Merge a70e4c87e4 into ec98e20021
This commit is contained in:
commit
40d79fde96
|
|
@ -3576,3 +3576,106 @@ void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ggml_cann_ssm_conv(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_tensor * src0 = dst->src[0]; // conv_x
|
||||||
|
ggml_tensor * src1 = dst->src[1]; // conv1d.weight
|
||||||
|
|
||||||
|
// This op is currently defined only for F32 in ggml_cpu
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
// Shapes follow ggml_compute_forward_ssm_conv_f32
|
||||||
|
const int64_t nc = src1->ne[0]; // d_conv
|
||||||
|
const int64_t ncs = src0->ne[0]; // d_conv - 1 + n_t
|
||||||
|
const int64_t nr = src0->ne[1]; // d_inner
|
||||||
|
const int64_t n_s = src0->ne[2]; // n_seqs
|
||||||
|
|
||||||
|
const int64_t n_t = dst->ne[1]; // tokens per sequence
|
||||||
|
|
||||||
|
GGML_ASSERT(dst->ne[0] == nr); // dst: {d_inner, n_t, n_s}
|
||||||
|
GGML_ASSERT(src1->ne[1] == nr); // weight: {d_conv, d_inner}
|
||||||
|
GGML_ASSERT(ncs == nc - 1 + n_t); // conv_x: {d_conv - 1 + n_t, d_inner, n_s}
|
||||||
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||||
|
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
||||||
|
|
||||||
|
// --- Build CANN tensors ---
|
||||||
|
|
||||||
|
// 1) Input: conv_x as NCL
|
||||||
|
//
|
||||||
|
// src0->ne = { ncs, nr, n_s, 1 } // {L_in, C, N}
|
||||||
|
// Passing ACL_FORMAT_NCL here means:
|
||||||
|
// reversed dims -> [N, C, L_in] = [n_s, nr, ncs]
|
||||||
|
acl_tensor_ptr acl_x = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3, ACL_FORMAT_NCL);
|
||||||
|
|
||||||
|
// 2) Weights: depthwise conv kernel, view src1 as {K, 1, C}
|
||||||
|
//
|
||||||
|
// src1 original: ne = { nc, nr, 1, 1 } // [K, C, 1, 1]
|
||||||
|
// we want a view: ne_w = { nc, 1, nr } // [K, 1, C]
|
||||||
|
// so that reversed dims -> [C, 1, K] which matches
|
||||||
|
// [out_channels, in_channels/groups, kernel_size]
|
||||||
|
int64_t w_ne[GGML_MAX_DIMS] = { nc, 1, nr, 1 }; // [K, 1 input ch. per group, C groups]
|
||||||
|
// Layout: src1 data is [K, C] with
|
||||||
|
// offset(k, c) = k*nb0 + c*nb1
|
||||||
|
// We want offset_w(k, 0, c) = k*nb0 + c*nb1,
|
||||||
|
// so we can reuse nb0 and nb1, and set nb2 = nb1.
|
||||||
|
size_t w_nb[GGML_MAX_DIMS] = { src1->nb[0], src1->nb[1], src1->nb[1], src1->nb[3] }; // same as src1
|
||||||
|
|
||||||
|
acl_tensor_ptr acl_w = ggml_cann_create_tensor(
|
||||||
|
src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type), w_ne, w_nb, 3, ACL_FORMAT_NCL);
|
||||||
|
|
||||||
|
// 3) Output: dst is { d_inner, n_t, n_s } (CLN)
|
||||||
|
//
|
||||||
|
// We need an NCL view of the same buffer:
|
||||||
|
// desired NCL logical shape: { L_out = n_t, C = nr, N = n_s }
|
||||||
|
//
|
||||||
|
// Original CLN layout:
|
||||||
|
// dst->ne = { nr, n_t, n_s }
|
||||||
|
// dst->nb[0] = sizeof(float)
|
||||||
|
// dst->nb[1] = nr * sizeof(float)
|
||||||
|
// dst->nb[2] = nr * n_t * sizeof(float)
|
||||||
|
//
|
||||||
|
// We want offset_new(L, C, N) = offset_orig(C, L, N).
