row + 1] =
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
}
} // for sb
// Reorder of i8mm output with bias and output layout
for (int i = 0; i < 8; i++) {
int32x2x2_t aux = vzip_s32(vget_low_s32(acc[i]), vget_high_s32(acc[i]));
acc[i] = vcombine_s32(aux.val[0], aux.val[1]);
}
int32x4_t reorder_acc[8] = {
vcombine_s32(vget_low_s32(acc[0]), vget_low_s32(acc[1])),
vcombine_s32(vget_low_s32(acc[2]), vget_low_s32(acc[3])),
vcombine_s32(vget_high_s32(acc[0]), vget_high_s32(acc[1])),
vcombine_s32(vget_high_s32(acc[2]), vget_high_s32(acc[3])),
vcombine_s32(vget_low_s32(acc[4]), vget_low_s32(acc[5])),
vcombine_s32(vget_low_s32(acc[6]), vget_low_s32(acc[7])),
vcombine_s32(vget_high_s32(acc[4]), vget_high_s32(acc[5])),
vcombine_s32(vget_high_s32(acc[6]), vget_high_s32(acc[7])),
};
for (int i = 0; i < q8_k_blocklen; i++) {
for (int j = 0; j < 2; j++) {
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d[i]);
float32x4_t q4_dmin = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].dmin + j * 4)));
const float32x4_t dmins = vmulq_f32(q4_dmin, q8_d);
float32x4_t q4_d = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].d + j * 4)));
const float32x4_t scale = vmulq_f32(q4_d, q8_d);
acc_f32[2 * i + j] = vmlsq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(bias_acc[2 * i + j]), dmins);
acc_f32[2 * i + j] =
vmlaq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(reorder_acc[2 * i + j]), scale);
}
}
} // for b
// With the previous reorder, the tile is already in the correct memory layout.
for (int i = 0; i < q8_k_blocklen; i++) {
int row = y * q8_k_blocklen + i;
for (int j = 0; j < 2; j++) {
int col = x * ncols_interleaved + j * 4;
int offset = row * bs + col;
vst1q_f32(s + offset, acc_f32[2 * i + j]);
}
}
} // for x
} // for y
return;
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
ggml_gemm_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}

View File

@ -0,0 +1,38 @@
#include "ggml-backend-impl.h"
#if defined(__riscv) && __riscv_xlen == 64
#include <asm/hwprobe.h>
#include <asm/unistd.h>
#include <unistd.h>
struct riscv64_features {
bool has_rvv = false;
riscv64_features() {
struct riscv_hwprobe probe;
probe.key = RISCV_HWPROBE_KEY_IMA_EXT_0;
probe.value = 0;
int ret = syscall(__NR_riscv_hwprobe, &probe, 1, 0, NULL, 0);
if (0 == ret) {
has_rvv = !!(probe.value & RISCV_HWPROBE_IMA_V);
}
}
};
static int ggml_backend_cpu_riscv64_score() {
int score = 1;
riscv64_features rf;
#ifdef GGML_USE_RVV
if (!rf.has_rvv) { return 0; }
score += 1 << 1;
#endif
return score;
}
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_riscv64_score)
#endif // __riscv && __riscv_xlen == 64

View File

@ -1927,6 +1927,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_argsort(params, tensor);
} break;
case GGML_OP_TOP_K:
{
ggml_compute_forward_top_k(params, tensor);
} break;
case GGML_OP_LEAKY_RELU:
{
ggml_compute_forward_leaky_relu(params, tensor);
@ -2311,6 +2315,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
case GGML_OP_TOP_K:
case GGML_OP_FLASH_ATTN_EXT:
case GGML_OP_FLASH_ATTN_BACK:
case GGML_OP_SSM_CONV:
@ -2834,6 +2839,10 @@ struct ggml_cplan ggml_graph_plan(
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
} break;
case GGML_OP_TOP_K:
{
cur += sizeof(int32_t)*node->src[0]->ne[0]*n_tasks;
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t ne10 = node->src[1]->ne[0]; // DK

View File

@ -7794,7 +7794,7 @@ void ggml_compute_forward_timestep_embedding(
// ggml_compute_forward_argsort
template<enum ggml_sort_order order>
struct argsort_cmp {
struct cmp_argsort {
const float * data;
bool operator()(int32_t a, int32_t b) const {
if constexpr (order == GGML_SORT_ORDER_ASC) {
@ -7833,11 +7833,11 @@ static void ggml_compute_forward_argsort_f32(
switch (order) {
case GGML_SORT_ORDER_ASC:
std::sort(dst_data, dst_data + ne0, argsort_cmp<GGML_SORT_ORDER_ASC>{src_data});
std::sort(dst_data, dst_data + ne0, cmp_argsort<GGML_SORT_ORDER_ASC>{src_data});
break;
case GGML_SORT_ORDER_DESC:
std::sort(dst_data, dst_data + ne0, argsort_cmp<GGML_SORT_ORDER_DESC>{src_data});
std::sort(dst_data, dst_data + ne0, cmp_argsort<GGML_SORT_ORDER_DESC>{src_data});
break;
default:
@ -7864,6 +7864,72 @@ void ggml_compute_forward_argsort(
}
}
// ggml_compute_forward_top_k
struct cmp_top_k {
const float * data;
bool operator()(int32_t a, int32_t b) const {
return data[a] > data[b];
}
};
static void ggml_compute_forward_top_k_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb0 == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int64_t nr = ggml_nrows(src0);
const int top_k = ne0;
int32_t * tmp = (int32_t *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
for (int64_t i = ith; i < nr; i += nth) {
const float * src_data = (float *)((char *) src0->data + i*nb01);
for (int64_t j = 0; j < ne00; j++) {
tmp[j] = j;
}
std::partial_sort(tmp, tmp + top_k, tmp + ne00, cmp_top_k{src_data});
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
std::copy(tmp, tmp + top_k, dst_data);
// emphasize that the order is not important
if (top_k > 1) {
std::swap(dst_data[0], dst_data[1]);
}
}
}
void ggml_compute_forward_top_k(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_top_k_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
@ -9700,7 +9766,8 @@ static void ggml_compute_forward_solve_tri_f32(const struct ggml_compute_params
}
const float diag = A_batch[i00 * n + i00];
GGML_ASSERT(diag != 0.0f && "Zero diagonal in triangular matrix");
assert(diag != 0.0f && "Zero diagonal in triangular matrix");
X_batch[i00 * k + i01] = (B_batch[i00 * k + i01] - sum) / diag;
}
}

View File

@ -81,6 +81,7 @@ void ggml_compute_forward_roll(const struct ggml_compute_params * params, struct
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_top_k(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_tri(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_fill(const struct ggml_compute_params * params, struct ggml_tensor * dst);

View File

@ -124,6 +124,58 @@ void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GG
}
}
void ggml_quantize_mat_q8_K_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK_K == 256);
assert(k % QK_K == 0);
const int nb = k / QK_K;
block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy;
// scalar
const int blck_size_interleave = 4;
float srcv[4][QK_K];
float iscale[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
float max = 0;
for (int j = 0; j < QK_K; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
// Update the maximum value of the corresponding super block
if(amax < fabsf(srcv[row_iter][j])) {
amax = fabsf(srcv[row_iter][j]);
max = srcv[row_iter][j];
}
}
iscale[row_iter] = amax ? -127.f/max : 0;
y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
}
for (int j = 0; j < QK_K / 4; j++) {
y[i].bsums[j] = 0;
}
// Quants values are interleaved in sequence of four bytes from corresponding super blocks
// Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
// i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
for (int j = 0; j < QK_K * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
int index = (((j & 15) >> 2) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
float x0 = srcv[src_id][src_offset] * iscale[src_id];
y[i].qs[j] = nearest_int(x0);
y[i].bsums[index] += y[i].qs[j];
}
}
}
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK_K == 256);
assert(k % QK_K == 0);
@ -192,6 +244,12 @@ template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTR
ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row);
}
template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
ggml_quantize_mat_q8_K_4x4(x, vy, n_per_row);
}
template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
@ -333,6 +391,77 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
}
}
void ggml_gemv_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 4;
static const uint32_t kmask1 = 0x3f3f3f3f;
static const uint32_t kmask2 = 0x0f0f0f0f;
static const uint32_t kmask3 = 0x03030303;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(bs);
UNUSED(nr);
float sumf[8];
float sum_minf[8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
const block_q8_K * a_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) {
sumf[j] = 0.0;
sum_minf[j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t * scales_0 = (uint8_t *) utmp + (k / 8) * 32;
uint8_t * scales_1 = (uint8_t *) utmp + (k / 8) * 32 + 16;
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k / 8) * 64 + (k % 8) * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k / 8) * 64 + (k % 8) * blocklen + i + 32]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t * mins = (uint8_t *) utmp + 8 + sb * 16;
for (int j = 0; j < ncols_interleaved; j++) {
sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
}
}
}
for (int j = 0; j < ncols_interleaved; j++) {
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
}
}
}
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
@ -727,6 +856,89 @@ void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
}
}
void ggml_gemm_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 4;
static const uint32_t kmask1 = 0x3f3f3f3f;
static const uint32_t kmask2 = 0x0f0f0f0f;
static const uint32_t kmask3 = 0x03030303;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4][8];
float sum_minf[4][8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumf[m][j] = 0.0;
sum_minf[m][j] = 0.0;
}
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t * scales_0 = (uint8_t *) utmp + (k / 8) * 32;
uint8_t * scales_1 = (uint8_t *) utmp + (k / 8) * 32 + 16;
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k / 8) * 256 + (k % 8) * 4 * blocklen + m * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k / 8) * 256 + (k % 8) * 4 * blocklen + m * blocklen + i + 128]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
}
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t * mins = (uint8_t *) utmp + 8 + sb * 16;
for(int m = 0; m < 4; m++) {
const int16_t * bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
for(int j = 0; j < ncols_interleaved; j++) {
sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
}
}
}
}
}
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
@ -1228,9 +1440,10 @@ static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block
GGML_UNUSED(data_size);
}
static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q4_K);
GGML_ASSERT(interleave_block == 8);
GGML_ASSERT(interleave_block == 8 || interleave_block == 4);
constexpr int nrows_interleaved = 8;
block_q4_Kx8 * dst = (block_q4_Kx8*)t->data;
@ -1468,6 +1681,10 @@ template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * da
return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
}
template <> int repack<block_q4_K, 4, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q4_K_to_q4_K_8_bl(t, 4, data, data_size);
}
template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q2_K_to_q2_K_8_bl(t, 8, data, data_size);
}
@ -1501,6 +1718,10 @@ template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t
ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_K, 4, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_K_8x4_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
@ -1529,6 +1750,10 @@ template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t
ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_K, 4, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_K_8x4_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
@ -1731,12 +1956,13 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
nchunk0 = (nr0 + min_chunk_size - 1) / min_chunk_size;
}
if (nth == 1 || nchunk0 < nth || disable_chunking) {
int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
// Only increase nchunk0 to nth if it won't make chunks too small
if (nth == 1 || ((nchunk0 < nth || disable_chunking) && (nr0 + nth - 1) / nth >= min_chunk_size)) {
nchunk0 = nth;
dr0 = (nr0 + nchunk0 - 1) / nchunk0;
}
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
// Ensure nchunk doesn't exceed the number of rows divided by minimum chunk size
// This prevents creating too many tiny chunks that could overlap after alignment
const int64_t max_nchunk = (nr0 + min_chunk_size - 1) / min_chunk_size;
@ -1930,6 +2156,9 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
// instance for Q4_K
static const ggml::cpu::repack::tensor_traits<block_q4_K, 4, 8, GGML_TYPE_Q8_K> q4_K_8x4_q8_K;
static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
// instance for Q2
@ -1961,6 +2190,16 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
return &q4_K_8x8_q8_K;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
if (cur->ne[1] % 8 == 0) {
return &q4_K_8x8_q8_K;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 8 == 0) {
return &q4_K_8x4_q8_K;
}
}
} else if (cur->type == GGML_TYPE_Q2_K) {
if (ggml_cpu_has_avx512()) {
if (cur->ne[1] % 8 == 0) {

View File

@ -80,10 +80,12 @@ extern "C" {
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
@ -91,6 +93,7 @@ void ggml_gemv_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
@ -99,10 +102,12 @@ void ggml_gemm_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
// Native implementations
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
@ -110,6 +115,7 @@ void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);

View File

@ -397,15 +397,14 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
}
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
#if defined(GGML_SIMD) && defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16;
const int ggml_f16_step = 8 * ggml_f16_epr;
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
const int np= (n & ~(ggml_f16_step - 1));
int np = (n & ~(ggml_f16_step - 1));
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
@ -474,14 +473,18 @@ inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y,
hy = svmad_f16_x(pg, hx, vx, hy);
svst1_f16(pg, (__fp16 *)(y + np2), hy);
}
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
np = n;
#elif defined(__riscv_zvfh) // implies __riscv_v_intrinsic
const int np = n;
_Float16 hv = (_Float16)v;
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e16m8(n - i);
vfloat16m8_t ax = __riscv_vle16_v_f16m8((const _Float16 *)&x[i], avl);
vfloat16m8_t ay = __riscv_vle16_v_f16m8((_Float16 *)&y[i], avl);
vfloat16m8_t ny = __riscv_vfmadd_vf_f16m8(ax, hv, ay, avl);
__riscv_vse16_v_f16m8((_Float16 *)&y[i], ny, avl);
}
#else
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
@ -498,18 +501,14 @@ inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y,
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
#else
const int np = 0;
#endif
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#endif
}
// xs and vs are byte strides of x and v

View File

@ -44,7 +44,7 @@ static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
const dim3 offset_grid((nrows + block_size - 1) / block_size);
init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream);
CUDA_CHECK(cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream));
size_t temp_storage_bytes = 0;

View File

@ -21,10 +21,12 @@
#include "ggml-common.h"
#include <array>
#include <algorithm>
#include <cassert>
#include <cfloat>
#include <cstdio>
#include <string>
#include <unordered_map>
#include <vector>
#if defined(GGML_USE_HIP)
@ -84,12 +86,12 @@
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
#define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
#define GGML_CUDA_CC_PH1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // MTT S5000
#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_PH1)
#define GGML_CUDA_CC_IS_PH1(cc) (cc >= GGML_CUDA_CC_PH1)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
# define GGML_CUDA_USE_CUB
@ -212,9 +214,9 @@ static const char * cu_get_error_str(CUresult err) {
#define GGML_USE_VMM
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#if defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#endif // defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
@ -250,12 +252,14 @@ static const char * cu_get_error_str(CUresult err) {
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
static bool fp16_available(const int cc) {
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL ||
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
}
static bool fast_fp16_available(const int cc) {
return GGML_CUDA_CC_IS_AMD(cc) ||
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610);
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610) ||
(GGML_CUDA_CC_IS_MTHREADS(cc) && fp16_available(cc));
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
@ -272,7 +276,9 @@ static bool fp16_mma_hardware_available(const int cc) {
}
static bool bf16_mma_hardware_available(const int cc) {
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) || GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3 ||
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
}
static bool fp32_mma_hardware_available(const int cc) {
@ -558,8 +564,12 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v
acc += v.y*u.y;
}
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
#if defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
#define V_DOT2_F32_F16_AVAILABLE
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
#ifdef V_DOT2_F32_F16_AVAILABLE
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
#else
#ifdef FAST_FP16_AVAILABLE
@ -571,7 +581,7 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v,
acc += tmpv.x * tmpu.x;
acc += tmpv.y * tmpu.y;
#endif // FAST_FP16_AVAILABLE
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(GCN5) || defined(CDNA))
#endif // V_DOT2_F32_F16_AVAILABLE
}
static __device__ __forceinline__ void ggml_cuda_mad(half2 & acc, const half2 v, const half2 u) {
@ -972,6 +982,154 @@ struct ggml_cuda_graph {
#endif
};
struct ggml_cuda_concurrent_event {
std::vector<cudaEvent_t> join_events;
cudaEvent_t fork_event = nullptr;
int n_streams = 0;
std::unordered_map<const ggml_tensor *, int> stream_mapping;
const ggml_tensor * join_node;
ggml_cuda_concurrent_event() = default;
ggml_cuda_concurrent_event(const ggml_cuda_concurrent_event &) = delete;
ggml_cuda_concurrent_event & operator=(const ggml_cuda_concurrent_event &) = delete;
explicit ggml_cuda_concurrent_event(int n_streams) : n_streams(n_streams) {
join_events.resize(n_streams);
for (size_t i = 0; i < join_events.size(); ++i) {
CUDA_CHECK(cudaEventCreateWithFlags(&join_events[i], cudaEventDisableTiming));
}
CUDA_CHECK(cudaEventCreateWithFlags(&fork_event, cudaEventDisableTiming));
}
ggml_cuda_concurrent_event(ggml_cuda_concurrent_event && other) noexcept
: join_events(std::move(other.join_events))
, fork_event(other.fork_event)
, n_streams(other.n_streams)
, stream_mapping(std::move(other.stream_mapping))
, join_node(other.join_node) {
other.fork_event = nullptr;
}
// 1. check if any branches write to overlapping memory ranges (except the join node)
// 2. check whether all srcs are either within the branch or outside the nodes covered by ggml_cuda_concurrent_event
// we assume all nodes have the same buffer
bool is_valid() const {
std::vector<std::vector<std::pair<int64_t, int64_t>>> write_ranges;
write_ranges.resize(n_streams);
// get join_node's memory range to exclude from overlap checking.
// multiple nodes can use join_node's buffer; we synchronize on the join node.
const ggml_tensor * join_t = join_node->view_src ? join_node->view_src : join_node;
const int64_t join_start = (int64_t) join_t->data;
const int64_t join_end = join_start + ggml_nbytes(join_t);
for (const auto & [tensor, stream] : stream_mapping) {
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
const int64_t t_start = (int64_t) t->data;
const int64_t t_end = t_start + ggml_nbytes(t);
// skip tensors that overlap with join_node's buffer.
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
continue;
}
// concurrent streams begin from 1
write_ranges[stream - 1].emplace_back(t_start, t_end);
}
for (int i = 0; i < n_streams; ++i) {
// sorts first by start then by end of write range
std::sort(write_ranges[i].begin(), write_ranges[i].end());
}
bool writes_overlap = false;
bool dependent_srcs = false;
for (const auto & [tensor, stream] : stream_mapping) {
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
const int64_t t_start = (int64_t) t->data;
const int64_t t_end = t_start + ggml_nbytes(t);
// skip tensors that overlap with join_node's buffer
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
continue;
}
// check if this buffer's write data overlaps with another stream's
std::pair<int64_t, int64_t> data_range = std::make_pair(t_start, t_end);
for (int i = 0; i < n_streams; ++i) {
if (i == stream - 1) {
continue;
}
auto it = std::lower_bound(write_ranges[i].begin(), write_ranges[i].end(), data_range);
if (it != write_ranges[i].end()) {
const std::pair<int64_t, int64_t> & other = *it;
// std::lower_bound returns the first element where other >= data_range (lexicographically).
// This guarantees other.first >= data_range.first.
// Therefore, overlap occurs iff other.first < data_range.second
// (i.e., the other range starts before this range ends).
if (other.first < data_range.second) {
GGML_LOG_DEBUG("Writes overlap for %s", tensor->name);
writes_overlap = true;
break;
}
}
}
//check if all srcs are either in branch or don't have a branch
for (int i = 0; i < GGML_MAX_SRC; ++i) {
if (!tensor->src[i]) {
continue;
}
auto it = stream_mapping.find(tensor->src[i]);
if (it == stream_mapping.end()) {
continue;
}
if (it->second != stream) {
dependent_srcs = true;
break;
}
}
if (dependent_srcs || writes_overlap) {
break;
}
}
return !writes_overlap && !dependent_srcs;
}
~ggml_cuda_concurrent_event() {
if (fork_event != nullptr) {
CUDA_CHECK(cudaEventDestroy(fork_event));
}
for (cudaEvent_t e : join_events) {
if (e != nullptr) {
CUDA_CHECK(cudaEventDestroy(e));
}
}
}
};
struct ggml_cuda_stream_context {
std::vector<const ggml_tensor *> original_nodes;
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> concurrent_events;
void reset() {
original_nodes.clear();
concurrent_events.clear();
}
};
struct ggml_backend_cuda_context {
int device;
std::string name;
@ -982,11 +1140,15 @@ struct ggml_backend_cuda_context {
std::unique_ptr<ggml_cuda_graph> cuda_graph;
int curr_stream_no = 0;
explicit ggml_backend_cuda_context(int device) :
device(device),
name(GGML_CUDA_NAME + std::to_string(device)) {
}
ggml_cuda_stream_context concurrent_stream_context;
~ggml_backend_cuda_context();
cudaStream_t stream(int device, int stream) {
@ -997,9 +1159,9 @@ struct ggml_backend_cuda_context {
return streams[device][stream];
}
cudaStream_t stream() {
return stream(device, 0);
}
cudaStream_t stream() { return stream(device, curr_stream_no); }
ggml_cuda_stream_context & stream_context() { return concurrent_stream_context; }
cublasHandle_t cublas_handle(int device) {
if (cublas_handles[device] == nullptr) {
@ -1015,15 +1177,15 @@ struct ggml_backend_cuda_context {
}
// pool
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS];
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device, int stream_no);
ggml_cuda_pool & pool(int device) {
if (pools[device] == nullptr) {
pools[device] = new_pool_for_device(device);
if (pools[device][curr_stream_no] == nullptr) {
pools[device][curr_stream_no] = new_pool_for_device(device, curr_stream_no);
}
return *pools[device];
return *pools[device][curr_stream_no];
}
ggml_cuda_pool & pool() {

View File

@ -86,6 +86,9 @@ static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const
}
}
}
GGML_UNUSED_VARS(ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11,
nb12, nb13);
}
static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
@ -202,7 +205,7 @@ static void ggml_cpy_scalar_cuda(
ne00n = ne00;
ne01n = ne01;
ne02n = ne02;
} else if (nb00 > nb02) {
} else {
ne00n = ne00;
ne01n = ne01*ne02;
ne02n = 1;

View File

@ -55,11 +55,11 @@ static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_f16(
ggml_cuda_memcpy_1<sizeof(tmp)>(tmp, K_h2 + k_KQ_0 + (threadIdx.x % nthreads)*cpy_ne);
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < cpy_ne; ++k_KQ_1) {
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
ggml_cuda_mad(sum, tmp[k_KQ_1] , ((const half2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
#else
ggml_cuda_mad(sum, __half22float2(tmp[k_KQ_1]), ((const float2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
#endif // FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
}

View File

@ -609,7 +609,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
float KQ_sum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < nbatch_fa; i0 += np*warp_size) {
const float val = !oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < k_VKQ_sup ?
const float val = !oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < static_cast<uint32_t>(k_VKQ_sup) ?
expf(KQ_acc[(i0/(np*warp_size))*cpw + jc] - KQ_max[jc]) : 0.0f;
KQ_sum_add += val;
tmp[i0/(np*warp_size)][jc1] = val;

View File

@ -86,11 +86,11 @@ static __global__ void flash_attn_ext_vec(
constexpr vec_dot_KQ_t vec_dot_KQ = get_vec_dot_KQ<type_K, D, nthreads_KQ>();
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, half, V_rows_per_thread>();
#else
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, float, V_rows_per_thread>();
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
@ -112,13 +112,13 @@ static __global__ void flash_attn_ext_vec(
constexpr int ne_KQ = ncols*D;
constexpr int ne_combine = nwarps*V_cols_per_iter*D;
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
__shared__ half KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
#else
float2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
__shared__ float KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
float KQ_max[ncols];
float KQ_sum[ncols];
@ -129,11 +129,11 @@ static __global__ void flash_attn_ext_vec(
}
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 Q_reg[ncols][(D/2)/nthreads_KQ]; // Will be initialized completely.
#else
float2 Q_reg[ncols][(D/2)/nthreads_KQ] = {{{0.0f, 0.0f}}}; // May be only partially initialized.
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
int Q_i32[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
float2 Q_ds[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
if constexpr (Q_q8_1) {
@ -155,7 +155,7 @@ static __global__ void flash_attn_ext_vec(
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE <= D/sizeof(int) || i < D/sizeof(int)) {
if (i0 + WARP_SIZE <= int(D/sizeof(int)) || i < int(D/sizeof(int))) {
tmp_q_i32[i] = 0;
}
}
@ -191,7 +191,7 @@ static __global__ void flash_attn_ext_vec(
__syncthreads();
} else {
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
const half2 scale_h2 = make_half2(scale, scale);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
@ -233,7 +233,7 @@ static __global__ void flash_attn_ext_vec(
Q_reg[j][k].y *= scale;
}
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
@ -272,7 +272,7 @@ static __global__ void flash_attn_ext_vec(
KQ_max_new[j] = fmaxf(KQ_max_new[j], sum);
if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == i_KQ_0) {
if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == uint32_t(i_KQ_0)) {
KQ_reg[j] = sum;
}
}
@ -291,7 +291,7 @@ static __global__ void flash_attn_ext_vec(
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + KQ_reg[j];
KQ[j*nthreads + tid] = KQ_reg[j];
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
@ -303,7 +303,7 @@ static __global__ void flash_attn_ext_vec(
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
#ifndef GGML_USE_HIP
@ -314,7 +314,7 @@ static __global__ void flash_attn_ext_vec(
for (int k0 = 0; k0 < WARP_SIZE; k0 += V_cols_per_iter) {
const int k = threadIdx.y*WARP_SIZE + k0 + (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V);
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 KQ_k[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
@ -353,7 +353,7 @@ static __global__ void flash_attn_ext_vec(
}
}
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
}
@ -374,7 +374,7 @@ static __global__ void flash_attn_ext_vec(
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + (threadIdx.x == 0 ? expf(sink - KQ_max[j]) : 0.0f);
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
@ -386,7 +386,7 @@ static __global__ void flash_attn_ext_vec(
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
}
@ -421,7 +421,7 @@ static __global__ void flash_attn_ext_vec(
const float kqmax_scale = expf(KQ_max[j_VKQ] - kqmax_new);
KQ_max[j_VKQ] = kqmax_new;
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 * VKQ_tmp = (half2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
+ (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
@ -452,7 +452,7 @@ static __global__ void flash_attn_ext_vec(
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ + V_rows_per_thread/4, &VKQ[j_VKQ][i_VKQ_0/nthreads_V + V_rows_per_thread/4]);
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
KQ_sum[j_VKQ] *= kqmax_scale;
KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);

View File

@ -53,6 +53,7 @@
#include "ggml-cuda/set.cuh"
#include "ggml-cuda/set-rows.cuh"
#include "ggml-cuda/pad_reflect_1d.cuh"
#include "ggml-cuda/solve_tri.cuh"
#include "ggml.h"
#include <algorithm>
@ -521,7 +522,8 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
};
#endif // defined(GGML_USE_VMM)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device,
[[maybe_unused]] int stream_no) {
#if defined(GGML_USE_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
@ -2717,6 +2719,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_OPT_STEP_SGD:
ggml_cuda_opt_step_sgd(ctx, dst);
break;
case GGML_OP_SOLVE_TRI:
ggml_cuda_op_solve_tri(ctx, dst);
break;
default:
return false;
}
@ -3046,7 +3051,12 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
std::initializer_list<enum ggml_op> topk_moe_ops_delayed_softmax =
ggml_cuda_topk_moe_ops(/*with_norm=*/false, /*delayed_softmax=*/true);
if (ops.size() == topk_moe_ops_with_norm.size() &&
const auto is_equal = [](const std::initializer_list<enum ggml_op> & list1,
const std::initializer_list<enum ggml_op> & list2) {
return std::equal(list1.begin(), list1.end(), list2.begin(), list2.end());
};
if (is_equal(topk_moe_ops_with_norm, ops) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 9 })) {
ggml_tensor * softmax = cgraph->nodes[node_idx];
ggml_tensor * weights = cgraph->nodes[node_idx + 9];
@ -3056,8 +3066,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == topk_moe_ops.size() &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 4 })) {
if (is_equal(topk_moe_ops, ops) && ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 4 })) {
ggml_tensor * softmax = cgraph->nodes[node_idx];
ggml_tensor * weights = cgraph->nodes[node_idx + 4];
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
@ -3065,7 +3074,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == topk_moe_ops_delayed_softmax.size() &&
if (is_equal(topk_moe_ops_delayed_softmax, ops) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 1, node_idx + 5 })) {
ggml_tensor * softmax = cgraph->nodes[node_idx + 4];
ggml_tensor * weights = cgraph->nodes[node_idx + 5];
@ -3081,9 +3090,8 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
std::initializer_list<enum ggml_op> mul_mat_id_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_MUL_MAT_ID, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT, GGML_OP_GLU };
if (ops.size() == 5 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}))) {
if ((is_equal(mul_mat_bias_glu_ops, ops) || is_equal(mul_mat_id_bias_glu_ops, ops)) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 4 })) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_gate_bias = cgraph->nodes[node_idx + 1];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 2];
@ -3095,9 +3103,8 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == 3 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}))) {
if ((is_equal(mul_mat_id_glu_ops, ops) || is_equal(mul_mat_glu_ops, ops)) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 2 })) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 1];
const ggml_tensor * glu = cgraph->nodes[node_idx + 2];
@ -3107,7 +3114,9 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == 3 && ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 2 })) {
std::initializer_list<enum ggml_op> rope_set_rows_ops = { GGML_OP_ROPE, GGML_OP_VIEW, GGML_OP_SET_ROWS };
if (is_equal(rope_set_rows_ops, ops) && ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 2 })) {
const ggml_tensor * rope = cgraph->nodes[node_idx];
const ggml_tensor * view = cgraph->nodes[node_idx + 1];
const ggml_tensor * set_rows = cgraph->nodes[node_idx + 2];
@ -3192,18 +3201,83 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
ggml_cuda_stream_context & stream_ctx = cuda_ctx->stream_context();
bool is_concurrent_event_active = false;
ggml_cuda_concurrent_event * concurrent_event = nullptr;
bool should_launch_concurrent_events = false;
const auto try_launch_concurrent_event = [&](const ggml_tensor * node) {
if (stream_ctx.concurrent_events.find(node) != stream_ctx.concurrent_events.end()) {
concurrent_event = &stream_ctx.concurrent_events[node];
is_concurrent_event_active = true;
GGML_LOG_DEBUG("Launching %d streams at %s\n", concurrent_event->n_streams, node->name);
cudaStream_t main_stream = cuda_ctx->stream(); // this should be stream 0
GGML_ASSERT(cuda_ctx->curr_stream_no == 0);
CUDA_CHECK(cudaEventRecord(concurrent_event->fork_event, main_stream));
for (int i = 1; i <= concurrent_event->n_streams; ++i) {
cudaStream_t stream = cuda_ctx->stream(cuda_ctx->device, i);
CUDA_CHECK(cudaStreamWaitEvent(stream, concurrent_event->fork_event));
}
}
};
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
// With the use of CUDA graphs, the execution will be performed by the graph launch.
if (!use_cuda_graph || cuda_graph_update_required) {
[[maybe_unused]] int prev_i = 0;
if (stream_ctx.concurrent_events.size() > 0) {
should_launch_concurrent_events = true;
for (const auto & [tensor, event] : stream_ctx.concurrent_events) {
should_launch_concurrent_events = should_launch_concurrent_events && event.is_valid();
}
}
if (should_launch_concurrent_events) {
//Restore the original graph to enable fusion within the streams
cgraph->nodes = const_cast<ggml_tensor **>(stream_ctx.original_nodes.data());
cgraph->n_nodes = (int) stream_ctx.original_nodes.size();
}
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (is_concurrent_event_active) {
GGML_ASSERT(concurrent_event);
if (node == concurrent_event->join_node) {
cuda_ctx->curr_stream_no = 0;
for (int i = 1; i <= concurrent_event->n_streams; ++i) {
// Wait on join events of forked streams in the main stream
CUDA_CHECK(cudaEventRecord(concurrent_event->join_events[i - 1],
cuda_ctx->stream(cuda_ctx->device, i)));
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), concurrent_event->join_events[i - 1]));
}
is_concurrent_event_active = false;
concurrent_event = nullptr;
} else {
GGML_ASSERT (concurrent_event->stream_mapping.find(node) != concurrent_event->stream_mapping.end());
cuda_ctx->curr_stream_no = concurrent_event->stream_mapping[node];
GGML_LOG_DEBUG("Setting stream no to %d for node %s\n", cuda_ctx->curr_stream_no, node->name);
}
} else if (i - prev_i > 1) {
//the previous node was fused
const ggml_tensor * prev_node = cgraph->nodes[i - 1];
try_launch_concurrent_event(prev_node);
if (is_concurrent_event_active) {
cuda_ctx->curr_stream_no = concurrent_event->stream_mapping[node];
GGML_LOG_DEBUG("Setting stream no to %d for node %s\n", cuda_ctx->curr_stream_no, node->name);
}
}
prev_i = i;
#ifdef GGML_CUDA_DEBUG
const int nodes_fused = i - prev_i - 1;
prev_i = i;
if (nodes_fused > 0) {
GGML_LOG_INFO("nodes_fused: %d\n", nodes_fused);
}
@ -3213,6 +3287,8 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
continue;
}
// start of fusion operations
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion) {
@ -3512,6 +3588,10 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
GGML_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
if (!is_concurrent_event_active) {
try_launch_concurrent_event(node);
}
}
}
@ -3651,6 +3731,235 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
}
}
static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
static bool enable_graph_optimization = [] {
const char * env = getenv("GGML_CUDA_GRAPH_OPT");
return env != nullptr && atoi(env) == 1;
}();
if (!enable_graph_optimization) {
return;
}
GGML_ASSERT(ggml_backend_cuda_get_device_count() == 1 && "compute graph optimization is only supported on single GPU in the CUDA backend");
GGML_LOG_DEBUG("Optimizing CUDA graph %p with %d nodes\n", cgraph->nodes, cgraph->n_nodes);
ggml_cuda_stream_context & stream_context = cuda_ctx->stream_context();
stream_context.reset();
// number of out-degrees for a particular node
std::unordered_map<const ggml_tensor *, int> fan_out;
// reverse mapping of node to index in the cgraph
std::unordered_map<const ggml_tensor *, int> node_indices;
const auto & is_noop = [](const ggml_tensor * node) -> bool {
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE ||
node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
};
const auto & depends_on = [](const ggml_tensor * dst, const ggml_tensor * src) -> bool {
for (uint32_t s = 0; s < GGML_MAX_SRC; ++s) {
if (dst->src[s] == src) {
return true;
}
}
// implicit dependency if they view the same tensor
const ggml_tensor * dst2 = dst->view_src ? dst->view_src : dst;
const ggml_tensor * src2 = src->view_src ? src->view_src : src;
if (dst2 == src2) {
return true;
}
return false;
};
for (int node_idx = 0; node_idx < cgraph->n_nodes; node_idx++) {
const ggml_tensor * node = cgraph->nodes[node_idx];
node_indices[node] = node_idx;
if (is_noop(node)) {
continue;
}
for (int src_idx = 0; src_idx < GGML_MAX_SRC; ++src_idx) {
const ggml_tensor * src = cgraph->nodes[node_idx]->src[src_idx];
//TODO: check why nrows > 1 fails
if (node && !is_noop(node) && ggml_nrows(node) <= 1) {
fan_out[src] += 1;
}
}
}
// Target Q, K, V for concurrency
// this is a more general way to find nodes which can be candidates for concurrency (although it has not been tested for anything else):
// 1. find fan-out (fork) nodes where the same input is used at least N times (in QKV, it would be "attn-norm")
// 2. find the join node, where 2 or more of the outputs are required (in QKV, this would "KQ" or "flash-attn")
// 3. account for all branches from the fork to the join
// 4. To extend lifetimes of the tensors, we interleave the branches (see below for more details)
// 5. save the original cgraph and restore it in graph_compute, to enable fusion within streams
// See discussion: https://github.com/ggml-org/llama.cpp/pull/16991#issuecomment-3522620030
const int min_fan_out = 3;
const int max_fan_out = 3;
// store {fork_idx, join_idx}
std::vector<std::pair<int, int>> concurrent_node_ranges;
// save the original nodes
std::vector<const ggml_tensor *> original_nodes;
original_nodes.reserve(cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; ++i) {
original_nodes.push_back(cgraph->nodes[i]);
}
cuda_ctx->stream_context().original_nodes = std::move(original_nodes);
for (const auto & [root_node, count] : fan_out) {
if (count >= min_fan_out && count <= max_fan_out) {
const int root_node_idx = node_indices[root_node];
bool is_part_of_event = false;
for (const auto & [start, end] : concurrent_node_ranges) {
if (root_node_idx >= start && root_node_idx <= end) {
is_part_of_event = true;
}
}
if (is_part_of_event) {
continue;
}
std::vector<std::vector<const ggml_tensor *>> nodes_per_branch;
for (int i = root_node_idx + 1; i < cgraph->n_nodes; ++i) {
const ggml_tensor * node = cgraph->nodes[i];
if (!is_noop(node) && depends_on(node, root_node)) {
nodes_per_branch.push_back({ node });
}
}
GGML_ASSERT(nodes_per_branch.size() == (size_t) count);
//find the join point
const ggml_tensor * join_node = nullptr;
const auto & belongs_to_branch = [&](const ggml_tensor * node,
const std::vector<const ggml_tensor *> & branch) -> bool {
for (const ggml_tensor * n : branch) {
if (depends_on(node, n)) {
return true;
}
}
return false;
};
for (int i = root_node_idx + 1; i < cgraph->n_nodes; ++i) {
const ggml_tensor * curr_node = cgraph->nodes[i];
int num_joins = 0;
for (size_t branch_idx = 0; branch_idx < nodes_per_branch.size(); branch_idx++) {
if (belongs_to_branch(curr_node, nodes_per_branch[branch_idx])) {
num_joins++;
}
}
if (num_joins >= 2) {
join_node = curr_node;
break;
}
bool found_branch = false;
for (size_t branch_idx = 0; branch_idx < nodes_per_branch.size(); branch_idx++) {
std::vector<const ggml_tensor *> & branch_vec = nodes_per_branch[branch_idx];
if (belongs_to_branch(curr_node, branch_vec)) {
//continue accumulating
if (std::find(branch_vec.begin(), branch_vec.end(), curr_node) == branch_vec.end()) {
branch_vec.push_back(curr_node);
}
found_branch = true;
}
}
if (!found_branch && is_noop(curr_node)) {
// we can put it in any branch because it will be ignored
nodes_per_branch[0].push_back({ curr_node });
}
}
if (join_node) {
//Create ggml_cuda_concurrent_event
ggml_cuda_concurrent_event concurrent_event(nodes_per_branch.size());
concurrent_event.join_node = join_node;
for (size_t branch_idx = 0; branch_idx < nodes_per_branch.size(); branch_idx++) {
for (const ggml_tensor * n : nodes_per_branch[branch_idx]) {
concurrent_event.stream_mapping[n] = branch_idx + 1;
}
}
int fork_node_idx = node_indices[root_node];
int join_node_idx = node_indices[join_node];
int current_branch_idx = 0;
int current_node_idx = fork_node_idx + 1;
const int n_branches = nodes_per_branch.size();
int total_branch_nodes = 0;
for (std::vector<const ggml_tensor *> branch_nodes : nodes_per_branch) {
total_branch_nodes += branch_nodes.size();
}
// there are other nodes in the middle which are unaccounted for
// usually (cpy) nodes, then ignore this fork
if (join_node_idx - fork_node_idx - 1 != total_branch_nodes) {
GGML_LOG_DEBUG(
"Skipping %s because the number of nodes in the middle is not equal to the total number of "
"branch nodes %d != %d\n",
root_node->name, join_node_idx - fork_node_idx - 1, total_branch_nodes);
continue;
}
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> & concurrent_events = cuda_ctx->stream_context().concurrent_events;
GGML_ASSERT(concurrent_events.find(root_node) == concurrent_events.end());
concurrent_events.emplace(root_node, std::move(concurrent_event));
GGML_LOG_DEBUG("Adding stream at node %s %p\n", root_node->name, root_node);
concurrent_node_ranges.emplace_back(fork_node_idx, join_node_idx);
// interleave tensors to extend lifetimes so that ggml graph doesn't recycle them
// example transformation:
// [attn-norm, QMul, QNorm, QRope, KMul, KNorm, KRope, VMul, attn] ->
// [attn-norm, QMul, KMul, VMul, QNorm, VNorm, QRope, KRope, attn]
while (current_node_idx < join_node_idx) {
std::vector<const ggml_tensor *> & branch_nodes = nodes_per_branch[current_branch_idx];
bool has_node = false;
for (std::vector<const ggml_tensor *> branch_node : nodes_per_branch) {
has_node |= branch_node.size() > 0;
}
GGML_ASSERT(has_node);
if (branch_nodes.empty()) {
current_branch_idx = (current_branch_idx + 1) % n_branches;
continue;
}
cgraph->nodes[current_node_idx] = const_cast<ggml_tensor *>(branch_nodes.front());
current_node_idx++;
branch_nodes.erase(branch_nodes.begin());
// append all empty nodes
while (!branch_nodes.empty() && is_noop(branch_nodes.front())) {
cgraph->nodes[current_node_idx] = const_cast<ggml_tensor *>(branch_nodes.front());
current_node_idx++;
branch_nodes.erase(branch_nodes.begin());
}
current_branch_idx = (current_branch_idx + 1) % n_branches;
}
}
}
}
}
static const ggml_backend_i ggml_backend_cuda_interface = {
/* .get_name = */ ggml_backend_cuda_get_name,
/* .free = */ ggml_backend_cuda_free,
@ -3665,7 +3974,7 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
/* .graph_optimize = */ NULL,
/* .graph_optimize = */ ggml_backend_cuda_graph_optimize,
};
static ggml_guid_t ggml_backend_cuda_guid() {
@ -3837,7 +4146,7 @@ static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t *
// Check if UMA is explicitly enabled via environment variable
bool uma_env = getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr;
bool is_uma = prop.unifiedAddressing > 0 || uma_env;
bool is_uma = prop.integrated > 0 || uma_env;
if (is_uma) {
// For UMA systems (like DGX Spark), use system memory info
@ -4255,6 +4564,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
return true;
case GGML_OP_SOLVE_TRI:
return op->src[0]->ne[0] <= 64 && op->src[1]->ne[0] <= 32;
default:
return false;
}

View File

@ -73,34 +73,7 @@ namespace ggml_cuda_mma {
static constexpr int I = I_;
static constexpr int J = J_;
#if defined(GGML_USE_HIP)
#if defined(RDNA4)
static constexpr int ne = I * J / 32;
T x[ne] = {0};
static constexpr __device__ bool supported() {
if (I == 16 && J == 16) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 16) {
return 8 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 16) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#else
#if defined(AMD_MFMA_AVAILABLE)
static constexpr int ne = I * J / 64;
T x[ne] = {0};
@ -146,7 +119,6 @@ namespace ggml_cuda_mma {
return -1;
}
}
#endif // defined(RDNA4)
#elif __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
static constexpr int ne = I * J / 32;
T x[ne] = {0};
@ -177,6 +149,34 @@ namespace ggml_cuda_mma {
return -1;
}
}
#elif defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
static constexpr int ne = I * J / 32;
T x[ne] = {0};
static constexpr __device__ bool supported() {
if (I == 16 && J == 16) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 16) {
return 8 * (threadIdx.x / 16) + l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 16 && J == 16) {
return threadIdx.x % 16;
} else {
NO_DEVICE_CODE;
return -1;
}
}
#endif
#else
static constexpr int ne = I * J / 32;
T x[ne] = {0};
@ -437,7 +437,29 @@ namespace ggml_cuda_mma {
xi[0] = xs[0];
}
#elif defined(AMD_WMMA_AVAILABLE)
if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
ggml_cuda_memcpy_1<sizeof(t.x)>(t.x, xs0 + t.get_i(0) * stride + t.get_j(0));
} else if constexpr (std::is_same_v<T, int>) {
if constexpr (I == 16 && J == 4) {
int64_t * xi = (int64_t *) t.x;
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
xi[0] = xs[0];
}else if constexpr (I == 16 && J == 8) {
int64_t * xi = (int64_t *) t.x;
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I));
xi[0] = xs[0];
const int64_t * xs1 = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I) + 2);
xi[1] = xs1[0];
}else{
NO_DEVICE_CODE;
}
} else {
NO_DEVICE_CODE;
}
#else
#pragma unroll
for (int l = 0; l < t.ne; ++l) {
@ -772,6 +794,36 @@ namespace ggml_cuda_mma {
acc[0],
0, 0, 0);
#endif // defined(CDNA3)
#elif defined(AMD_WMMA_AVAILABLE)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
#if defined(RDNA4)
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
true
);
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[1],
true,
b_vec[1],
acc[0],
true
);
#endif // defined(RDNA4)
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
@ -798,6 +850,7 @@ namespace ggml_cuda_mma {
acc[0],
0, 0, 0);
#endif // defined(CDNA3)
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
@ -836,10 +889,37 @@ namespace ggml_cuda_mma {
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[6]), "r"(Axi[7]), "r"(Bxi[6]), "r"(Bxi[7]));
#else
tile<16, 8, float> * D16 = (tile<16, 8, float> *) &D;
tile<16, 8, half2> * A16 = (tile<16, 8, half2> *) &A;
tile <16, 8, float> * D16 = reinterpret_cast<tile <16, 8, float> *>(&D);
const tile<16, 8, half2> * A16 = reinterpret_cast<const tile<16, 8, half2> *>(&A);
mma(D16[0], A16[0], B);
mma(D16[1], A16[1], B);
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
}
static __device__ __forceinline__ void mma(
tile<16, 16, int> & D, const tile<16, 4, int> & A, const tile<16, 4, int> & B) {
#if defined(AMD_WMMA_AVAILABLE)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
false
);
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif
}
}

View File

@ -151,7 +151,7 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
return false;
}
} else {
if (src1_ncols > 16 || GGML_CUDA_CC_IS_RDNA4(cc)) {
if (src1_ncols > 16) {
return false;
}
}

View File

@ -306,5 +306,11 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return false;
}
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
if (amd_wmma_available(cc)) {
if (GGML_CUDA_CC_IS_RDNA4(cc)) {
return true;
}
}
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,203 @@
#include "common.cuh"
#include "ggml.h"
#include "solve_tri.cuh"
#define MAX_N_FAST 64
#define MAX_K_FAST 32
// ======================
// Fast Kernel (n <= 64, k <= 32) - Warp-based parallel reduction
// ======================
// When ncols_template == 0 the bounds for the loops in this function are not
// known and can't be unrolled. As we want to keep pragma unroll for all other
// cases we supress the clang transformation warning here.
#ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template <int n_template, int k_template>
static __global__ void solve_tri_f32_fast(const float * __restrict__ A,
const float * __restrict__ B,
float * __restrict__ X,
const uint3 ne02,
const size_t nb02,
const size_t nb03,
const size_t nb12,
const size_t nb13,
const size_t nb2,
const size_t nb3,
const int n_arg,
const int k_arg) {
const int n = n_template == 0 ? n_arg : n_template;
const int k = k_template == 0 ? k_arg : k_template;
const int batch_idx = blockIdx.x;
const int lane = threadIdx.x;
const int col_idx = threadIdx.y;
if (col_idx >= k) {
return;
}
const uint2 i02_i03 = fast_div_modulo(batch_idx, ne02);
const int64_t i02 = i02_i03.y;
const int64_t i03 = i02_i03.x;
const float * const A_batch = (const float *) (A + i02 * nb02 + i03 * nb03);
const float * const B_batch = (const float *) (B + i02 * nb12 + i03 * nb13);
float * X_batch = (float *) (X + i02 * nb2 + i03 * nb3);
__shared__ float sA[MAX_N_FAST * MAX_N_FAST];
__shared__ float sXt[MAX_N_FAST * (MAX_K_FAST + 1)];
const int offset = threadIdx.x + threadIdx.y * blockDim.x;
#pragma unroll
for (int i = 0; i < n * n; i += k * WARP_SIZE) {
int i0 = i + offset;
if (i0 < n * n) {
sA[i0] = A_batch[i0];
}
}
const int rows_per_warp = (n + WARP_SIZE - 1) / WARP_SIZE;
#pragma unroll
for (int i = 0; i < rows_per_warp; i++) {
const int i0 = lane + i * WARP_SIZE;
if (i0 < n) {
sXt[col_idx * n + i0] = B_batch[i0 * k + col_idx];
}
}
__syncthreads();
#pragma unroll
for (int row = 0; row < n; ++row) {
float sum = 0.0f;
{
int j = lane;
if (j < row) {
sum += sA[row * n + j] * sXt[col_idx * n + j];
}
}
if (row >= WARP_SIZE) {
int j = WARP_SIZE + lane;
if (j < row) {
sum += sA[row * n + j] * sXt[col_idx * n + j];
}
}
sum = warp_reduce_sum(sum);
if (lane == 0) {
const float b_val = sXt[col_idx * n + row];
const float a_diag = sA[row * n + row];
// no safeguards for division by zero because that indicates corrupt
// data anyway
sXt[col_idx * n + row] = (b_val - sum) / a_diag;
}
}
__syncthreads();
#pragma unroll
for (int i = 0; i < rows_per_warp; i++) {
const int i0 = lane + i * WARP_SIZE;
if (i0 < n) {
X_batch[i0 * k + col_idx] = sXt[col_idx * n + i0];
}
}
}
#ifdef __clang__
# pragma clang diagnostic pop
#endif // __clang__
static void solve_tri_f32_cuda(const float * A,
const float * B,
float * X,
int n,
int k,
int64_t ne02,
int64_t ne03,
size_t nb02,
size_t nb03,
size_t nb12,
size_t nb13,
size_t nb2,
size_t nb3,
cudaStream_t stream) {
const uint3 ne02_fd = init_fastdiv_values((uint32_t) ne02);
dim3 threads(WARP_SIZE, k);
dim3 grid(ne02 * ne03);
if (n == 64) {
switch (k) {
case 32:
solve_tri_f32_fast<64, 32>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 16:
solve_tri_f32_fast<64, 16>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 14:
solve_tri_f32_fast<64, 14>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 12:
solve_tri_f32_fast<64, 12>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 10:
solve_tri_f32_fast<64, 10>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 8:
solve_tri_f32_fast<64, 8>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 6:
solve_tri_f32_fast<64, 6>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 4:
solve_tri_f32_fast<64, 4>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 2:
solve_tri_f32_fast<64, 2>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 1:
solve_tri_f32_fast<64, 1>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
default:
solve_tri_f32_fast<0, 0>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, n, k);
}
} else { // run general case
solve_tri_f32_fast<0, 0>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, n, k);
}
}
void ggml_cuda_op_solve_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // A (triangular n x x matrix)
const ggml_tensor * src1 = dst->src[1]; // B (right hand side of n x k equation columns)
ggml_is_contiguous(src0);
ggml_is_contiguous(src1);
const int64_t n = src0->ne[0];
const int64_t k = src1->ne[0];
GGML_ASSERT(n <= 64);
GGML_ASSERT(k <= 32);
solve_tri_f32_cuda((const float *) src0->data, (const float *) src1->data, (float *) dst->data, n, k, src0->ne[2],
src0->ne[3], src0->nb[2] / sizeof(float), src0->nb[3] / sizeof(float),
src1->nb[2] / sizeof(float), src1->nb[3] / sizeof(float), dst->nb[2] / sizeof(float),
dst->nb[3] / sizeof(float), ctx.stream());
}

View File

@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_op_solve_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -105,7 +105,7 @@
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaStreamWaitEvent hipStreamWaitEvent
#define cudaGraphExec_t hipGraphExec_t
#define cudaGraphNode_t hipGraphNode_t
#define cudaKernelNodeParams hipKernelNodeParams

View File

@ -43,6 +43,14 @@ set(HTP_CMAKE_ARGS
-DHEXAGON_TOOLS_ROOT=$ENV{HEXAGON_TOOLS_ROOT}
-DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG})
ExternalProject_Add(htp-v68
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v68 -DPREBUILT_LIB_DIR="toolv19_v68")
ExternalProject_Add(htp-v69
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v69 -DPREBUILT_LIB_DIR="toolv19_v69")
ExternalProject_Add(htp-v73
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v73 -DPREBUILT_LIB_DIR="toolv19_v73")
@ -61,6 +69,8 @@ ExternalProject_Add(htp-v81
# Install Hexagon skels required at runtime
install(FILES
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v68.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v69.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v73.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v75.so
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v79.so

View File

@ -9,6 +9,7 @@
#include <chrono>
#include <mutex>
#include <string>
#include <stdexcept>
#ifdef _WIN32
# include <sal.h>
@ -240,6 +241,23 @@ struct ggml_hexagon_session {
uint32_t prof_pkts;
};
static inline void hex_print_op_info(const ggml_tensor * op, ggml_hexagon_session * sess, const uint32_t req_flags) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req_flags);
}
void ggml_hexagon_session::enqueue(struct htp_general_req &req, struct dspqueue_buffer *bufs, uint32_t n_bufs, bool sync) {
// Bump pending flag (cleared in the session::flush once we get the responce)
this->op_pending++; // atomic inc
@ -1912,6 +1930,15 @@ static bool hex_supported_dims(const struct ggml_tensor * x, const struct ggml_t
return true;
}
template <typename... _TTensor>
static inline bool hex_supported_buffer(const struct ggml_hexagon_session * sess, _TTensor... tensors) {
return ([&]() -> bool {
return !tensors || !tensors->buffer ||
(ggml_backend_buffer_is_hexagon(tensors->buffer) &&
ggml_backend_hexagon_buffer_get_sess(tensors->buffer) == sess);
}() && ...);
}
static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * sess, const struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
@ -1959,16 +1986,7 @@ static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * s
}
// src0 & src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, src1, dst)) {
return false;
}
@ -2016,20 +2034,7 @@ static bool ggml_hexagon_supported_mul_mat_id(const struct ggml_hexagon_session
// src0 (weights) must be repacked and mapped to the same session
// src1 & sr2 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, src1, src2, dst)) {
return false;
}
@ -2063,16 +2068,7 @@ static bool ggml_hexagon_supported_binary(const struct ggml_hexagon_session * se
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, src1, dst)) {
return false;
}
@ -2104,20 +2100,7 @@ static bool ggml_hexagon_supported_add_id(const struct ggml_hexagon_session * se
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, src1, src2, dst)) {
return false;
}
@ -2144,12 +2127,7 @@ static bool ggml_hexagon_supported_unary(const struct ggml_hexagon_session * ses
}
// src0 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, dst)) {
return false;
}
@ -2186,16 +2164,7 @@ static bool ggml_hexagon_supported_activations(const struct ggml_hexagon_session
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1 && src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, src1, dst)) {
return false;
}
@ -2248,16 +2217,7 @@ static bool ggml_hexagon_supported_softmax(const struct ggml_hexagon_session * s
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1 && src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, src1, dst)) {
return false;
}
@ -2269,7 +2229,7 @@ static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess
int mode = op_params[2];
if ((mode & GGML_ROPE_TYPE_NEOX) || (mode & GGML_ROPE_TYPE_MROPE) || (mode & GGML_ROPE_TYPE_VISION)) {
if ((mode & GGML_ROPE_TYPE_MROPE) || (mode & GGML_ROPE_TYPE_VISION)) {
return false;
}
if (mode & 1) {
@ -2312,20 +2272,7 @@ static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess
}
// src0, src1, src2 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2 && src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
if (!hex_supported_buffer(sess, src0, src1, src2, dst)) {
return false;
}
@ -2346,6 +2293,26 @@ static void init_htp_tensor(htp_tensor * h, const ggml_tensor * t) {
h->nb[3] = t->nb[3];
}
static size_t dspqueue_buffers_init(dspqueue_buffer * buf, const ggml_tensor * t, bool flush_host, bool flush_htp) {
if (!t) {
return 0;
}
memset(buf, 0, sizeof(*buf));
auto tensor_buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context);
buf->fd = tensor_buf->fd;
buf->ptr = t->data;
buf->offset = (uint8_t *) t->data - tensor_buf->base;
buf->size = ggml_nbytes(t);
buf->flags = (flush_host ? DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER : 0); // Flush CPU
buf->flags |= (flush_htp ? DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT : 0); // Invalidate DSP
return 1;
}
static ggml_hexagon_session * get_session_from_tensor(const ggml_tensor * t) {
return static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context)->sess;
}
static void hex_dump_dspbuf(const struct ggml_tensor * t, const dspqueue_buffer * d) {
auto buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context);
auto sess = buf->sess;
@ -2360,10 +2327,6 @@ static void ggml_hexagon_mul_mat(const struct ggml_tensor * op, uint32_t flags)
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * dst = op;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1, t2;
t1 = ggml_time_us();
@ -2385,55 +2348,27 @@ static void ggml_hexagon_mul_mat(const struct ggml_tensor * op, uint32_t flags)
}
dspqueue_buffer bufs[3];
memset(bufs, 0, sizeof(bufs));
// First buffer Weights.
// The content is static, there is no need to do any cache management
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = 0;
dspqueue_buffers_init(bufs, src0, false, false);
// Second buffer Input Activations. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible.
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
dspqueue_buffers_init(&bufs[1], src1, true, true);
// Third buffer Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
bufs[2].fd = dst_buf->fd;
bufs[2].ptr = dst->data;
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[2].size = ggml_nbytes(dst);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
dspqueue_buffers_init(&bufs[2], dst, true, false);
// Primary DSP session from the src0 (normally weight) tensor
auto sess = src0_buf->sess;
auto * sess = get_session_from_tensor(src0);
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
hex_print_op_info(op, sess, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
@ -2463,11 +2398,6 @@ static void ggml_hexagon_mul_mat_id(const struct ggml_tensor * op, uint32_t flag
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1, t2;
t1 = ggml_time_us();
@ -2490,66 +2420,32 @@ static void ggml_hexagon_mul_mat_id(const struct ggml_tensor * op, uint32_t flag
}
dspqueue_buffer bufs[4];
memset(bufs, 0, sizeof(bufs));
// First buffer Weights.
// The content is static, there is no need to do any cache management
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = 0;
dspqueue_buffers_init(bufs, src0, false, false);
// Second buffer Input Activations. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible.
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
dspqueue_buffers_init(&bufs[1], src1, true, true);
// Third buffer expert IDs. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible.
bufs[2].fd = src2_buf->fd;
bufs[2].ptr = src2->data;
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[2].size = ggml_nbytes(src2);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
dspqueue_buffers_init(&bufs[2], src2, true, true);
// Forth buffer Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
bufs[3].fd = dst_buf->fd;
bufs[3].ptr = dst->data;
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[3].size = ggml_nbytes(dst);
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
dspqueue_buffers_init(&bufs[3], dst, true, false);
// Primary DSP session from the src0 (normally weight) tensor
auto sess = src0_buf->sess;
auto * sess = get_session_from_tensor(src0);
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
hex_print_op_info(op, sess, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
@ -2581,10 +2477,6 @@ static void ggml_hexagon_binary(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src1 = node->src[1];
const struct ggml_tensor * dst = node;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1 = 0;
uint64_t t2 = 0;
@ -2621,60 +2513,30 @@ static void ggml_hexagon_binary(const struct ggml_tensor * op, uint32_t flags) {
init_htp_tensor(&req.dst, dst);
dspqueue_buffer bufs[3];
memset(bufs, 0, sizeof(bufs));
// First buffer = First Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
dspqueue_buffers_init(bufs, src0, true, true);
// Second buffer = Second Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
dspqueue_buffers_init(&bufs[1], src1, true, true);
// Third buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
bufs[2].fd = dst_buf->fd;
bufs[2].ptr = dst->data;
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[2].size = ggml_nbytes(dst);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
dspqueue_buffers_init(&bufs[2], dst, true, false);
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
auto * sess = get_session_from_tensor(src0);
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[16 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
hex_print_op_info(op, sess, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
@ -2705,11 +2567,6 @@ static void ggml_hexagon_add_id(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src2 = node->src[2];
const struct ggml_tensor * dst = node;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1 = 0;
uint64_t t2 = 0;
@ -2741,58 +2598,19 @@ static void ggml_hexagon_add_id(const struct ggml_tensor * op, uint32_t flags) {
init_htp_tensor(&req.dst, dst);
dspqueue_buffer bufs[4];
memset(bufs, 0, sizeof(bufs));
// First buffer = input activations
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
dspqueue_buffers_init(bufs, src0, true, true);
// Second buffer = experts bias
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
dspqueue_buffers_init(&bufs[1], src1, true, true);
// Third buffer = activated experts
bufs[2].fd = src2_buf->fd;
bufs[2].ptr = src2->data;
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[2].size = ggml_nbytes(src2);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
dspqueue_buffers_init(&bufs[2], src2, true, true);
// Forth buffer = output activations
bufs[3].fd = dst_buf->fd;
bufs[3].ptr = dst->data;
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[3].size = ggml_nbytes(dst);
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
dspqueue_buffers_init(&bufs[3], dst, true, true);
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
auto * sess = get_session_from_tensor(src0);
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[16 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
hex_print_op_info(op, sess, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
@ -2886,71 +2704,33 @@ static void ggml_hexagon_unary(const struct ggml_tensor * op, uint32_t flags) {
}
dspqueue_buffer bufs[3];
int n_bufs = 0;
memset(bufs, 0, sizeof(bufs));
// First buffer = Only Operand of Unary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
bufs[n_bufs].fd = src0_buf->fd;
bufs[n_bufs].ptr = src0->data;
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[n_bufs].size = ggml_nbytes(src0);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
++n_bufs;
size_t n_bufs = dspqueue_buffers_init(bufs, src0, true, true);
if (src1) {
// Second buffer = Second Operand of Binary op
// Second buffer(nullable) = Second Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
bufs[n_bufs].fd = src1_buf->fd;
bufs[n_bufs].ptr = src1->data;
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[n_bufs].size = ggml_nbytes(src1);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
}
n_bufs += dspqueue_buffers_init(&bufs[n_bufs], src1, true, true);
// Second or third buffer = Output Activations. We'll handle DSP
// Second buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
bufs[n_bufs].fd = dst_buf->fd;
bufs[n_bufs].ptr = dst->data;
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[n_bufs].size = ggml_nbytes(dst);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
++n_bufs;
n_bufs += dspqueue_buffers_init(&bufs[n_bufs], dst, true, false);
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
auto * sess = get_session_from_tensor(src0);
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
hex_print_op_info(op, sess, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
if (src1) {
@ -3023,85 +2803,40 @@ static void ggml_hexagon_rope(const struct ggml_tensor * op, uint32_t flags) {
}
dspqueue_buffer bufs[4];
int n_bufs = 0;
memset(bufs, 0, sizeof(bufs));
// First buffer
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
bufs[n_bufs].fd = src0_buf->fd;
bufs[n_bufs].ptr = src0->data;
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[n_bufs].size = ggml_nbytes(src0);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
++n_bufs;
size_t n_bufs = dspqueue_buffers_init(bufs, src0, true, true);
// Second buffer
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
bufs[n_bufs].fd = src1_buf->fd;
bufs[n_bufs].ptr = src1->data;
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[n_bufs].size = ggml_nbytes(src1);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
n_bufs += dspqueue_buffers_init(&bufs[n_bufs], src1, true, true);
if (src2) {
// Third buffer
// Third buffer(nullable)
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
bufs[n_bufs].fd = src2_buf->fd;
bufs[n_bufs].ptr = src2->data;
bufs[n_bufs].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[n_bufs].size = ggml_nbytes(src2);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
}
n_bufs += dspqueue_buffers_init(&bufs[n_bufs], src2, true, true);
// Final buffer = Output Activations. We'll handle DSP
// Second buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
bufs[n_bufs].fd = dst_buf->fd;
bufs[n_bufs].ptr = dst->data;
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[n_bufs].size = ggml_nbytes(dst);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
++n_bufs;
n_bufs += dspqueue_buffers_init(&bufs[n_bufs], dst, true, false);
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
auto * sess = get_session_from_tensor(src0);
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
hex_print_op_info(op, sess, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
if (src1) {

View File

@ -390,6 +390,12 @@ int get_hex_arch_ver(int domain, int * arch) {
}
switch (arch_ver.capability & 0xff) {
case 0x68:
*arch = 68;
return 0;
case 0x69:
*arch = 69;
return 0;
case 0x73:
*arch = 73;
return 0;

View File

@ -66,6 +66,13 @@ static inline bool dma_queue_push(dma_queue * q,
desc->desctype = HEXAGON_UDMA_DESC_DESCTYPE_TYPE1;
desc->dstbypass = 1;
desc->srcbypass = 1;
#if __HVX_ARCH__ >= 73
desc->dstbypass = 1;
desc->srcbypass = 1;
#else
desc->dstbypass = 0;
desc->srcbypass = 1;
#endif
desc->order = 0;
desc->dstate = HEXAGON_UDMA_DESC_DSTATE_INCOMPLETE;
desc->src = (void *) src;

View File

@ -16,12 +16,7 @@
#include "hvx-utils.h"
#include "ops-utils.h"
static inline HVX_Vector hvx_vec_exp_fp32_guard(HVX_Vector in_vec) {
static const float kInf = INFINITY;
static const float kMaxExp = 88.02f; // log(INF)
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
static inline HVX_Vector hvx_vec_exp_fp32_guard(HVX_Vector in_vec, HVX_Vector max_exp, HVX_Vector inf) {
const HVX_VectorPred pred0 = Q6_Q_vcmp_gt_VsfVsf(in_vec, max_exp);
HVX_Vector out = hvx_vec_exp_fp32(in_vec);
@ -47,6 +42,12 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
HVX_Vector vec_out = Q6_V_vzero();
static const float kInf = INFINITY;
static const float kMaxExp = 88.02f; // log(INF)
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
if (0 == unaligned_loop) {
HVX_Vector * p_vec_in1 = (HVX_Vector *) src;
HVX_Vector * p_vec_out = (HVX_Vector *) dst;
@ -55,9 +56,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(*p_vec_in1++);
*p_vec_out++ = hvx_vec_exp_fp32_guard(neg_vec_in);
*p_vec_out++ = hvx_vec_exp_fp32_guard(neg_vec_in, max_exp, inf);
} else {
*p_vec_out++ = hvx_vec_exp_fp32_guard(*p_vec_in1++);
*p_vec_out++ = hvx_vec_exp_fp32_guard(*p_vec_in1++, max_exp, inf);
}
}
} else {
@ -67,9 +68,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(neg_vec_in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(neg_vec_in, max_exp, inf);
} else {
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(in, max_exp, inf);
}
}
}
@ -83,9 +84,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
vec_out = hvx_vec_exp_fp32_guard(neg_vec_in);
vec_out = hvx_vec_exp_fp32_guard(neg_vec_in, max_exp, inf);
} else {
vec_out = hvx_vec_exp_fp32_guard(in);
vec_out = hvx_vec_exp_fp32_guard(in, max_exp, inf);
}
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, vec_out);

View File

@ -16,6 +16,15 @@
#include "hvx-utils.h"
#include "ops-utils.h"
static inline HVX_Vector hvx_vec_inverse_fp32_guard(HVX_Vector v_sf, HVX_Vector nan_inf_mask) {
HVX_Vector out = hvx_vec_inverse_fp32(v_sf);
HVX_Vector masked_out = Q6_V_vand_VV(out, nan_inf_mask);
const HVX_VectorPred pred = Q6_Q_vcmp_eq_VwVw(nan_inf_mask, masked_out);
return Q6_V_vmux_QVV(pred, Q6_V_vzero(), out);
}
void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
@ -32,19 +41,22 @@ void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const
FARF(HIGH, "hvx_inverse_f32: unaligned loop in hvx op, possibly slower execution\n");
}
static const uint32_t kNanInfMask = 0x7f800000;
const HVX_Vector nan_inf_mask = Q6_V_vsplat_R(kNanInfMask);
if (0 == unaligned_loop) {
HVX_Vector * p_vec_in = (HVX_Vector *) src;
HVX_Vector * p_vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
*p_vec_out++ = hvx_vec_inverse_fp32_guard(*p_vec_in++);
*p_vec_out++ = hvx_vec_inverse_fp32_guard(*p_vec_in++, nan_inf_mask);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_inverse_fp32_guard(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_inverse_fp32_guard(in, nan_inf_mask);
}
}
@ -53,7 +65,7 @@ void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = hvx_vec_inverse_fp32_guard(in);
HVX_Vector out = hvx_vec_inverse_fp32_guard(in, nan_inf_mask);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out);
}

View File

@ -21,6 +21,26 @@ typedef union {
float fp32[VLEN_FP32];
} __attribute__((aligned(VLEN), packed)) HVX_VectorAlias;
/* Q6_Vsf_equals_Vw is only available on v73+.*/
#if __HVX_ARCH__ < 73
static inline HVX_Vector int32_to_qfloat(HVX_Vector const in)
{
HVX_Vector const vzero = Q6_V_vzero();
HVX_VectorPred is_zero = Q6_Q_vcmp_eq_VwVw(in, vzero);
HVX_Vector lshift = Q6_Vw_vnormamt_Vw(in);
HVX_Vector normalized = Q6_Vw_vasl_VwVw(in, lshift);
HVX_Vector vexp = Q6_Vw_vsub_VwVw(Q6_V_vsplat_R(0x7f + 30), lshift);
HVX_Vector mant = Q6_V_vand_VV(Q6_V_vsplat_R(0xFFFFFF00), normalized);
HVX_Vector ret = Q6_V_vmux_QVV(is_zero, vzero, Q6_Vw_vadd_VwVw(mant, vexp));
return ret;
}
static inline HVX_Vector Q6_Vsf_equals_Vw(HVX_Vector const in)
{
return Q6_Vsf_equals_Vqf32(int32_to_qfloat(in));
}
#endif
static inline HVX_Vector hvx_vec_splat_fp32(float i) {
union {
float f;
@ -726,24 +746,6 @@ static inline HVX_Vector hvx_vec_inverse_fp32(HVX_Vector v_sf) {
return Q6_Vsf_equals_Vqf32(r_qf);
}
static inline HVX_Vector hvx_vec_inverse_fp32_guard(HVX_Vector v_sf) {
static const float kInf = INFINITY;
static const uint32_t kNanMask = 0x7fffffff;
static const uint32_t kNanMin = 0x7f800000;
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
const HVX_VectorPred pred_inf = Q6_Q_vcmp_gt_VsfVsf(inf, v_sf);
HVX_Vector out = hvx_vec_inverse_fp32(v_sf);
const HVX_Vector nan_mask = Q6_V_vsplat_R(kNanMask);
const HVX_Vector nan_min = Q6_V_vsplat_R(kNanMin);
HVX_Vector masked_out = Q6_V_vand_VV(out, nan_mask);
const HVX_VectorPred pred = Q6_Q_vcmp_gtand_QVuwVuw(pred_inf, nan_min, masked_out);
return Q6_V_vmux_QVV(pred, out, Q6_V_vzero());
}
#define FAST_SIGMOID_LOG2F (0x3fb8aa3b) // 1.442695022
#define FAST_SIGMOID_C1 (0x3d009076) // 0.03138777
#define FAST_SIGMOID_C2 (0x3e8d74bd) // 0.276281267
@ -958,14 +960,16 @@ static inline HVX_Vector hvx_vec_rsqrt_fp32(HVX_Vector in_vec) {
return Q6_Vsf_equals_Vqf32(temp);
}
static inline HVX_Vector hvx_vec_fast_sigmoid_fp32_guard(HVX_Vector v) {
static const float kMaxExp = -88.02f; // log(INF)
const HVX_Vector max_exp = Q6_V_vsplat_R(*((uint32_t *) &kMaxExp));
const HVX_VectorPred pred_inf = Q6_Q_vcmp_gt_VsfVsf(v, max_exp);
static inline HVX_Vector hvx_vec_fast_sigmoid_fp32_guard(HVX_Vector v,
HVX_Vector one,
HVX_Vector max_exp,
HVX_Vector min_exp) {
const HVX_VectorPred pred_max = Q6_Q_vcmp_gt_VsfVsf(max_exp, v);
const HVX_VectorPred pred_min = Q6_Q_vcmp_gt_VsfVsf(v, min_exp);
HVX_Vector out = hvx_vec_fast_sigmoid_fp32(v);
return Q6_V_vmux_QVV(pred_inf, out, Q6_V_vzero());
out = Q6_V_vmux_QVV(pred_max, out, one);
return Q6_V_vmux_QVV(pred_min, out, Q6_V_vzero());
}
static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
@ -977,9 +981,16 @@ static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t *
const HVX_Vector * restrict v_src = (HVX_Vector *) src;
HVX_Vector * restrict v_dst = (HVX_Vector *) dst;
static const float kMinExp = -87.f; // 0
static const float kMaxExp = 87.f; // 1
const HVX_Vector one = hvx_vec_splat_fp32(1.f);
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector min_exp = hvx_vec_splat_fp32(kMinExp);
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
v_dst[i] = hvx_vec_fast_sigmoid_fp32_guard(v_src[i]);
v_dst[i] = hvx_vec_fast_sigmoid_fp32_guard(v_src[i], one, max_exp, min_exp);
}
}

View File

@ -143,16 +143,25 @@ AEEResult htp_iface_disable_etm(remote_handle64 handle) {
}
static int vtcm_acquire(struct htp_context * ctx) {
int err;
if (!ctx->vtcm_valid) {
// Temporarily bump thread priority to make sure it's higher than other sessions.
// This way the resource manager will notify the other thread to release VTCM.
// Note that we need to reaquire VTCM at normal priority for this to work next time.
qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio - 10);
HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
err = HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
if (err != 0) {
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned)err);
abort();
}
HAP_compute_res_release_cached(ctx->vtcm_rctx);
qurt_thread_set_priority(qurt_thread_get_id(), ctx->thread_prio);
HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
err = HAP_compute_res_acquire_cached(ctx->vtcm_rctx, 1000000);
if (err != 0) {
FARF(ERROR, "Failed to acquire VTCM: 0x%08x", (unsigned)err);
abort();
}
ctx->vtcm_valid = true;
}
@ -201,7 +210,7 @@ static int vtcm_alloc(struct htp_context * ctx) {
HAP_compute_res_attr_init(&attr);
HAP_compute_res_attr_set_serialize(&attr, 0);
HAP_compute_res_attr_set_cache_mode(&attr, 1);
HAP_compute_res_attr_set_vtcm_param_v2(&attr, vtcm_size, vtcm_size, vtcm_size);
HAP_compute_res_attr_set_vtcm_param_v2(&attr, vtcm_size, 0, vtcm_size);
HAP_compute_res_attr_set_release_callback(&attr, vtcm_release_callback, (void *) ctx);
HAP_compute_res_attr_set_hmx_param(&attr, 1);

View File

@ -24,6 +24,10 @@
#include "hvx-utils.h"
#include "ops-utils.h"
// Redefined the types GGML_ROPE_TYPE_NORMAL & GGML_ROPE_TYPE_NEOX as we cant include ggml.h
#define HTP_ROPE_TYPE_NORMAL 0
#define HTP_ROPE_TYPE_NEOX 2
#define htp_rope_preamble \
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
@ -146,6 +150,57 @@ static void init_rope_ctx(struct rope_th_ctx * rope_ctx, struct htp_ops_context
rope_ctx->ext_factor, rope_ctx->theta_scale, rope_ctx->attn_factor);
}
static void hvx_calc_rope_neox_f32(const float * restrict src0,
float * restrict dst,
const int num_elems,
const float * restrict theta_cache) {
// for (int i = 0; i < num_elems; i += 2) {
//const float cos_theta = theta_cache[i + 0];
//const float sin_theta = theta_cache[i + 1];
//const float x0 = src[0];
//const float x1 = src[num_elems/2];
//dst[0] = x0*cos_theta - x1*sin_theta;
//dst[num_elems/2] = x0*sin_theta + x1*cos_theta;
//src += 1;
//dst += 1;
// }
const uint8_t * restrict src0_curr = (const uint8_t *) src0;
const uint8_t * restrict theta_curr = (const uint8_t *) theta_cache;
uint8_t * restrict dst_curr = (uint8_t *) dst;
int step_of_1 = num_elems >> 6; // 6 because we process two vectors at once
int half_size = (sizeof(float) * (num_elems / 2));
for (int i = 0; i < step_of_1; i++) {
HVX_Vector v0 = *(HVX_Vector *) src0_curr;
HVX_Vector v1 = *(HVX_Vector *) (src0_curr + half_size);
HVX_Vector v2 = *(HVX_Vector *) theta_curr;
HVX_Vector v3 = *(HVX_Vector *) (theta_curr + VLEN);
HVX_VectorPair vcos_sin = Q6_W_vdeal_VVR(v3, v2, -4); // vcos_sin[0] = cos_theta, vcos_sin[1] = sin_theta
HVX_Vector vx0_c = Q6_Vqf32_vmpy_VsfVsf(v0, Q6_V_lo_W(vcos_sin));
HVX_Vector vx0_s = Q6_Vqf32_vmpy_VsfVsf(v0, Q6_V_hi_W(vcos_sin));
HVX_Vector vx1_c = Q6_Vqf32_vmpy_VsfVsf(v1, Q6_V_lo_W(vcos_sin));
HVX_Vector vx1_s = Q6_Vqf32_vmpy_VsfVsf(v1, Q6_V_hi_W(vcos_sin));
HVX_Vector v4 = Q6_Vqf32_vsub_Vqf32Vqf32(vx0_c, vx1_s);
HVX_Vector v5 = Q6_Vqf32_vadd_Vqf32Vqf32(vx0_s, vx1_c);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v4);
*(HVX_Vector *) (dst_curr + half_size) = Q6_Vsf_equals_Vqf32(v5);
src0_curr += VLEN;
theta_curr += 2 * VLEN;
dst_curr += VLEN;
}
}
static void hvx_calc_rope_f32(const float * restrict src0,
float * restrict dst,
const int num_elems,
@ -212,6 +267,9 @@ static void rope_hex_f32(struct rope_th_ctx * rope_ctx,
const struct htp_tensor * src2 = &octx->src2;
struct htp_tensor * dst = &octx->dst;
const int32_t mode = rope_ctx->mode;
const bool is_neox = mode & HTP_ROPE_TYPE_NEOX;
htp_rope_preamble;
const int32_t * pos = (const int32_t *) src1->data;
@ -247,12 +305,26 @@ static void rope_hex_f32(struct rope_th_ctx * rope_ctx,
float * dst_data_loc = dst_data;
if (1 == opt_path) {
if (is_neox) {
hvx_calc_rope_neox_f32(src_loc, dst_data_loc, rope_ctx->n_dims, wp0);
} else {
hvx_calc_rope_f32(src_loc, dst_data_loc, rope_ctx->n_dims, wp0);
}
} else {
for (uint32_t i0 = 0; i0 < rope_ctx->n_dims; i0 += 2) {
const float cos_theta = wp0[i0 + 0];
const float sin_theta = wp0[i0 + 1];
if (is_neox) {
const float x0 = src_loc[0];
const float x1 = src_loc[rope_ctx->n_dims/2];
dst_data_loc[0] = x0 * cos_theta - x1 * sin_theta;
dst_data_loc[rope_ctx->n_dims/2] = x0 * sin_theta + x1 * cos_theta;
src_loc += 1;
dst_data_loc += 1;
} else {
const float x0 = src_loc[0];
const float x1 = src_loc[1];
@ -263,6 +335,7 @@ static void rope_hex_f32(struct rope_th_ctx * rope_ctx,
dst_data_loc += 2;
}
}
}
for (uint32_t i0 = rope_ctx->n_dims; i0 < ne0; i0 += 2) {
dst_data_loc[0] = src_loc[0];

View File

@ -1009,6 +1009,64 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort_merge(ggml_metal_l
return res;
}
// note: reuse the argsort kernel for top_k
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_TOP_K);
char base[256];
char name[256];
// note: the top_k kernel is always descending order
ggml_sort_order order = GGML_SORT_ORDER_DESC;
const char * order_str = "undefined";
switch (order) {
case GGML_SORT_ORDER_ASC: order_str = "asc"; break;
case GGML_SORT_ORDER_DESC: order_str = "desc"; break;
default: GGML_ABORT("fatal error");
};
snprintf(base, 256, "kernel_argsort_%s_%s_%s", ggml_type_name(op->src[0]->type), ggml_type_name(op->type), order_str);
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
if (res) {
return res;
}
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
return res;
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k_merge(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_TOP_K);
char base[256];
char name[256];
ggml_sort_order order = GGML_SORT_ORDER_DESC;
const char * order_str = "undefined";
switch (order) {
case GGML_SORT_ORDER_ASC: order_str = "asc"; break;
case GGML_SORT_ORDER_DESC: order_str = "desc"; break;
default: GGML_ABORT("fatal error");
};
snprintf(base, 256, "kernel_argsort_merge_%s_%s_%s", ggml_type_name(op->src[0]->type), ggml_type_name(op->type), order_str);
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
if (res) {
return res;
}
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
return res;
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_pad(
ggml_metal_library_t lib,
const struct ggml_tensor * op,

View File

@ -128,6 +128,8 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_id (ggml_me
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argmax (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);

View File

@ -905,6 +905,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_LEAKY_RELU:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ARGSORT:
case GGML_OP_TOP_K:
case GGML_OP_ARANGE:
return true;
case GGML_OP_FLASH_ATTN_EXT:

View File

@ -832,14 +832,19 @@ typedef struct {
} ggml_metal_kargs_leaky_relu;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
int32_t ne00;
int32_t ne01;
int32_t ne02;
int32_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne0;
int32_t ne1;
int32_t ne2;
int32_t ne3;
int32_t top_k;
} ggml_metal_kargs_argsort;
typedef struct {
@ -851,6 +856,11 @@ typedef struct {
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne0;
int32_t ne1;
int32_t ne2;
int32_t ne3;
int32_t top_k;
int32_t len;
} ggml_metal_kargs_argsort_merge;

View File

@ -406,6 +406,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_argsort(ctx, idx);
} break;
case GGML_OP_TOP_K:
{
n_fuse = ggml_metal_op_top_k(ctx, idx);
} break;
case GGML_OP_LEAKY_RELU:
{
n_fuse = ggml_metal_op_leaky_relu(ctx, idx);
@ -3686,6 +3690,11 @@ int ggml_metal_op_argsort(ggml_metal_op_t ctx, int idx) {
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.top_k =*/ nth,
};
ggml_metal_encoder_set_pipeline(enc, pipeline);
@ -3705,15 +3714,20 @@ int ggml_metal_op_argsort(ggml_metal_op_t ctx, int idx) {
ggml_metal_op_concurrency_reset(ctx);
ggml_metal_kargs_argsort_merge args_merge = {
.ne00 = ne00,
.ne01 = ne01,
.ne02 = ne02,
.ne03 = ne03,
.nb00 = nb00,
.nb01 = nb01,
.nb02 = nb02,
.nb03 = nb03,
.len = len,
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.top_k =*/ ne00,
/*.len =*/ len,
};
// merges per row
@ -3737,6 +3751,118 @@ int ggml_metal_op_argsort(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_top_k(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_top_k(lib, op);
// bitonic sort requires the number of elements to be power of 2
int nth = 1;
while (nth < ne00 && 2*nth <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
nth *= 2;
}
// blocks per row
const int npr = (ne00 + nth - 1)/nth;
const size_t smem = GGML_PAD(nth*sizeof(int32_t), 16);
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
ggml_metal_buffer_id bid_tmp = bid_dst;
bid_tmp.offs += sizeof(int32_t)*ggml_nelements(op->src[0]);
if ((int) ceil(std::log(npr) / std::log(2)) % 2 == 1) {
std::swap(bid_dst, bid_tmp);
}
const int top_k = ne0;
ggml_metal_kargs_argsort args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.top_k =*/ std::min(nth, top_k), // for each block, keep just the top_k indices
};
if (npr > 1) {
args.ne0 = (npr - 1)*args.top_k + std::min(ne00 - (npr - 1)*nth, args.top_k);
}
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, npr*ne01, ne02, ne03, nth, 1, 1);
ggml_metal_pipeline_t pipeline_merge = ggml_metal_library_get_pipeline_top_k_merge(lib, op);
int len = args.top_k;
while (len < args.ne0) {
ggml_metal_op_concurrency_reset(ctx);
// merges per row
const int nm = (args.ne0 + 2*len - 1) / (2*len);
const int nth = std::min(512, std::min(len, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline_merge)));
ggml_metal_kargs_argsort_merge args_merge = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ args.ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.top_k =*/ nm == 1 ? top_k : args.ne0, // the final merge outputs top_k elements
/*.len =*/ len,
};
ggml_metal_encoder_set_pipeline(enc, pipeline_merge);
ggml_metal_encoder_set_bytes (enc, &args_merge, sizeof(args_merge), 0);
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
ggml_metal_encoder_set_buffer (enc, bid_tmp, 3);
ggml_metal_encoder_dispatch_threadgroups(enc, nm*ne01, ne02, ne03, nth, 1, 1);
std::swap(bid_dst, bid_tmp);
len <<= 1;
}
return 1;
}
int ggml_metal_op_leaky_relu(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);

View File

@ -81,6 +81,7 @@ int ggml_metal_op_arange (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_timestep_embedding(ggml_metal_op_t ctx, int idx);
int ggml_metal_op_argmax (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_argsort (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_top_k (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_leaky_relu (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_opt_step_adamw (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_opt_step_sgd (ggml_metal_op_t ctx, int idx);

View File

@ -202,6 +202,10 @@ static size_t ggml_backend_metal_buffer_type_get_alloc_size(ggml_backend_buffer_
{
res *= 2;
} break;
case GGML_OP_TOP_K:
{
res = 2*sizeof(int32_t)*ggml_nelements(tensor->src[0]);
} break;
default:
break;
}

View File

@ -4670,9 +4670,10 @@ kernel void kernel_argsort_f32_i32(
ushort3 ntg[[threads_per_threadgroup]]) {
// bitonic sort
const int col = tpitg[0];
const int ib = tgpig[0] / args.ne01;
const int i00 = (tgpig[0]/args.ne01)*ntg.x;
const int i01 = tgpig[0]%args.ne01;
const int i00 = ib*ntg.x;
const int i01 = tgpig[0] % args.ne01;
const int i02 = tgpig[1];
const int i03 = tgpig[2];
@ -4710,9 +4711,11 @@ kernel void kernel_argsort_f32_i32(
}
}
const int64_t i0 = ib*args.top_k;
// copy the result to dst without the padding
if (i00 + col < args.ne00) {
dst += i00 + args.ne00*i01 + args.ne00*args.ne01*i02 + args.ne00*args.ne01*args.ne02*i03;
if (i0 + col < args.ne0 && col < args.top_k) {
dst += i0 + args.ne0*i01 + args.ne0*args.ne1*i02 + args.ne0*args.ne1*args.ne2*i03;
dst[col] = shmem_i32[col];
}
@ -4747,22 +4750,22 @@ kernel void kernel_argsort_merge_f32_i32(
const int start = im * (2 * args.len);
const int len0 = MIN(args.len, MAX(0, args.ne00 - (int)(start)));
const int len1 = MIN(args.len, MAX(0, args.ne00 - (int)(start + args.len)));
const int len0 = MIN(args.len, MAX(0, args.ne0 - (int)(start)));
const int len1 = MIN(args.len, MAX(0, args.ne0 - (int)(start + args.len)));
const int total = len0 + len1;
device const int32_t * tmp0 = tmp + start
+ i01*args.ne00
+ i02*args.ne00*args.ne01
+ i03*args.ne00*args.ne01*args.ne02;
+ i01*args.ne0
+ i02*args.ne0*args.ne01
+ i03*args.ne0*args.ne01*args.ne02;
device const int32_t * tmp1 = tmp0 + args.len;
dst += start
+ i01*args.ne00
+ i02*args.ne00*args.ne01
+ i03*args.ne00*args.ne01*args.ne02;
+ i01*args.top_k
+ i02*args.top_k*args.ne01
+ i03*args.top_k*args.ne01*args.ne02;
device const float * src0_row = (device const float *)(src0
+ args.nb01*i01
@ -4776,7 +4779,11 @@ kernel void kernel_argsort_merge_f32_i32(
const int chunk = (total + ntg.x - 1) / ntg.x;
const int k0 = tpitg.x * chunk;
const int k1 = min(k0 + chunk, total);
const int k1 = MIN(MIN(k0 + chunk, total), args.top_k);
if (k0 >= args.top_k) {
return;
}
if (k0 >= total) {
return;

View File

@ -70,6 +70,7 @@ set(GGML_OPENCL_KERNELS
group_norm
im2col_f32
im2col_f16
mean
mul_mat_Ab_Bi_8x4
mul_mv_f16_f16
mul_mv_f16_f32_1row
@ -109,6 +110,9 @@ set(GGML_OPENCL_KERNELS
softmax_4_f16
softmax_f32
softmax_f16
sqr
sqrt
ssm_conv
sub
sum_rows
transpose

View File

@ -449,6 +449,9 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
cl_kernel kernel_add_id;
cl_kernel kernel_scale;
cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
cl_kernel kernel_mean_f32;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
@ -509,6 +512,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_conv_2d_f16;
cl_kernel kernel_conv_2d_f32;
cl_kernel kernel_conv_2d_f16_f32;
cl_kernel kernel_ssm_conv_f32_f32, kernel_ssm_conv_f32_f32_4;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
@ -1552,6 +1556,66 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// sqr
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "sqr.cl.h"
};
#else
const std::string kernel_src = read_file("sqr.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_sqr_cont_f32 = clCreateKernel(prog, "kernel_sqr_cont_f32", &err), err));
CL_CHECK((backend_ctx->kernel_sqr_cont_f32_4 = clCreateKernel(prog, "kernel_sqr_cont_f32_4", &err), err));
CL_CHECK((backend_ctx->kernel_sqr_cont_f16 = clCreateKernel(prog, "kernel_sqr_cont_f16", &err), err));
CL_CHECK((backend_ctx->kernel_sqr_cont_f16_4 = clCreateKernel(prog, "kernel_sqr_cont_f16_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// sqrt
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "sqrt.cl.h"
};
#else
const std::string kernel_src = read_file("sqrt.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_sqrt_cont_f32 = clCreateKernel(prog, "kernel_sqrt_cont_f32", &err), err));
CL_CHECK((backend_ctx->kernel_sqrt_cont_f32_4 = clCreateKernel(prog, "kernel_sqrt_cont_f32_4", &err), err));
CL_CHECK((backend_ctx->kernel_sqrt_cont_f16 = clCreateKernel(prog, "kernel_sqrt_cont_f16", &err), err));
CL_CHECK((backend_ctx->kernel_sqrt_cont_f16_4 = clCreateKernel(prog, "kernel_sqrt_cont_f16_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// mean
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mean.cl.h"
};
#else
const std::string kernel_src = read_file("mean.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// sub
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -1825,6 +1889,24 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
}
}
// ssm_conv
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "ssm_conv.cl.h"
};
#else
const std::string kernel_src = read_file("ssm_conv.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32", &err), err));
CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32_4 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// mul_mv_id_q4_0_f32_8x_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -2959,6 +3041,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SQR:
case GGML_OP_SQRT:
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
ggml_is_contiguous(op->src[0]);
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
@ -3007,6 +3093,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
(op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
case GGML_OP_SSM_CONV:
return (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
case GGML_OP_CONCAT:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_TIMESTEP_EMBEDDING:
@ -3075,6 +3163,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
}
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_FLASH_ATTN_EXT:
{
@ -5193,6 +5282,224 @@ static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const
}
}
static void ggml_cl_sqr(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
// Currently assumes src0 is contiguous
int n = ggml_nelements(dst);
if (n % 4 == 0) {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqr_cont_f32_4;
} else {
kernel = backend_ctx->kernel_sqr_cont_f16_4;
}
n /= 4;
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqr_cont_f32;
} else {
kernel = backend_ctx->kernel_sqr_cont_f16;
}
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_sqrt(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
// Currently assumes src0 is contiguous
int n = ggml_nelements(dst);
if (n % 4 == 0) {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqrt_cont_f32_4;
} else {
kernel = backend_ctx->kernel_sqrt_cont_f16_4;
}
n /= 4;
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_sqrt_cont_f32;
} else {
kernel = backend_ctx->kernel_sqrt_cont_f16;
}
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_UNUSED(src1);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(ggml_is_contiguous(src0));
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
cl_kernel kernel = backend_ctx->kernel_mean_f32;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)64, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_ssm_conv(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
int ne01 = src0->ne[1];
cl_ulong nb00 = src0->nb[0];
cl_ulong nb01 = src0->nb[1];
cl_ulong nb02 = src0->nb[2];
int ne10 = src1->ne[0];
cl_ulong nb11 = src1->nb[1];
int ne1 = dst->ne[1];
int ne2 = dst->ne[2];
cl_ulong nb0 = dst->nb[0];
cl_ulong nb1 = dst->nb[1];
cl_ulong nb2 = dst->nb[2];
cl_kernel kernel = backend_ctx->kernel_ssm_conv_f32_f32;
if (ne10 % 4 == 0) {
kernel = backend_ctx->kernel_ssm_conv_f32_f32_4;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
size_t global_work_size[] = {(size_t)ne01, (size_t)ne1, (size_t)ne2};
size_t local_work_size[] = {64, 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (ne01 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -9091,6 +9398,24 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_sub;
break;
case GGML_OP_SQR:
if (!any_on_device) {
return false;
}
func = ggml_cl_sqr;
break;
case GGML_OP_SQRT:
if (!any_on_device) {
return false;
}
func = ggml_cl_sqrt;
break;
case GGML_OP_MEAN:
if (!any_on_device) {
return false;
}
func = ggml_cl_mean;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
@ -9192,6 +9517,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_conv_2d;
break;
case GGML_OP_SSM_CONV:
if (!any_on_device) {
return false;
}
func = ggml_cl_ssm_conv;
break;
case GGML_OP_CONCAT:
if (!any_on_device) {
return false;

View File

@ -0,0 +1,39 @@
kernel void kernel_mean_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
int i3 = get_global_id(2);
int i2 = get_global_id(1);
int i1 = get_global_id(0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
dst_row[0] = row_sum / ne00;
}

View File

@ -0,0 +1,53 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
kernel void kernel_sqr_cont_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}
kernel void kernel_sqr_cont_f32_4(
global float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}
kernel void kernel_sqr_cont_f16(
global half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}
kernel void kernel_sqr_cont_f16_4(
global half4 * src0,
ulong offset0,
global half4 * dst,
ulong offsetd
) {
src0 = (global half4*)((global char*)src0 + offset0);
dst = (global half4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = src0[gid] * src0[gid];
}

View File

@ -0,0 +1,53 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
kernel void kernel_sqrt_cont_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = sqrt(src0[gid]);
}
kernel void kernel_sqrt_cont_f32_4(
global float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = sqrt(src0[gid]);
}
kernel void kernel_sqrt_cont_f16(
global half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = convert_half(sqrt(convert_float(src0[gid])));
}
kernel void kernel_sqrt_cont_f16_4(
global half4 * src0,
ulong offset0,
global half4 * dst,
ulong offsetd
) {
src0 = (global half4*)((global char*)src0 + offset0);
dst = (global half4*)((global char*)dst + offsetd);
uint gid = get_global_id(0);
dst[gid] = convert_half4(sqrt(convert_float4(src0[gid])));
}

View File

@ -0,0 +1,77 @@
kernel void kernel_ssm_conv_f32_f32(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
int ne10,
ulong nb11,
ulong nb0,
ulong nb1,
ulong nb2
){
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int ir = get_global_id(0);
int i2 = get_global_id(1);
int i3 = get_global_id(2);
int nc = ne10;
global float * s = (global float *) (src0 + ir*nb01 + i2*nb00 + i3*nb02);
global float * c = (global float *) (src1 + ir*nb11);
global float * d = (global float *) (dst + ir*nb0 + i2*nb1 + i3*nb2);
float sumf = 0.0f;
for (int i0 = 0; i0 < nc; ++i0) {
sumf += s[i0] * c[i0];
}
d[0] = sumf;
}
kernel void kernel_ssm_conv_f32_f32_4(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
int ne10,
ulong nb11,
ulong nb0,
ulong nb1,
ulong nb2
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int ir = get_global_id(0);
int i2 = get_global_id(1);
int i3 = get_global_id(2);
int nc = ne10;
global float4 * s = (global float4 *) (src0 + ir*nb01 + i2*nb00 + i3*nb02);
global float4 * c = (global float4 *) (src1 + ir*nb11);
global float * d = (global float *) (dst + ir*nb0 + i2*nb1 + i3*nb2);
float sumf = 0.0f;
for (int i0 = 0; i0 < nc/4; ++i0) {
sumf += dot(s[i0], c[i0]);
}
d[0] = sumf;
}

View File

@ -106,6 +106,7 @@ enum rpc_cmd {
RPC_CMD_GET_ALLOC_SIZE,
RPC_CMD_HELLO,
RPC_CMD_DEVICE_COUNT,
RPC_CMD_GRAPH_RECOMPUTE,
RPC_CMD_COUNT,
};
@ -205,10 +206,6 @@ struct rpc_msg_copy_tensor_rsp {
uint8_t result;
};
struct rpc_msg_graph_compute_rsp {
uint8_t result;
};
struct rpc_msg_get_device_memory_req {
uint32_t device;
};
@ -217,6 +214,11 @@ struct rpc_msg_get_device_memory_rsp {
uint64_t free_mem;
uint64_t total_mem;
};
struct rpc_msg_graph_recompute_req {
uint32_t device;
};
#pragma pack(pop)
// RPC data structures
@ -234,10 +236,35 @@ struct ggml_backend_rpc_buffer_type_context {
size_t max_size;
};
struct graph_cache {
bool is_cached(const ggml_cgraph * cgraph) {
if ((int)last_graph.size() != cgraph->n_nodes) {
return false;
}
for (int i = 0; i < cgraph->n_nodes; i++) {
if (memcmp(&last_graph[i], cgraph->nodes[i], sizeof(ggml_tensor)) != 0) {
return false;
}
}
return true;
}
void add(const ggml_cgraph * cgraph) {
last_graph.resize(cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; i++) {
memcpy(&last_graph[i], cgraph->nodes[i], sizeof(ggml_tensor));
}
}
std::vector<ggml_tensor> last_graph;
};
struct ggml_backend_rpc_context {
std::string endpoint;
uint32_t device;
std::string name;
graph_cache gc;
};
struct ggml_backend_rpc_buffer_context {
@ -815,13 +842,24 @@ static void serialize_graph(uint32_t device, const ggml_cgraph * cgraph, std::ve
static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
GGML_ASSERT(cgraph->n_nodes > 0);
bool reuse = rpc_ctx->gc.is_cached(cgraph);
if (reuse) {
rpc_msg_graph_recompute_req request;
request.device = rpc_ctx->device;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_RECOMPUTE, &request, sizeof(request));
RPC_STATUS_ASSERT(status);
} else {
rpc_ctx->gc.add(cgraph);
std::vector<uint8_t> input;
serialize_graph(rpc_ctx->device, cgraph, input);
rpc_msg_graph_compute_rsp response;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size());
RPC_STATUS_ASSERT(status);
return (enum ggml_status)response.result;
}
return GGML_STATUS_SUCCESS;
}
static ggml_backend_i ggml_backend_rpc_interface = {
@ -880,7 +918,8 @@ ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device) {
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .device = */ device,
/* .name = */ dev_name
/* .name = */ dev_name,
/* .gc = */ {},
};
auto reg = ggml_backend_rpc_add_server(endpoint);
ggml_backend_t backend = new ggml_backend {
@ -920,8 +959,9 @@ void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device,
class rpc_server {
public:
rpc_server(std::vector<ggml_backend_t> backends, const char * cache_dir)
: backends(std::move(backends)), cache_dir(cache_dir) {
rpc_server(std::vector<ggml_backend_t> all_backends, const char * cache_dir)
: backends(std::move(all_backends)), cache_dir(cache_dir) {
stored_graphs.resize(backends.size());
}
~rpc_server();
@ -936,11 +976,17 @@ public:
bool set_tensor_hash(const rpc_msg_set_tensor_hash_req & request, rpc_msg_set_tensor_hash_rsp & response);
bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
bool graph_compute(const std::vector<uint8_t> & input);
bool graph_recompute(const rpc_msg_graph_recompute_req & request);
bool init_tensor(const rpc_msg_init_tensor_req & request);
bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
bool get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response);
struct stored_graph {
ggml_context_ptr ctx_ptr;
ggml_cgraph * graph;
};
private:
bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data);
ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
@ -953,6 +999,8 @@ private:
std::vector<ggml_backend_t> backends;
const char * cache_dir;
std::unordered_set<ggml_backend_buffer_t> buffers;
// store the last computed graph for each backend
std::vector<stored_graph> stored_graphs;
};
void rpc_server::hello(rpc_msg_hello_rsp & response) {
@ -1394,7 +1442,7 @@ ggml_tensor * rpc_server::create_node(uint64_t id,
return result;
}
bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
bool rpc_server::graph_compute(const std::vector<uint8_t> & input) {
// serialization format:
// | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
if (input.size() < 2*sizeof(uint32_t)) {
@ -1455,7 +1503,24 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
}
}
ggml_status status = ggml_backend_graph_compute(backends[device], graph);
response.result = status;
GGML_ASSERT(status == GGML_STATUS_SUCCESS && "Unsuccessful graph computations are not supported with RPC");
stored_graphs[device].ctx_ptr.swap(ctx_ptr);
stored_graphs[device].graph = graph;
return true;
}
bool rpc_server::graph_recompute(const rpc_msg_graph_recompute_req & request) {
uint32_t device = request.device;
if (device >= backends.size()) {
return false;
}
if (stored_graphs[device].graph == nullptr) {
return false;
}
ggml_cgraph * graph = stored_graphs[device].graph;
LOG_DBG("[%s] device: %u\n", __func__, device);
ggml_status status = ggml_backend_graph_compute(backends[device], graph);
GGML_ASSERT(status == GGML_STATUS_SUCCESS && "Unsuccessful graph computations are not supported with RPC");
return true;
}
@ -1690,11 +1755,17 @@ static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const
if (!recv_msg(sockfd, input)) {
return;
}
rpc_msg_graph_compute_rsp response;
if (!server.graph_compute(input, response)) {
if (!server.graph_compute(input)) {
return;
}
if (!send_msg(sockfd, &response, sizeof(response))) {
break;
}
case RPC_CMD_GRAPH_RECOMPUTE: {
rpc_msg_graph_recompute_req request;
if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
if (!server.graph_recompute(request)) {
return;
}
break;

View File

@ -91,7 +91,10 @@ if (GGML_SYCL_F16)
add_compile_definitions(GGML_SYCL_F16)
endif()
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
if (GGML_SYCL_TARGET STREQUAL "INTEL")
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
target_link_options(ggml-sycl PRIVATE -Xs -ze-intel-greater-than-4GB-buffer-required)
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
# INFO: Allowed Sub_group_sizes are not consistent through all
@ -100,7 +103,8 @@ elseif (GGML_SYCL_TARGET STREQUAL "AMD")
# Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32)
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
else()
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
# default for other target
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
endif()
if (GGML_SYCL_GRAPH)

View File

@ -617,4 +617,30 @@ static __dpct_inline__ float get_alibi_slope(const float max_bias,
return dpct::pow(base, exph);
}
static const sycl::uint3 init_fastdiv_values(uint32_t d) {
GGML_ASSERT(d != 0);
uint32_t L = 0;
while (L < 32 && (uint32_t{ 1 } << L) < d) {
L++;
}
uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
return sycl::uint3(mp, L, d);
}
static __dpct_inline__ uint32_t fastdiv(uint32_t n, const sycl::uint3 fastdiv_values) {
const uint32_t hi = sycl::mul_hi<unsigned>(n, fastdiv_values.x());
return (hi + n) >> fastdiv_values.y();
}
static __dpct_inline__ sycl::uint2 fast_div_modulo(uint32_t n, const sycl::uint3 fastdiv_values) {
const uint32_t div_val = fastdiv(n, fastdiv_values);
const uint32_t mod_val = n - div_val * fastdiv_values.z();
return sycl::uint2(div_val, mod_val);
}
#endif // GGML_SYCL_COMMON_HPP

View File

@ -515,9 +515,6 @@ void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, co
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
GGML_TENSOR_BINARY_OP_LOCALS01;
SYCL_CHECK(ggml_sycl_set_device(ctx.device));

View File

@ -1,72 +1,100 @@
#include "pad_reflect_1d.hpp"
void pad_reflect_1d_f32(const float* src,float* dst,
const int64_t ne0, const int64_t ne02, const int p0, const int p1,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const sycl::nd_item<3> &item_ct1){
static void pad_reflect_1d_kernel_f32(
const void *__restrict__ src0, void *__restrict__ dst, const int64_t ne0,
const int64_t ne00, const sycl::uint3 ne01, const int64_t ne02,
const int64_t ne03, const int64_t nb00, const int64_t nb01,
const int64_t nb02, const int64_t nb03, const int64_t nb0,
const int64_t nb1, const int64_t nb2, const int64_t nb3, const int p0,
const int p1, sycl::nd_item<3> item_ct1) {
const int i0 = item_ct1.get_group(0) * SYCL_CONCAT_BLOCK_SIZE + item_ct1.get_local_id(0);
const int i1 = item_ct1.get_group(1);
const int g2 = item_ct1.get_group(2);
const int i2 = g2 % ne02;
const int i3 = g2 / ne02;
const int64_t i3 = item_ct1.get_group(0);
const int64_t i2 = item_ct1.get_group(1);
if (i0 >= p0 + ne0 + p1) return;
const sycl::uint2 div_mod_packed =
fast_div_modulo(item_ct1.get_group(2), ne01);
const int64_t tile1 = div_mod_packed.y();
const int64_t tile0 = div_mod_packed.x();
const int64_t i1 = tile1;
const int64_t i0 =
item_ct1.get_local_id(2) + tile0 * item_ct1.get_local_range(2);
int t = i0 - p0;
int period = 2 * ne0 -2;
int m = t % period;
m += (m < 0) * period;
int center = ne0 -1;
int srci0 = center - abs(center - m);
if (i0 >= ne0 || i1 >= ne01.z() || i2 >= ne02 || i3 >= ne03) {
return;
}
int offest_src = i3*nb3 + i2*nb2 + i1*nb1 + srci0*nb0;
int offest_dst = i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00;
dst[offest_dst] = src[offest_src];
const char *src0_ptr =
(const char *)src0 + i3 * nb03 + i2 * nb02 + i1 * nb01;
char *dst_ptr = (char *)dst + i3 * nb3 + i2 * nb2 + i1 * nb1;
const int64_t rel_i0 = i0 - p0; // relative i0 in src0
int64_t src_idx;
if (rel_i0 < 0) {
// Left padding - reflect
src_idx = -rel_i0;
} else if (rel_i0 < ne00) {
// Middle - copy
src_idx = rel_i0;
} else {
// Right padding - reflect
src_idx = 2 * ne00 - 2 - rel_i0;
}
const float value = *(const float *)(src0_ptr + src_idx * nb00);
*(float *)(dst_ptr + i0 * nb0) = value;
GGML_UNUSED(p1);
}
void ggml_sycl_op_pad_reflect_1d(ggml_backend_sycl_context& ctx, ggml_tensor* dst){
void ggml_sycl_op_pad_reflect_1d(ggml_backend_sycl_context &ctx,
ggml_tensor *dst) {
const ggml_tensor * src0 = dst->src[0];
queue_ptr stream = ctx.stream();
const ggml_tensor *src0 = dst->src[0];
dpct::queue_ptr stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int32_t * opts = (const int32_t *) dst->op_params;
const int32_t *opts = (const int32_t *)dst->op_params;
const int p0 = opts[0];
const int p1 = opts[1];
const int64_t ne0 = src0->ne[0];
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const sycl::uint3 ne01_packed = init_fastdiv_values(ne01);
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne00 = dst->ne[0];
const int64_t ne01 = dst->ne[1];
const int64_t ne02 = dst->ne[2];
const int64_t ne03 = dst->ne[3];
const int64_t ne0 = dst->ne[0];
const int64_t nb00 = dst->nb[0];
const int64_t nb01 = dst->nb[1];
const int64_t nb02 = dst->nb[2];
const int64_t nb03 = dst->nb[3];
const int64_t nb0 = src0->nb[0];
const int64_t nb1 = src0->nb[1];
const int64_t nb2 = src0->nb[2];
const int64_t nb3 = src0->nb[3];
GGML_ASSERT(ne0 == ne00 + p0 + p1);
int num_blocks = (ne00 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
sycl::range<3> global(num_blocks * SYCL_CONCAT_BLOCK_SIZE, ne01, ne02*ne03);
sycl::range<3> local(SYCL_CONCAT_BLOCK_SIZE, 1, 1);
constexpr int64_t bx = SYCL_PAD_REFLECT_1D_BLOCK_SIZE;
const int64_t tiles0 = (ne0 + bx - 1) / bx;
const dpct::dim3 grid_dims((unsigned)(ne01 * tiles0), (unsigned)ne02,
(unsigned)ne03);
const dpct::dim3 block_dims((unsigned)bx, 1, 1);
stream->parallel_for(
sycl::nd_range<3>(global,
local),
[=](sycl::nd_item<3> item_ct1) { pad_reflect_1d_f32(
(const float *) src0->data, (float *) dst->data,
ne0, ne02, p0, p1,
nb0, nb1, nb2, nb3,
nb00, nb01, nb02, nb03
, item_ct1);
stream->submit([&](sycl::handler &cgh) {
auto src0_data_ct0 = src0->data;
auto dst_data_ct1 = dst->data;
auto src0_nb_ct7 = src0->nb[0];
auto src0_nb_ct8 = src0->nb[1];
auto src0_nb_ct9 = src0->nb[2];
auto src0_nb_ct10 = src0->nb[3];
auto dst_nb_ct11 = dst->nb[0];
auto dst_nb_ct12 = dst->nb[1];
auto dst_nb_ct13 = dst->nb[2];
auto dst_nb_ct14 = dst->nb[3];
cgh.parallel_for(sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
pad_reflect_1d_kernel_f32(
src0_data_ct0, dst_data_ct1, ne0, ne00,
ne01_packed, ne02, ne03, src0_nb_ct7,
src0_nb_ct8, src0_nb_ct9, src0_nb_ct10,
dst_nb_ct11, dst_nb_ct12, dst_nb_ct13,
dst_nb_ct14, p0, p1, item_ct1);
});
});
}

