llama: Add option to merge gate and exp weights

This commit is contained in:
Aman Gupta 2026-01-10 13:58:56 +01:00
parent a5bb8ba4c5
commit 3c264fae6c
11 changed files with 148 additions and 48 deletions

View File

@ -116,7 +116,8 @@ class ModelBase:
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
disable_mistral_community_chat_template: bool = False,
sentence_transformers_dense_modules: bool = False):
sentence_transformers_dense_modules: bool = False,
fuse_gate_up_exps: bool = False):
if type(self) is ModelBase or \
type(self) is TextModel or \
type(self) is MmprojModel:
@ -135,6 +136,9 @@ class ModelBase:
self.dry_run = dry_run
self.remote_hf_model_id = remote_hf_model_id
self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
self.fuse_gate_up_exps = fuse_gate_up_exps
self._gate_exp_buffer: dict[int, Tensor] = {}
self._up_exp_buffer: dict[int, Tensor] = {}
self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
self.metadata_override = metadata_override
@ -514,8 +518,36 @@ class ModelBase:
raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
return [(self.map_tensor_name(name), data_torch)]
new_name = self.map_tensor_name(name)
# Handle gate/up expert tensor fusion if enabled
if self.fuse_gate_up_exps and bid is not None:
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.FFN_GATE_EXP, bid):
self._gate_exp_buffer[bid] = data_torch
# Check if up_exps is already buffered for this layer
if bid in self._up_exp_buffer:
gate_data = self._gate_exp_buffer.pop(bid)
up_data = self._up_exp_buffer.pop(bid)
# gate/up shape: (n_expert, n_ff, n_embd), concatenate to (n_expert, n_ff*2, n_embd)
fused_data = torch.cat([gate_data, up_data], dim=1)
fused_name = f"blk.{bid}.ffn_gate_up_exps.weight"
logger.info(f"Fused gate_exps and up_exps for layer {bid}")
return [(fused_name, fused_data)]
return [] # Wait for up_exps
elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.FFN_UP_EXP, bid):
self._up_exp_buffer[bid] = data_torch
# Check if gate_exps is already buffered for this layer
if bid in self._gate_exp_buffer:
gate_data = self._gate_exp_buffer.pop(bid)
up_data = self._up_exp_buffer.pop(bid)
# gate/up shape: (n_expert, n_ff, n_embd), concatenate to (n_expert, n_ff*2, n_embd)
fused_data = torch.cat([gate_data, up_data], dim=1)
fused_name = f"blk.{bid}.ffn_gate_up_exps.weight"
logger.info(f"Fused gate_exps and up_exps for layer {bid}")
return [(fused_name, fused_data)]
return [] # Wait for gate_exps
return [(new_name, data_torch)]
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
del name, new_name, bid, n_dims # unused
@ -11121,6 +11153,11 @@ def parse_args() -> argparse.Namespace:
"Default these modules are not included.")
)
parser.add_argument(
"--fuse-gate-up-exps", action="store_true",
help="Fuse gate_exps and up_exps tensors into a single gate_up_exps tensor for MoE models.",
)
args = parser.parse_args()
if not args.print_supported_models and args.model is None:
parser.error("the following arguments are required: model")
@ -11258,7 +11295,8 @@ def main() -> None:
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split,
remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
sentence_transformers_dense_modules=args.sentence_transformers_dense_modules,
fuse_gate_up_exps=args.fuse_gate_up_exps
)
if args.vocab_only:

View File

@ -511,6 +511,7 @@ class MODEL_TENSOR(IntEnum):
FFN_GATE_EXP = auto()
FFN_DOWN_EXP = auto()
FFN_UP_EXP = auto()
FFN_GATE_UP_EXP = auto()
FFN_GATE_SHEXP = auto()
FFN_DOWN_SHEXP = auto()
FFN_UP_SHEXP = auto()
@ -937,6 +938,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
MODEL_TENSOR.FFN_GATE_UP_EXP: "blk.{bid}.ffn_gate_up_exps",
MODEL_TENSOR.FFN_EXP_PROBS_B: "blk.{bid}.exp_probs_b",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: "per_layer_token_embd", # gemma3n
@ -3115,6 +3117,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_SINKS,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_UP_EXP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,