|
||||||
|
// Choose:
|
||||||
|
// nb_y[0] = nr * sizeof(float); // step in L
|
||||||
|
// nb_y[1] = sizeof(float); // step in C
|
||||||
|
// nb_y[2] = nr * n_t * sizeof(float); // step in N
|
||||||
|
int64_t y_ne[GGML_MAX_DIMS] = { n_t, nr, n_s, 1 }; // [L_out, C, N]
|
||||||
|
size_t y_nb[GGML_MAX_DIMS] = { dst->ne[0] * sizeof(float), sizeof(float), dst->ne[0] * dst->ne[1] * sizeof(float), dst->nb[3] }; // [nr, 1, nr * n_t]
|
||||||
|
|
||||||
|
acl_tensor_ptr acl_y = ggml_cann_create_tensor(
|
||||||
|
dst->data, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), y_ne, y_nb, 3, ACL_FORMAT_NCL);
|
||||||
|
|
||||||
|
// --- Conv1d parameters: depthwise, stride 1, no padding ("valid") ---
|
||||||
|
int64_t strideVal[1] = { 1 };
|
||||||
|
int64_t paddingVal[1] = { 0 };
|
||||||
|
int64_t dilationVal[1] = { 1 };
|
||||||
|
|
||||||
|
acl_int_array_ptr stride = ggml_cann_create_int_array(strideVal, 1);
|
||||||
|
acl_int_array_ptr padding = ggml_cann_create_int_array(paddingVal, 1);
|
||||||
|
acl_int_array_ptr dilation = ggml_cann_create_int_array(dilationVal, 1);
|
||||||
|
|
||||||
|
const bool transposed = false;
|
||||||
|
const int64_t groups = nr; // depthwise: one group per inner dim
|
||||||
|
int8_t cubeMathType = 0;
|
||||||
|
|
||||||
|
#ifdef ASCEND_310P
|
||||||
|
cubeMathType = 1;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
GGML_CANN_CALL_ACLNN_OP(ctx,
|
||||||
|
Convolution,
|
||||||
|
acl_x.get(), // input: N, C, L_in = ncs
|
||||||
|
acl_w.get(), // weight: [C, 1, K] with groups=nr
|
||||||
|
nullptr, // bias
|
||||||
|
stride.get(),
|
||||||
|
padding.get(),
|
||||||
|
dilation.get(),
|
||||||
|
transposed,
|
||||||
|
padding.get(), // output padding (unused for non-transposed)
|
||||||
|
groups,
|
||||||
|
acl_y.get(),
|
||||||
|
cubeMathType);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1032,6 +1032,8 @@ void ggml_cann_op_unary(std::function<void(ggml_backend_cann_context &, aclTenso
|
||||||
ggml_backend_cann_context & ctx,
|
ggml_backend_cann_context & ctx,
|
||||||
ggml_tensor * dst);
|
ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cann_ssm_conv(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Applies a gated (GLU-style) unary operation using the CANN backend.
|
* @brief Applies a gated (GLU-style) unary operation using the CANN backend.
|
||||||
*
|
*
|
||||||
|
|
|
||||||
|
|
@ -1888,6 +1888,8 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
|
||||||
break;
|
break;
|
||||||
case GGML_OP_OUT_PROD:
|
case GGML_OP_OUT_PROD:
|
||||||
ggml_cann_out_prod(ctx, dst);
|
ggml_cann_out_prod(ctx, dst);
|
||||||
|
case GGML_OP_SSM_CONV:
|
||||||
|
ggml_cann_ssm_conv(ctx, dst);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
|
|
@ -2626,6 +2628,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||||
}
|
}
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
case GGML_OP_SSM_CONV:
|
||||||
|
return true;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue