Merge pull request #3 from bluebread/sf/deepseek-ocr
Fixed get_rel_pos & add_rel_pos_inplace operator
This commit is contained in:
commit
3fcfc3ace9
|
|
@ -1106,7 +1106,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
|||
|
||||
if (!weight_before_ffn) {
|
||||
experts = ggml_mul(ctx0, experts, weights);
|
||||
cb(cur, "ffn_moe_weighted", il);
|
||||
cb(experts, "ffn_moe_weighted", il);
|
||||
}
|
||||
|
||||
ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
|
||||
|
|
|
|||
|
|
@ -74,6 +74,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
|
|||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
}
|
||||
else {
|
||||
ggml_tensor * q = NULL;
|
||||
|
|
|
|||
|
|
@ -667,9 +667,9 @@ struct clip_graph {
|
|||
constexpr int _depth = 12;
|
||||
constexpr int enc_n_heads = 12;
|
||||
constexpr int enc_d_heads = enc_n_embd / enc_n_heads;
|
||||
constexpr int _prompt_n_embd = 256;
|
||||
// constexpr int _prompt_n_embd = 256;
|
||||
constexpr int enc_patch_size = 16;
|
||||
constexpr int _window_size = 14;
|
||||
// constexpr int _window_size = 14;
|
||||
|
||||
const int enc_n_patches = enc_image_size / enc_patch_size; // 64
|
||||
|
||||
|
|
@ -739,13 +739,14 @@ struct clip_graph {
|
|||
|
||||
struct ggml_tensor * q_r = ggml_reshape_4d(ctx0, Qcur, enc_d_heads, W, H, B * enc_n_heads);
|
||||
|
||||
struct ggml_tensor * rel_w = ggml_cont(
|
||||
ctx0,
|
||||
ggml_permute(ctx0, ggml_mul_mat(ctx0, rw, ggml_cont(ctx0, ggml_permute(ctx0, q_r, 0, 2, 1, 3))), 0,
|
||||
2, 1, 3));
|
||||
struct ggml_tensor * rel_w = ggml_cont(ctx0,ggml_permute(ctx0,
|
||||
ggml_mul_mat(ctx0,
|
||||
rw,
|
||||
ggml_cont(ctx0, ggml_permute(ctx0, q_r, 0, 2, 1, 3))),
|
||||
0, 2, 1, 3));
|
||||
struct ggml_tensor * rel_h = ggml_mul_mat(ctx0, rh, q_r);
|
||||
|
||||
struct ggml_tensor * attn = add_rel_pos_inplace(ctx0, KQ_scaled, rel_w, rel_h, W);
|
||||
struct ggml_tensor * attn = add_rel_pos_inplace(ctx0, KQ_scaled, rel_w, rel_h);
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, attn);
|
||||
|
||||
|
|
@ -835,7 +836,7 @@ struct clip_graph {
|
|||
|
||||
ggml_tensor * global_features_1 = build_sam_enc(inp_raw, std::max(img.nx, img.ny));
|
||||
|
||||
ggml_tensor * global_features_2 = build_dp_ocr_clip(inp_raw, global_features_1);
|
||||
ggml_tensor * global_features_2 = build_dp_ocr_clip(global_features_1);
|
||||
|
||||
// torch global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
|
||||
global_features_1 = ggml_cont(ctx0,ggml_permute(ctx0, global_features_1,2,1,0,3));
|
||||
|
|
@ -1533,7 +1534,7 @@ struct clip_graph {
|
|||
return gf;
|
||||
}
|
||||
|
||||
ggml_tensor * build_dp_ocr_clip(ggml_tensor * inpL, ggml_tensor * patch_embeds) {
|
||||
ggml_tensor * build_dp_ocr_clip(ggml_tensor * patch_embeds) {
|
||||
GGML_ASSERT(model.class_embedding != nullptr);
|
||||
GGML_ASSERT(model.position_embeddings != nullptr);
|
||||
|
||||
|
|
@ -2466,103 +2467,119 @@ private:
|
|||
return inpL;
|
||||
}
|
||||
|
||||
// attn: [k_h*k_w, q_h*q_w]
|
||||
// rel_h: [q_h, q_w, k_h]
|
||||
// rel_w: [q_h, q_w, k_w]