View File

@ -555,6 +555,10 @@ class TensorNameMap:
"model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
),
MODEL_TENSOR.FFN_GATE_UP_EXP: (
"model.layers.{bid}.mlp.experts.gate_up_proj", # gpt-oss
),
# Feed-forward down
MODEL_TENSOR.FFN_DOWN: (
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox

View File

@ -335,6 +335,7 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_UP_EXPS, "blk.%d.ffn_gate_up_exps" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
@ -1497,6 +1498,7 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_GATE_UP_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
@ -2088,6 +2090,7 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_SINKS,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_UP_EXPS,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
@ -2434,6 +2437,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_FFN_DOWN_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_GATE_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_UP_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_GATE_UP_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_DOWN_CHEXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_GATE_CHEXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_UP_CHEXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},

View File

@ -357,6 +357,7 @@ enum llm_tensor {
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_UP_EXPS,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,

View File

@ -1070,7 +1070,8 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
float w_scale,
llama_expert_gating_func_type gating_op,
int il,
ggml_tensor * probs_in) const {
ggml_tensor * probs_in,
ggml_tensor * gate_up_exps) const {
return build_moe_ffn(
cur,
gate_inp, /* gate_inp_b */ nullptr,
@ -1086,7 +1087,8 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
w_scale,
gating_op,
il,
probs_in
probs_in,
gate_up_exps
);
}
@ -1109,7 +1111,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
float w_scale,
llama_expert_gating_func_type gating_op,
int il,
ggml_tensor * probs_in) const {
ggml_tensor * probs_in,
ggml_tensor * gate_up_exps,
ggml_tensor * gate_up_exps_b) const {
const int64_t n_embd = cur->ne[0];
const int64_t n_tokens = cur->ne[1];
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
@ -1248,30 +1252,52 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cb(cur, "ffn_moe_weighted", il);
}
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
if (up_exps_b) {
up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
cb(up, "ffn_moe_up_biased", il);
}
ggml_tensor * up = nullptr;
ggml_tensor * experts = nullptr;
if (gate_exps) {
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
if (gate_up_exps) {
// merged gate_up path: one mul_mat_id, then split into gate and up views
ggml_tensor * gate_up = build_lora_mm_id(gate_up_exps, cur, selected_experts); // [n_ff*2, n_expert_used, n_tokens]
cb(gate_up, "ffn_moe_gate_up", il);
if (gate_up_exps_b) {
gate_up = ggml_add_id(ctx0, gate_up, gate_up_exps_b, selected_experts);
cb(gate_up, "ffn_moe_gate_up_biased", il);
}
const int64_t n_ff = gate_up->ne[0] / 2;
cur = ggml_view_3d(ctx0, gate_up, n_ff, gate_up->ne[1], gate_up->ne[2], gate_up->nb[1], gate_up->nb[2], 0);
cb(cur, "ffn_moe_gate", il);
up = ggml_view_3d(ctx0, gate_up, n_ff, gate_up->ne[1], gate_up->ne[2], gate_up->nb[1], gate_up->nb[2], n_ff * gate_up->nb[0]);
cb(up, "ffn_moe_up", il);
} else {
cur = up;
// separate gate and up path
up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
if (up_exps_b) {
up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
cb(up, "ffn_moe_up_biased", il);
}
if (gate_exps) {
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate", il);
} else {
cur = up;
}
if (gate_exps_b) {
cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
cb(cur, "ffn_moe_gate_biased", il);
}
}
if (gate_exps_b) {
cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
cb(cur, "ffn_moe_gate_biased", il);
}
const bool has_gate = gate_exps || gate_up_exps;
switch (type_op) {
case LLM_FFN_SILU:
if (gate_exps) {
if (has_gate) {
cur = ggml_swiglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_swiglu", il);
} else {
@ -1279,7 +1305,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cb(cur, "ffn_moe_silu", il);
} break;
case LLM_FFN_GELU:
if (gate_exps) {
if (has_gate) {
cur = ggml_geglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_geglu", il);
} else {
@ -1295,7 +1321,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cb(cur, "ffn_moe_swiglu_oai", il);
} break;
case LLM_FFN_RELU:
if (gate_exps) {
if (has_gate) {
cur = ggml_reglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_reglu", il);
} else {
@ -1303,7 +1329,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cb(cur, "ffn_moe_relu", il);
} break;
case LLM_FFN_RELU_SQR:
if (gate_exps) {
if (has_gate) {
// TODO: add support for gated squared relu
GGML_ABORT("fatal error: gated squared relu not implemented");
} else {

View File

@ -786,7 +786,8 @@ struct llm_graph_context {
float w_scale,
llama_expert_gating_func_type gating_op,
int il,
ggml_tensor * probs_in = nullptr) const;
ggml_tensor * probs_in = nullptr,
ggml_tensor * gate_up_exps = nullptr) const;
ggml_tensor * build_moe_ffn(
ggml_tensor * cur,
@ -807,7 +808,9 @@ struct llm_graph_context {
float w_scale,
llama_expert_gating_func_type gating_op,
int il,
ggml_tensor * probs_in = nullptr) const;
ggml_tensor * probs_in = nullptr,
ggml_tensor * gate_up_exps = nullptr,
ggml_tensor * gate_up_exps_b = nullptr) const;
//
// inputs

View File

@ -4983,9 +4983,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
// MoE branch
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
// try merged gate_up first, fall back to separate gate and up
layer.ffn_gate_up_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_UP_EXPS, "weight", i), {n_embd, n_ff_exp * 2, n_expert}, TENSOR_NOT_REQUIRED);
if (layer.ffn_gate_up_exps == nullptr) {
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
}
// Shared expert branch
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
@ -6527,9 +6532,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
// try merged gate_up first, fall back to separate gate and up
layer.ffn_gate_up_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_UP_EXPS, "weight", i), {n_embd, n_ff_exp * 2, n_expert}, TENSOR_NOT_REQUIRED);
if (layer.ffn_gate_up_exps == nullptr) {
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
}
// bias
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_head * n_rot}, 0);
@ -6538,9 +6548,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
layer.ffn_gate_inp_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "bias", i), {n_expert}, 0);
layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), { n_embd, n_expert}, 0);
layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
// try merged gate_up bias first, fall back to separate gate and up
layer.ffn_gate_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_UP_EXPS, "bias", i), {n_ff_exp * 2, n_expert}, TENSOR_NOT_REQUIRED);
if (layer.ffn_gate_up_exps_b == nullptr) {
layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
}
}
} break;
case LLM_ARCH_LFM2:

View File

@ -275,14 +275,16 @@ struct llama_layer {
struct ggml_tensor * ffn_up_enc = nullptr;
// ff MoE
struct ggml_tensor * ffn_gate_inp = nullptr;
struct ggml_tensor * ffn_gate_exps = nullptr;
struct ggml_tensor * ffn_down_exps = nullptr;
struct ggml_tensor * ffn_up_exps = nullptr;
struct ggml_tensor * ffn_gate_inp_b = nullptr;
struct ggml_tensor * ffn_gate_exps_b = nullptr;
struct ggml_tensor * ffn_down_exps_b = nullptr;
struct ggml_tensor * ffn_up_exps_b = nullptr;
struct ggml_tensor * ffn_gate_inp = nullptr;
struct ggml_tensor * ffn_gate_exps = nullptr;
struct ggml_tensor * ffn_down_exps = nullptr;
struct ggml_tensor * ffn_up_exps = nullptr;
struct ggml_tensor * ffn_gate_up_exps = nullptr;
struct ggml_tensor * ffn_gate_inp_b = nullptr;
struct ggml_tensor * ffn_gate_exps_b = nullptr;
struct ggml_tensor * ffn_down_exps_b = nullptr;
struct ggml_tensor * ffn_up_exps_b = nullptr;
struct ggml_tensor * ffn_gate_up_exps_b = nullptr;
// ff shared expert (shexp)
struct ggml_tensor * ffn_gate_inp_shexp = nullptr;

View File

@ -217,7 +217,9 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
LLM_FFN_SILU, hparams.expert_weights_norm,
hparams.expert_weights_scale, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
il,
nullptr,
model.layers[il].ffn_gate_up_exps);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert

View File

@ -88,16 +88,18 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b,
model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b,
model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b,
model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b,
model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SWIGLU_OAI_MOE, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT,
il);
il,
nullptr, // probs_in
model.layers[il].ffn_gate_up_exps, model.layers[il].ffn_gate_up_exps_b);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);