View File

@ -3,6 +3,8 @@
#include "common.hpp"
#define SYCL_PAD_REFLECT_1D_BLOCK_SIZE 256
void ggml_sycl_op_pad_reflect_1d(ggml_backend_sycl_context& ctx, ggml_tensor* dst);
#endif // GGML_SYCL_PAD_REFLECT_1D_HPP

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,69 @@
#version 450
#include "types.glsl"
#include "sum_rows.glsl"
#extension GL_EXT_control_flow_attributes : enable
#extension GL_KHR_shader_subgroup_arithmetic : enable
#extension GL_KHR_shader_subgroup_basic : enable
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
shared FLOAT_TYPE partial[BLOCK_SIZE / SUBGROUP_SIZE];
shared FLOAT_TYPE last_sum;
void main() {
const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
const uint i03 = fastdiv(row, p.ne0_12mp, p.ne0_12L);
const uint i03_offset = i03 * p.ne01*p.ne02;
const uint i02 = fastdiv(row - i03_offset, p.ne0_1mp, p.ne0_1L);
const uint i01 = row - i03_offset - i02*p.ne01;
const uint src_idx = get_aoffset() + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
const uint dst_idx = get_doffset() + i01 * p.nb11 + i02 * p.nb12 + i03 * p.nb13;
uint subgroup_id = tid / SUBGROUP_SIZE;
if (tid == 0) {
last_sum = 0;
}
uint col = tid;
uint num_iter = CEIL_DIV(p.n_cols, BLOCK_SIZE);
for (int i = 0; i < num_iter; ++i) {
FLOAT_TYPE v = 0;
if (col < p.n_cols) {
v = FLOAT_TYPE(data_a[src_idx + col]);
}
v = subgroupInclusiveAdd(v);
// Store the largest partial sum for each subgroup, then add the partials for all
// lower subgroups and the final partial sum from the previous iteration.
if (gl_SubgroupInvocationID == SUBGROUP_SIZE - 1) {
partial[subgroup_id] = v;
}
barrier();
for (int j = 0; j < subgroup_id; ++j) {
v += partial[j];
}
v += last_sum;
barrier();
if (tid == BLOCK_SIZE - 1) {
last_sum = v;
}
if (col < p.n_cols) {
data_d[dst_idx + col] = D_TYPE(v);
}
col += BLOCK_SIZE;
}
}

View File

@ -4,13 +4,6 @@
#include "types.glsl"
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
#if defined(DATA_A_F32)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]);

View File

@ -156,7 +156,7 @@ void main() {
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);
tensorLayoutM = setTensorLayoutClampValueNV(tensorLayoutM, 0xfc00); // -inf in float16_t
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mv, mvmax;
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mvmax;
coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));

View File

@ -22,6 +22,13 @@ layout (push_constant) uniform parameter
#if !RMS_NORM_ROPE_FUSION
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#endif

View File

@ -18,6 +18,13 @@ layout (push_constant) uniform parameter
} p;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
uint get_idx() {

View File

@ -3,6 +3,7 @@
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#include "mul_mat_vec_base.glsl"
#include "dequant_funcs.glsl"
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

View File

@ -13,8 +13,6 @@
#include "mul_mat_vec_iface.glsl"
#include "dequant_funcs.glsl"
layout (push_constant) uniform parameter
{
uint ncols;

View File

@ -5,13 +5,15 @@
#define MAT_VEC_FUSION_FLAGS_SCALE0 0x4
#define MAT_VEC_FUSION_FLAGS_SCALE1 0x8
#ifndef MMQ
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#if defined(A_TYPE_VEC4)
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
#endif
#else
layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];};
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
#endif
#if defined(A_TYPE_PACKED32)
layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];};
#endif
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};

View File

@ -10,60 +10,56 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
#if defined(DATA_A_QUANT_LEGACY) || defined(DATA_A_MXFP4)
#define K_PER_ITER 8
#include "mul_mmq_funcs.glsl"
#elif defined(DATA_A_QUANT_K)
#define K_PER_ITER 16
#else
#error unimplemented
#endif
uint a_offset, b_offset, d_offset;
int32_t cache_b_qs[2];
int32_t cache_b_qs[K_PER_ITER / 4];
vec2 cache_b_ds;
#include "mul_mat_vecq_funcs.glsl"
void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
const uint col = i*BLOCK_SIZE + tid*K_PER_ITER;
// Preload data_b block
const uint b_block_idx = (j*p.batch_stride_b + col) / QUANT_K_Q8_1 + b_offset;
const uint b_qs_idx = tid % 4;
const uint b_qs_idx = tid % (32 / K_PER_ITER);
const uint b_block_idx_outer = b_block_idx / 4;
const uint b_block_idx_inner = b_block_idx % 4;
cache_b_ds = vec2(data_b[b_block_idx_outer].ds[b_block_idx_inner]);
#if QUANT_R == 2
// Assumes K_PER_ITER == 8
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx];
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx + 4];
#else
#if K_PER_ITER == 8
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2];
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 2 + 1];
#elif K_PER_ITER == 16
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 ];
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 1];
cache_b_qs[2] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 2];
cache_b_qs[3] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 3];
#else
#error unimplemented
#endif
#endif
uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint a_block_idx = (ibi + col)/QUANT_K + a_offset;
const uint a_block_idx = (ibi + col)/QUANT_K_Q8_1 + a_offset;
ibi += p.ncols;
int32_t q_sum = 0;
#if QUANT_R == 2
const i32vec2 data_a_qs = repack(a_block_idx, b_qs_idx);
q_sum += dotPacked4x8EXT(data_a_qs.x,
cache_b_qs[0]);
q_sum += dotPacked4x8EXT(data_a_qs.y,
cache_b_qs[1]);
#else
int32_t data_a_qs = repack(a_block_idx, b_qs_idx * 2);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[0]);
data_a_qs = repack(a_block_idx, b_qs_idx * 2 + 1);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[1]);
#endif
#if QUANT_AUXF == 1
temp[j][n] += mul_q8_1(q_sum, get_d(a_block_idx), cache_b_ds, 4);
#else
temp[j][n] += mul_q8_1(q_sum, get_dm(a_block_idx), cache_b_ds, 4);
#endif
temp[j][n] += mmvq_dot_product(a_block_idx, b_qs_idx);
}
}
}
@ -72,7 +68,7 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint tid = gl_LocalInvocationID.x;
get_offsets(a_offset, b_offset, d_offset);
a_offset /= QUANT_K;
a_offset /= QUANT_K_Q8_1;
b_offset /= QUANT_K_Q8_1;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
@ -102,14 +98,6 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
unroll_count = 2;
unrolled_iters = num_iters & ~(unroll_count - 1);
#if K_PER_ITER == 2
if ((p.ncols & 1) != 0 &&
unrolled_iters == num_iters &&
unrolled_iters > 0) {
unrolled_iters -= unroll_count;
}
#endif
while (i < unrolled_iters) {
// Manually partially unroll the loop
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
@ -128,6 +116,10 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
#ifdef NEEDS_INIT_IQ_SHMEM
init_iq_shmem(gl_WorkGroupSize);
#endif
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);

View File

@ -0,0 +1,379 @@
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#include "types.glsl"
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q5_0) || defined(DATA_A_Q8_0) || defined(DATA_A_IQ1_S) || defined(DATA_A_IQ2_XXS) || defined(DATA_A_IQ2_XS) || defined(DATA_A_IQ2_S) || defined(DATA_A_IQ3_XXS) || defined(DATA_A_IQ3_S) || defined(DATA_A_IQ4_XS) || defined(DATA_A_IQ4_NL)
FLOAT_TYPE get_dm(uint ib) {
return FLOAT_TYPE(data_a[ib].d);
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
return FLOAT_TYPE_VEC2(data_a_packed32[ib].dm);
}
#endif
#if defined(DATA_A_MXFP4)
FLOAT_TYPE get_dm(uint ib) {
return FLOAT_TYPE(e8m0_to_fp32(data_a[ib].e));
}
#endif
#if defined(DATA_A_Q2_K)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
const uint ib_k = ib / 8;
return FLOAT_TYPE_VEC2(data_a_packed32[ib_k].dm);
}
#endif
// Each iqs value maps to a 32-bit integer
#if defined(DATA_A_Q4_0)
// 2-byte loads for Q4_0 blocks (18 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(da * (float(q_sum) * dsb.x - (8 / sum_divisor) * dsb.y));
}
#endif
#if defined(DATA_A_Q4_1)
// 4-byte loads for Q4_1 blocks (20 bytes)
i32vec2 repack(uint ib, uint iqs) {
const uint32_t vui = data_a_packed32[ib].qs[iqs];
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#if defined(DATA_A_Q5_0)
// 2-byte loads for Q5_0 blocks (22 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
const int32_t qh = int32_t((uint32_t(data_a_packed16[ib].qh[1]) << 16 | data_a_packed16[ib].qh[0]) >> (4 * iqs));
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(da * (float(q_sum) * dsb.x - (16 / sum_divisor) * dsb.y));
}
#endif
#if defined(DATA_A_Q5_1)
// 4-byte loads for Q5_1 blocks (24 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
const int32_t qh = int32_t(data_a_packed32[ib].qh >> (4 * iqs));
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#if defined(DATA_A_Q8_0)
// 2-byte loads for Q8_0 blocks (34 bytes)
int32_t repack(uint ib, uint iqs) {
return pack32(i16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]));
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(float(q_sum) * da * dsb.x);
}
#endif
#if defined(DATA_A_MXFP4)
// 1-byte loads for mxfp4 blocks (17 bytes)
i32vec2 repack(uint ib, uint iqs) {
const uint32_t qs = pack32(u8vec4(data_a[ib].qs[iqs * 4 ],
data_a[ib].qs[iqs * 4 + 1],
data_a[ib].qs[iqs * 4 + 2],
data_a[ib].qs[iqs * 4 + 3]));
const u8vec4 i_a0 = unpack8( qs & 0x0F0F0F0F);
const u8vec4 i_a1 = unpack8((qs >> 4) & 0x0F0F0F0F);
return i32vec2(pack32(i8vec4(kvalues_mxfp4[i_a0.x], kvalues_mxfp4[i_a0.y], kvalues_mxfp4[i_a0.z], kvalues_mxfp4[i_a0.w])),
pack32(i8vec4(kvalues_mxfp4[i_a1.x], kvalues_mxfp4[i_a1.y], kvalues_mxfp4[i_a1.z], kvalues_mxfp4[i_a1.w])));
}
FLOAT_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return FLOAT_TYPE(da * dsb.x * float(q_sum) * 0.5);
}
#endif
#if defined(DATA_A_QUANT_LEGACY) || defined(DATA_A_MXFP4)
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
#if QUANT_R == 2
const i32vec2 data_a_qs = repack(ib_a, iqs);
q_sum += dotPacked4x8EXT(data_a_qs.x,
cache_b_qs[0]);
q_sum += dotPacked4x8EXT(data_a_qs.y,
cache_b_qs[1]);
#else
int32_t data_a_qs = repack(ib_a, iqs * 2);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[0]);
data_a_qs = repack(ib_a, iqs * 2 + 1);
q_sum += dotPacked4x8EXT(data_a_qs,
cache_b_qs[1]);
#endif
// 2 quants per call => divide sums by 8/2 = 4
return mul_q8_1(q_sum, get_dm(ib_a), cache_b_ds, 4);
}
#endif
#if defined(DATA_A_Q2_K)
// 4-byte loads for Q2_K blocks (84 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 32) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 32) / 8) * 2;
return i32vec4((data_a_packed32[ib_k].qs[qs_idx ] >> qs_shift) & 0x03030303,
(data_a_packed32[ib_k].qs[qs_idx + 1] >> qs_shift) & 0x03030303,
(data_a_packed32[ib_k].qs[qs_idx + 2] >> qs_shift) & 0x03030303,
(data_a_packed32[ib_k].qs[qs_idx + 3] >> qs_shift) & 0x03030303);
}
uint8_t get_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
return data_a[ib_k].scales[iqs_k / 4];
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t sum_d = 0;
int32_t sum_m = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const uint8_t scale = get_scale(ib_a, iqs * 4);
const vec2 dm = vec2(get_dm(ib_a));
const int32_t scale_m = int32_t(scale >> 4) * 0x01010101; // Duplicate 8-bit value across 32-bits.
sum_d += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[0]);
sum_d += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[1]);
sum_d += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[2]);
sum_d += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]) * (scale & 0xF);
sum_m += dotPacked4x8EXT(scale_m, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * (float(dm.x) * float(sum_d) - float(dm.y) * float(sum_m)));
}
#endif
#if defined(DATA_A_Q3_K)
// 2-byte loads for Q3_K blocks (110 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 32) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 32) / 8) * 2;
const uint hm_shift = iqs_k / 8;
// bitwise OR to add 4 if hmask is set, subtract later
const i8vec2 vals00 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 ] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 ] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals01 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 1] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 1] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals10 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 2] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 2] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals11 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 3] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 3] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals20 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 4] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 4] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals21 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 5] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 5] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals30 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 6] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 6] >> hm_shift) & uint16_t(0x0101)) << 2));
const i8vec2 vals31 = unpack8(int16_t((data_a_packed16[ib_k].qs[qs_idx * 2 + 7] >> qs_shift) & uint16_t(0x0303))) |
unpack8(int16_t(((data_a_packed16[ib_k].hmask[iqs * 2 + 7] >> hm_shift) & uint16_t(0x0101)) << 2));
return i32vec4(pack32(i8vec4(vals00.x, vals00.y, vals01.x, vals01.y) - int8_t(4)),
pack32(i8vec4(vals10.x, vals10.y, vals11.x, vals11.y) - int8_t(4)),
pack32(i8vec4(vals20.x, vals20.y, vals21.x, vals21.y) - int8_t(4)),
pack32(i8vec4(vals30.x, vals30.y, vals31.x, vals31.y) - int8_t(4)));
}
float get_d_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint is = iqs_k / 4;
const int8_t scale = int8_t(((data_a[ib_k].scales[is % 8 ] >> (4 * (is / 8))) & 0x0F0F) |
(((data_a[ib_k].scales[8 + (is % 4)] >> (2 * (is / 4))) & 0x0303) << 4));
return float(data_a[ib_k].d) * float(scale - 32);
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const float d_scale = get_d_scale(ib_a, iqs * 4);
q_sum += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]);
q_sum += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]);
q_sum += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]);
q_sum += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * d_scale * float(q_sum));
}
#endif
#if defined(DATA_A_Q4_K) || defined(DATA_A_Q5_K)
// 4-byte loads for Q4_K blocks (144 bytes) and Q5_K blocks (176 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 16) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 16) / 8) * 4;
#if defined(DATA_A_Q4_K)
const uint32_t vals0 = (data_a_packed32[ib_k].qs[qs_idx ] >> qs_shift) & 0x0F0F0F0F;
const uint32_t vals1 = (data_a_packed32[ib_k].qs[qs_idx + 1] >> qs_shift) & 0x0F0F0F0F;
const uint32_t vals2 = (data_a_packed32[ib_k].qs[qs_idx + 2] >> qs_shift) & 0x0F0F0F0F;
const uint32_t vals3 = (data_a_packed32[ib_k].qs[qs_idx + 3] >> qs_shift) & 0x0F0F0F0F;
return i32vec4(vals0, vals1, vals2, vals3);
#else // defined(DATA_A_Q5_K)
const uint qh_idx = iqs;
const uint qh_shift = iqs_k / 8;
return i32vec4(((data_a_packed32[ib_k].qs[qs_idx ] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx ] >> qh_shift) & 0x01010101) << 4),
((data_a_packed32[ib_k].qs[qs_idx + 1] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx + 1] >> qh_shift) & 0x01010101) << 4),
((data_a_packed32[ib_k].qs[qs_idx + 2] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx + 2] >> qh_shift) & 0x01010101) << 4),
((data_a_packed32[ib_k].qs[qs_idx + 3] >> qs_shift) & 0x0F0F0F0F) |
(((data_a_packed32[ib_k].qh[qh_idx + 3] >> qh_shift) & 0x01010101) << 4));
#endif
}
vec2 get_dm_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint is = iqs_k / 8;
u8vec2 scale_dm;
if (is < 4) {
scale_dm = u8vec2(data_a[ib_k].scales[is] & 0x3F, data_a[ib_k].scales[is + 4] & 0x3F);
} else {
scale_dm = u8vec2((data_a[ib_k].scales[is+4] & 0xF) | ((data_a[ib_k].scales[is-4] & 0xC0) >> 2),
(data_a[ib_k].scales[is+4] >> 4) | ((data_a[ib_k].scales[is ] & 0xC0) >> 2));
}
return FLOAT_TYPE_VEC2(data_a_packed32[ib_k].dm) * FLOAT_TYPE_VEC2(scale_dm);
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const vec2 dm_scale = get_dm_scale(ib_a, iqs * 4);
q_sum += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]);
q_sum += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]);
q_sum += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]);
q_sum += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * float(dm_scale.x) * float(q_sum) - float(dm_scale.y) * float(cache_b_ds.y / 2));
}
#endif
#if defined(DATA_A_Q6_K)
// 2-byte loads for Q6_K blocks (210 bytes)
i32vec4 repack4(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint ql_idx = (iqs_k / 32) * 16 + iqs_k % 16;
const uint ql_shift = ((iqs_k % 32) / 16) * 4;
const uint qh_idx = (iqs_k / 32) * 8 + iqs;
const uint qh_shift = ((iqs_k % 32) / 8) * 2;
const i8vec2 vals00 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 ] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 ] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals01 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 1] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 1] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals10 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 2] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 2] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals11 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 3] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 3] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals20 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 4] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 4] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals21 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 5] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 5] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals30 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 6] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 6] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
const i8vec2 vals31 = (unpack8(int16_t((data_a_packed16[ib_k].ql[ql_idx * 2 + 7] >> ql_shift) & uint16_t(0x0F0F))) |
unpack8(int16_t(((data_a_packed16[ib_k].qh[qh_idx * 2 + 7] >> qh_shift) & uint16_t(0x0303)) << 4))) - int8_t(32);
return i32vec4(pack32(i8vec4(vals00.x, vals00.y, vals01.x, vals01.y)),
pack32(i8vec4(vals10.x, vals10.y, vals11.x, vals11.y)),
pack32(i8vec4(vals20.x, vals20.y, vals21.x, vals21.y)),
pack32(i8vec4(vals30.x, vals30.y, vals31.x, vals31.y)));
}
float get_d_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
return float(data_a[ib_k].d) * float(data_a[ib_k].scales[iqs_k / 4]);
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
const i32vec4 qs_a = repack4(ib_a, iqs * 4);
const float d_scale = get_d_scale(ib_a, iqs * 4);
q_sum += dotPacked4x8EXT(qs_a.x, cache_b_qs[0]);
q_sum += dotPacked4x8EXT(qs_a.y, cache_b_qs[1]);
q_sum += dotPacked4x8EXT(qs_a.z, cache_b_qs[2]);
q_sum += dotPacked4x8EXT(qs_a.w, cache_b_qs[3]);
return FLOAT_TYPE(float(cache_b_ds.x) * float(d_scale) * float(q_sum));
}
#endif

View File

@ -78,8 +78,6 @@ layout (constant_id = 10) const uint WARP = 32;
#define BK 32
#define MMQ_SHMEM
#include "mul_mmq_shmem_types.glsl"
#ifdef MUL_MAT_ID

View File

@ -9,31 +9,6 @@
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q4_1)
// 2-byte loads for Q4_0 blocks (18 bytes)
// 4-byte loads for Q4_1 blocks (20 bytes)
i32vec2 repack(uint ib, uint iqs) {
#ifdef DATA_A_Q4_0
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
#else // DATA_A_Q4_1
const uint32_t vui = data_a_packed32[ib].qs[iqs];
return i32vec2( vui & 0x0F0F0F0F,
(vui >> 4) & 0x0F0F0F0F);
#endif
}
#ifdef DATA_A_Q4_0
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(da * (float(q_sum) * dsb.x - (8 / sum_divisor) * dsb.y));
}
#else // DATA_A_Q4_1
ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
#ifdef DATA_A_Q4_0
buf_a[buf_ib].qs[iqs] = pack32(u16vec2(data_a_packed16[ib].qs[iqs * 2],
@ -73,42 +48,17 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a.y, qs_b1);
}
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1);
#ifdef DATA_A_Q4_0
return ACC_TYPE(float(cache_a[ib_a].dm) * (float(q_sum) * float(cache_b.ds.x) - 8.0 * float(cache_b.ds.y)));
#else // DATA_A_Q4_1
return ACC_TYPE(float(q_sum) * float(cache_a[ib_a].dm.x) * float(cache_b.ds.x) + float(cache_a[ib_a].dm.y) * float(cache_b.ds.y));
#endif
}
#endif // MMQ_SHMEM
#endif
#elif defined(DATA_A_Q5_0) || defined(DATA_A_Q5_1)
#if defined(DATA_A_Q5_0) || defined(DATA_A_Q5_1)
// 2-byte loads for Q5_0 blocks (22 bytes)
// 4-byte loads for Q5_1 blocks (24 bytes)
i32vec2 repack(uint ib, uint iqs) {
const u16vec2 quants = u16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]);
const uint32_t vui = pack32(quants);
#ifdef DATA_A_Q5_0
const int32_t qh = int32_t((uint32_t(data_a_packed16[ib].qh[1]) << 16 | data_a_packed16[ib].qh[0]) >> (4 * iqs));
#else // DATA_A_Q5_1
const int32_t qh = int32_t(data_a_packed32[ib].qh >> (4 * iqs));
#endif
const int32_t v0 = int32_t(vui & 0x0F0F0F0F)
| ((qh & 0xF) * 0x02040810) & 0x10101010; // (0,1,2,3) -> (4,12,20,28)
const int32_t v1 = int32_t((vui >> 4) & 0x0F0F0F0F)
| (((qh >> 16) & 0xF) * 0x02040810) & 0x10101010; // (16,17,18,19) -> (4,12,20,28)
return i32vec2(v0, v1);
}
#ifdef DATA_A_Q5_0
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(da * (float(q_sum) * dsb.x - (16 / sum_divisor) * dsb.y));
}
#else // DATA_A_Q5_1
ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(float(q_sum) * dma.x * dsb.x + dma.y * dsb.y / sum_divisor);
}
#endif
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
#ifdef DATA_A_Q5_0
buf_a[buf_ib].qs[iqs] = pack32(u16vec2(data_a_packed16[ib].qs[iqs * 2],
@ -154,23 +104,16 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a1, qs_b1);
}
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1);
#ifdef DATA_A_Q5_0
return ACC_TYPE(float(cache_a[ib_a].dm) * (float(q_sum) * float(cache_b.ds.x) - 16.0 * float(cache_b.ds.y)));
#else // DATA_A_Q5_1
return ACC_TYPE(float(q_sum) * float(cache_a[ib_a].dm.x) * float(cache_b.ds.x) + float(cache_a[ib_a].dm.y) * float(cache_b.ds.y));
#endif
}
#endif // MMQ_SHMEM
#endif
#if defined(DATA_A_Q8_0)
// 2-byte loads for Q8_0 blocks (34 bytes)
int32_t repack(uint ib, uint iqs) {
return pack32(i16vec2(data_a_packed16[ib].qs[iqs * 2 ],
data_a_packed16[ib].qs[iqs * 2 + 1]));
}
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(float(q_sum) * da * dsb.x);
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
buf_a[buf_ib].qs[iqs] = pack32(i16vec2(data_a_packed16[ib].qs[iqs * 2],
data_a_packed16[ib].qs[iqs * 2 + 1]));
@ -197,28 +140,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a, qs_b);
}
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1);
return ACC_TYPE(float(q_sum) * float(cache_a[ib_a].dm) * float(cache_b.ds.x));
}
#endif // MMQ_SHMEM
#endif
#if defined(DATA_A_MXFP4)
// 1-byte loads for mxfp4 blocks (17 bytes)
i32vec2 repack(uint ib, uint iqs) {
const uint32_t quants = pack32(u8vec4(data_a[ib].qs[iqs * 4 ],
data_a[ib].qs[iqs * 4 + 1],
data_a[ib].qs[iqs * 4 + 2],
data_a[ib].qs[iqs * 4 + 3]));
return i32vec2( quants & 0x0F0F0F0F,
(quants >> 4) & 0x0F0F0F0F);
}
ACC_TYPE mul_q8_1(const int32_t q_sum, const float da, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(da * dsb.x * float(q_sum));
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint32_t qs = pack32(u8vec4(data_a[ib].qs[iqs * 4 ],
data_a[ib].qs[iqs * 4 + 1],
@ -252,37 +179,14 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a, cache_b.qs[iqs]);
}
return mul_q8_1(q_sum, cache_a[ib_a].d, cache_b.ds, 1);
return ACC_TYPE(float(cache_a[ib_a].d) * float(cache_b.ds.x) * float(q_sum));
}
#endif // MMQ_SHMEM
#endif
// For k-quants, ib and iqs still assume 32-wide blocks, but k-quants are 256-wide
// iqs still refers to a 32-bit integer, meaning 0..7 for 32-wide quants
#if defined(DATA_A_Q2_K)
// 4-byte loads for Q2_K blocks (84 bytes)
int32_t repack(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
const uint qs_idx = (iqs_k / 32) * 8 + (iqs_k % 8);
const uint qs_shift = ((iqs_k % 32) / 8) * 2;
return int32_t((data_a_packed32[ib_k].qs[qs_idx] >> qs_shift) & 0x03030303);
}
uint8_t get_scale(uint ib, uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
return data_a[ib_k].scales[iqs_k / 4];
}
ACC_TYPE mul_q8_1(const int32_t sum_d, const int32_t sum_m, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(dsb.x * (dma.x * float(sum_d) - dma.y * float(sum_m)));
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs * QUANT_R_MMQ;
@ -326,14 +230,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
sum_m += dotPacked4x8EXT(scale_m, cache_b.qs[iqs]);
}
return mul_q8_1(sum_d, sum_m, cache_a[ib_a].dm, cache_b.ds, 1);
return ACC_TYPE(float(cache_b.ds.x) * (float(cache_a[ib_a].dm.x) * float(sum_d) - float(cache_a[ib_a].dm.y) * float(sum_m)));
}
#endif // MMQ_SHMEM
#endif
#if defined(DATA_A_Q3_K)
// 2-byte loads for Q3_K blocks (110 bytes)
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8;
const uint hm_idx = iqs * QUANT_R_MMQ;
@ -394,18 +296,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
}
result += float(cache_a[ib_a].d_scales[1]) * float(q_sum);
return ACC_TYPE(cache_b.ds.x * result);
return ACC_TYPE(float(cache_b.ds.x) * result);
}
#endif // MMQ_SHMEM
#endif
#if defined(DATA_A_Q4_K) || defined(DATA_A_Q5_K)
// 4-byte loads for Q4_K blocks (144 bytes) and Q5_K blocks (176 bytes)
ACC_TYPE mul_q8_1(const int32_t q_sum, const vec2 dma, const vec2 dsb, const int32_t sum_divisor) {
return ACC_TYPE(dsb.x * dma.x * float(q_sum) - dma.y * dsb.y);
}
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs * QUANT_R_MMQ;
@ -427,7 +323,6 @@ void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
(((data_a_packed32[ib_k].qh[qh_idx] >> qh_shift) & 0x01010101) << 4));
#endif
if (iqs == 0) {
// Scale index
const uint is = iqs_k / 8;
@ -464,49 +359,12 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
q_sum += dotPacked4x8EXT(qs_a, cache_b.qs[iqs]);
}
return mul_q8_1(q_sum, cache_a[ib_a].dm, cache_b.ds, 1);
}
#endif // MMQ_SHMEM
#endif
#ifdef MMQ_SHMEM
void block_b_to_shmem(const uint buf_ib, const uint ib, const uint iqs, const bool is_in_bounds) {
if (is_in_bounds) {
const uint ib_outer = ib / 4;
const uint ib_inner = ib % 4;
if (iqs == 0) {
buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(data_b[ib_outer].ds[ib_inner]);
}
const ivec4 values = data_b[ib_outer].qs[ib_inner * 2 + iqs];
buf_b[buf_ib].qs[iqs * 4 ] = values.x;
buf_b[buf_ib].qs[iqs * 4 + 1] = values.y;
buf_b[buf_ib].qs[iqs * 4 + 2] = values.z;
buf_b[buf_ib].qs[iqs * 4 + 3] = values.w;
} else {
if (iqs == 0) {
buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(0.0f);
}
buf_b[buf_ib].qs[iqs * 4 ] = 0;
buf_b[buf_ib].qs[iqs * 4 + 1] = 0;
buf_b[buf_ib].qs[iqs * 4 + 2] = 0;
buf_b[buf_ib].qs[iqs * 4 + 3] = 0;
}
}
void block_b_to_registers(const uint ib) {
cache_b.ds = buf_b[ib].ds;
[[unroll]] for (uint iqs = 0; iqs < BK / 4; iqs++) {
cache_b.qs[iqs] = buf_b[ib].qs[iqs];
}
return ACC_TYPE(float(cache_b.ds.x) * float(cache_a[ib_a].dm.x) * float(q_sum) - float(cache_a[ib_a].dm.y) * float(cache_b.ds.y));
}
#endif
#if defined(DATA_A_Q6_K)
// 2-byte loads for Q6_K blocks (210 bytes)
#ifdef MMQ_SHMEM
void block_a_to_shmem(const uint buf_ib, const uint ib, const uint iqs) {
const uint ib_k = ib / 8;
const uint iqs_k = (ib % 8) * 8 + iqs;
@ -558,32 +416,39 @@ ACC_TYPE mmq_dot_product(const uint ib_a) {
}
result += float(cache_a[ib_a].d_scales[1]) * float(q_sum);
return ACC_TYPE(cache_b.ds.x * result);
}
#endif // MMQ_SHMEM
#endif
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q5_0) || defined(DATA_A_Q8_0) || defined(DATA_A_IQ1_S) || defined(DATA_A_IQ2_XXS) || defined(DATA_A_IQ2_XS) || defined(DATA_A_IQ2_S) || defined(DATA_A_IQ3_XXS) || defined(DATA_A_IQ3_S) || defined(DATA_A_IQ4_XS) || defined(DATA_A_IQ4_NL)
FLOAT_TYPE get_d(uint ib) {
return FLOAT_TYPE(data_a[ib].d);
return ACC_TYPE(float(cache_b.ds.x) * result);
}
#endif
#if defined(DATA_A_MXFP4)
FLOAT_TYPE get_d(uint ib) {
return FLOAT_TYPE(e8m0_to_fp32(data_a[ib].e));
}
#endif
void block_b_to_shmem(const uint buf_ib, const uint ib, const uint iqs, const bool is_in_bounds) {
if (is_in_bounds) {
const uint ib_outer = ib / 4;
const uint ib_inner = ib % 4;
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
return FLOAT_TYPE_VEC2(data_a_packed32[ib].dm);
}
#endif
if (iqs == 0) {
buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(data_b[ib_outer].ds[ib_inner]);
}
#if defined(DATA_A_Q2_K)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
const uint ib_k = ib / 8;
return FLOAT_TYPE_VEC2(data_a_packed32[ib_k].dm);
const ivec4 values = data_b[ib_outer].qs[ib_inner * 2 + iqs];
buf_b[buf_ib].qs[iqs * 4 ] = values.x;
buf_b[buf_ib].qs[iqs * 4 + 1] = values.y;
buf_b[buf_ib].qs[iqs * 4 + 2] = values.z;
buf_b[buf_ib].qs[iqs * 4 + 3] = values.w;
} else {
if (iqs == 0) {
buf_b[buf_ib].ds = FLOAT_TYPE_VEC2(0.0f);
}
buf_b[buf_ib].qs[iqs * 4 ] = 0;
buf_b[buf_ib].qs[iqs * 4 + 1] = 0;
buf_b[buf_ib].qs[iqs * 4 + 2] = 0;
buf_b[buf_ib].qs[iqs * 4 + 3] = 0;
}
}
void block_b_to_registers(const uint ib) {
cache_b.ds = buf_b[ib].ds;
[[unroll]] for (uint iqs = 0; iqs < BK / 4; iqs++) {
cache_b.qs[iqs] = buf_b[ib].qs[iqs];
}
}
#endif

View File

@ -0,0 +1,72 @@
#version 450
#include "types.glsl"
#include "generic_binary_head.glsl"
layout (constant_id = 1) const uint N = 64;
layout (constant_id = 2) const uint K = 32;
layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;
uint a_base, b_base, x_base;
FLOAT_TYPE get_a(uint r, uint c) {
return FLOAT_TYPE(data_a[a_base + r * p.nb01 + c * p.nb00]);
}
FLOAT_TYPE get_b(uint r, uint c) {
return FLOAT_TYPE(data_b[b_base + r * p.nb11 + c * p.nb10]);
}
void store_x(uint r, uint c, FLOAT_TYPE v) {
data_d[x_base + r * p.nb21 + c * p.nb20] = D_TYPE(v);
}
shared FLOAT_TYPE shA[N * N];
shared FLOAT_TYPE shB[N * K];
void main() {
const uint batch = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
if (batch >= p.ne02 * p.ne03) {
return;
}
const uint i3 = batch / p.ne22;
const uint i2 = batch % p.ne22;
a_base = get_aoffset() + i2 * p.nb02 + i3 * p.nb03;
b_base = get_boffset() + i2 * p.nb12 + i3 * p.nb13;
x_base = get_doffset() + i2 * p.nb22 + i3 * p.nb23;
// Load the A matrix into shA
[[unroll]] for (uint i = 0; i < N * N; i += gl_WorkGroupSize.x) {
uint idx = i + tid;
if (((N * N) % gl_WorkGroupSize.x == 0) || idx < N * N) {
shA[idx] = get_a(idx / N, idx % N);
}
}
// Load the B matrix into shB
[[unroll]] for (uint i = 0; i < N * K; i += gl_WorkGroupSize.x) {
uint idx = i + tid;
if (((N * K) % gl_WorkGroupSize.x == 0) || idx < N * K) {
shB[idx] = get_b(idx / K, idx % K);
}
}
barrier();
FLOAT_TYPE X[N];
// Each thread solves one column
if (tid < K) {
[[unroll]] for (int r = 0; r < N; ++r) {
FLOAT_TYPE b = shB[r * K + tid];
// Compute x[r,c] = (b[r,c] - sum(a[r,c]*x[c])) / a[r,r]
[[unroll]] for (int c = 0; c < r; ++c) {
b -= shA[r * N + c] * X[c];
}
FLOAT_TYPE x = b / shA[r * N + r];
X[r] = x;
store_x(r, tid, x);
}
}
}

Some files were not shown because too many files have changed in this diff Show More