|
||||
// attn: [q_h*q_w, k_h*k_w]
|
||||
// rel_h: [q_h, q_w, k_h]
|
||||
// rel_w: [q_h, q_w, k_w]
|
||||
|
||||
static ggml_tensor * add_rel_pos_inplace(
|
||||
ggml_context * ctx,
|
||||
ggml_tensor * attn,
|
||||
ggml_tensor * rel_w,
|
||||
ggml_tensor * rel_h,
|
||||
int q_size
|
||||
) {
|
||||
static ggml_tensor * add_rel_pos_inplace(
|
||||
ggml_context * ctx,
|
||||
ggml_tensor * attn,
|
||||
ggml_tensor * rel_w,
|
||||
ggml_tensor * rel_h
|
||||
) {
|
||||
const int k_w = rel_w->ne[0];
|
||||
const int k_h = rel_h->ne[0];
|
||||
const int q_w = rel_h->ne[1];
|
||||
const int q_h = rel_h->ne[2];
|
||||
|
||||
ggml_tensor *attn_4d =
|
||||
ggml_reshape_4d(ctx, attn, q_size,q_size, attn->ne[1], attn->ne[2]);
|
||||
GGML_ASSERT(q_w == rel_w->ne[1]);
|
||||
GGML_ASSERT(q_h == rel_w->ne[2]);
|
||||
GGML_ASSERT(attn->ne[0] == k_h*k_w);
|
||||
GGML_ASSERT(attn->ne[1] == q_h*q_w);
|
||||
|
||||
ggml_tensor *rel_h_4d =
|
||||
ggml_reshape_4d(ctx, rel_h, 1, q_size, attn->ne[1], attn->ne[2]);
|
||||
ggml_tensor *attn_4d = ggml_reshape_4d(ctx, attn, k_w, k_h, attn->ne[1], attn->ne[2]);
|
||||
|
||||
ggml_tensor *rel_h_rep = ggml_repeat(ctx, rel_h_4d, attn_4d); // now same shape as attn_5d
|
||||
ggml_tensor *rel_h_4d = ggml_reshape_4d(ctx, rel_h, 1, k_h, attn->ne[1], attn->ne[2]);
|
||||
|
||||
ggml_tensor *rel_w_4d =
|
||||
ggml_reshape_4d(ctx, rel_w, q_size, 1, attn->ne[1], attn->ne[2]);
|
||||
ggml_tensor *rel_h_rep = ggml_repeat(ctx, rel_h_4d, attn_4d); // now same shape as attn_5d
|
||||
|
||||
ggml_tensor *rel_w_rep = ggml_repeat(ctx, rel_w_4d, attn_4d); // now same shape as attn_5d
|
||||
ggml_tensor *rel_w_4d = ggml_reshape_4d(ctx, rel_w, k_w, 1, attn->ne[1], attn->ne[2]);
|
||||
|
||||
ggml_tensor * result = ggml_add(ctx, attn_4d, ggml_add(ctx, rel_h_rep, rel_w_rep));
|
||||
result = ggml_reshape_3d(ctx, result, attn->ne[0], attn->ne[1], attn->ne[2]);
|
||||
ggml_tensor *rel_w_rep = ggml_repeat(ctx, rel_w_4d, attn_4d); // now same shape as attn_5d
|
||||
|
||||
ggml_tensor * result = ggml_add_inplace(ctx, attn_4d, ggml_add_inplace(ctx, rel_h_rep, rel_w_rep));
|
||||
result = ggml_reshape_3d(ctx, result, attn->ne[0], attn->ne[1], attn->ne[2]);
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static ggml_tensor * get_rel_pos(
|
||||
ggml_context * ctx,
|
||||
ggml_tensor * rel_pos, // [L, C]
|
||||
int q_size,
|
||||
int k_size
|
||||
) {
|
||||
static ggml_tensor * get_rel_pos(
|
||||
ggml_context * ctx,
|
||||
ggml_tensor * rel_pos, // [L, C]
|
||||
int q_size,
|
||||
int k_size
|
||||
) {
|
||||
const int64_t C = rel_pos->ne[0]; // channels
|
||||
const int64_t L = rel_pos->ne[1]; // length
|
||||
|
||||
const auto dtype = rel_pos->type;
|
||||
GGML_ASSERT(2*std::max(q_size, k_size) - 1 == L);
|
||||
|
||||
const int64_t L = rel_pos->ne[0]; // length
|
||||
const int64_t C = rel_pos->ne[1]; // channels
|
||||
// -------------------------------------------------
|
||||
// 1) q_idx ← arange(0..q_size-1) [q_size]
|
||||
// 2) k_idx ← arange(0..k_size-1) [k_size]
|
||||
// -------------------------------------------------
|
||||
|
||||
// -------------------------------------------------
|
||||
// 1) q_idx ← arange(0..q_size-1) [q_size]
|
||||
// 2) k_idx ← arange(0..k_size-1) [k_size]
|
||||
// -------------------------------------------------
|
||||
// ggml_arange always returns FP32 tensor
|
||||
ggml_tensor * q_coord = ggml_arange(ctx, 0.0f, static_cast<float>(q_size), 1.0f); // [q_size]
|
||||
ggml_tensor * k_coord = ggml_arange(ctx, 0.0f, static_cast<float>(k_size), 1.0f); // [k_size]
|
||||
ggml_tensor * rel = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, k_size, q_size);
|
||||
|
||||
// broadcast reshape:
|
||||
q_coord = ggml_cont(ctx,
|
||||
ggml_repeat(ctx,
|
||||
ggml_reshape_2d(ctx, q_coord, 1, q_size), // [q_size, 1]
|
||||
rel
|
||||
)
|
||||
); // [q_size, k_size]
|
||||
k_coord = ggml_cont(ctx, ggml_repeat(ctx, k_coord, rel)); // [q_size, k_size]
|
||||
|
||||
float q_scale = std::max((float)k_size/q_size, 1.0f);
|
||||
float k_scale = std::max((float)q_size/k_size, 1.0f);
|
||||
|
||||
// This wouldn't be triggered in DeepSeek-OCR. Just for compatibility with
|
||||
// the original implementation.
|
||||
if (q_size != k_size) {
|
||||
q_coord = ggml_scale_inplace(ctx, q_coord, q_scale);
|
||||
k_coord = ggml_scale_inplace(ctx, k_coord, k_scale);
|
||||
}
|
||||
|
||||
// -------------------------------------------------
|
||||
// relative_coords = q - k + (k_size - 1) // SAME as PyTorch when no scaling
|
||||
// -------------------------------------------------
|
||||
|
||||
rel = ggml_sub(ctx, q_coord, k_coord); // [q_size, k_size]
|
||||
rel = ggml_scale_bias(ctx, rel, 1.0f, (k_size - 1.0f)*k_scale); // [q_size, k_size]
|
||||
// Clamp to [0, L-1] range for valid indexing
|
||||
rel = ggml_clamp(ctx, rel, 0.0f, static_cast<float>(rel_pos->ne[1] - 1));
|
||||
|
||||
// -------------------------------------------------
|
||||
// clamp to [0, L-1] and cast to int32 (for ggml_get_rows)
|
||||
// -------------------------------------------------
|
||||
|
||||
ggml_tensor * idx_2d = ggml_cast(ctx, rel, GGML_TYPE_I32); // [q_size, k_size]
|
||||
|
||||
// Gather from rel_pos → [qk, C]
|
||||
// -------------------------------------------------
|
||||
|
||||
// flatten to 1D for ggml_get_rows
|
||||
int qk = q_size * k_size;
|
||||
ggml_tensor * idx_flat = ggml_reshape_1d(ctx, idx_2d, qk); // [qk]
|
||||
ggml_tensor * gathered = ggml_get_rows(ctx, rel_pos, idx_flat); // [qk, C]
|
||||
|
||||
// -------------------------------------------------
|
||||
// Gather from rel_pos → [qk, C]
|
||||
// -------------------------------------------------
|
||||
|
||||
ggml_tensor * out = ggml_reshape_3d(ctx, gathered, C, k_size, q_size); // [qk, C]
|
||||
|
||||
|
||||
ggml_tensor * q_coord = ggml_cast(ctx,
|
||||
ggml_arange(ctx, 0.0f, static_cast<float>(q_size), 1.0f),
|
||||
GGML_TYPE_F32); // [q_size]
|
||||
ggml_tensor * k_coord = ggml_cast(ctx,
|
||||
ggml_arange(ctx, 0.0f, static_cast<float>(k_size), 1.0f),
|
||||
GGML_TYPE_F32); // [k_size]
|
||||
|
||||
ggml_tensor * rel = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, q_size, k_size);
|
||||
q_coord = ggml_cont(ctx,ggml_repeat(ctx, q_coord, rel)); // [q_size, k_size]
|
||||
|
||||
// broadcast reshape:
|
||||
k_coord = ggml_reshape_2d(ctx, k_coord, 1, k_size); // [1, k_size]
|
||||
k_coord = ggml_cont(ctx,ggml_repeat(ctx, k_coord, rel)); // [q_size, k_size]
|
||||
|
||||
// -------------------------------------------------
|
||||
// relative_coords = q - k + (k_size - 1) // SAME as PyTorch when no scaling
|
||||
// -------------------------------------------------
|
||||
rel = ggml_sub(ctx, k_coord, q_coord); // [q_size, k_size]
|
||||
|
||||
rel = ggml_scale_bias(ctx, rel, 1.0f, static_cast<float>(k_size) - 1.0f); // [q_size, k_size]
|
||||
|
||||
// -------------------------------------------------
|
||||
// clamp to [0, L-1] and cast to int32 (for ggml_get_rows)
|
||||
// -------------------------------------------------
|
||||
|
||||
ggml_tensor * rel_clamped = ggml_clamp(ctx, rel, 0, static_cast<float>(L - 1));
|
||||
|
||||
ggml_tensor * idx_2d = ggml_cast(ctx, rel_clamped, GGML_TYPE_I32); // [q_size, k_size]
|
||||
|
||||
// flatten to 1D for ggml_get_rows
|
||||
const int64_t qk = static_cast<int64_t>(q_size) * static_cast<int64_t>(k_size);
|
||||
ggml_tensor * idx_flat = ggml_reshape_1d(ctx, idx_2d, qk); // [qk]
|
||||
|
||||
// -------------------------------------------------
|
||||
// Gather from rel_pos → [qk, C]
|
||||
// -------------------------------------------------
|
||||
ggml_tensor * gathered = ggml_get_rows(ctx, rel_pos, idx_flat); // [qk, C]
|
||||
|
||||
// reshape to final output → [q_size, k_size, C]
|
||||
ggml_tensor * out = ggml_reshape_3d(ctx, gathered,rel_pos->ne[0],
|
||||
q_size,
|
||||
k_size);
|
||||
|
||||
return out; // [q_size, k_size, C]
|
||||
}
|
||||
return out; // [q_size, k_size, C]
|
||||
}
|
||||
|
||||
// Implementation based on approach suggested by Acly
|
||||
// See: https://github.com/ggml-org/llama.cpp/pull/17383#issuecomment-3554227091
|
||||
static ggml_tensor* window_partition(ggml_context* ctx, ggml_tensor* x, int window) {
|
||||
auto [c, w, h, b] = x->ne;
|
||||
// same as
|
||||
|
|
@ -2583,6 +2600,8 @@ static ggml_tensor * get_rel_pos(
|
|||
return x;
|
||||
}
|
||||
|
||||
// Implementation based on approach suggested by Acly
|
||||
// See: https://github.com/ggml-org/llama.cpp/pull/17383#issuecomment-3554227091
|
||||
static ggml_tensor* window_unpartition(ggml_context* m, ggml_tensor* x, int w, int h, int window) {
|
||||
int64_t c = x->ne[0];
|
||||
// same as
|
||||
|
|
@ -4978,7 +4997,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
|||
const int min_num = 2;
|
||||
const int max_num = 9;
|
||||
const int image_size = params.image_size; // typically 640
|
||||
const bool use_thumbnail = true; // mimic python's use_thumbnail
|
||||
// const bool use_thumbnail = true; // mimic python's use_thumbnail
|
||||
|
||||
// original image size
|
||||
const int orig_w = original_size.width;
|
||||
|
|
|
|||
Loading…
Reference in New Issue