models : add llm_build_delta_net_base

This commit is contained in:
Georgi Gerganov 2026-02-13 17:18:00 +02:00
parent d5dfc33027
commit 3bff6927ab
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
16 changed files with 425 additions and 1190 deletions

View File

@ -57,13 +57,14 @@ add_library(llama
models/deci.cpp
models/deepseek.cpp
models/deepseek2.cpp
models/delta-net-base.cpp
models/dots1.cpp
models/dream.cpp
models/ernie4-5-moe.cpp
models/ernie4-5.cpp
models/exaone-moe.cpp
models/exaone.cpp
models/exaone4.cpp
models/exaone-moe.cpp
models/falcon-h1.cpp
models/falcon.cpp
models/gemma-embedding.cpp
@ -91,10 +92,12 @@ add_library(llama
models/llama-iswa.cpp
models/llama.cpp
models/maincoder.cpp
models/mamba-base.cpp
models/mamba.cpp
models/mimo2-iswa.cpp
models/minicpm3.cpp
models/minimax-m2.cpp
models/mistral3.cpp
models/modern-bert.cpp
models/mpt.cpp
models/nemotron-h.cpp
@ -118,12 +121,12 @@ add_library(llama
models/qwen2moe.cpp
models/qwen2vl.cpp
models/qwen3.cpp
models/qwen3vl.cpp
models/qwen3vl-moe.cpp
models/qwen3moe.cpp
models/qwen3next.cpp
models/qwen35.cpp
models/qwen35moe.cpp
models/qwen3moe.cpp
models/qwen3next.cpp
models/qwen3vl-moe.cpp
models/qwen3vl.cpp
models/refact.cpp
models/rnd1.cpp
models/rwkv6-base.cpp
@ -142,8 +145,6 @@ add_library(llama
models/t5-enc.cpp
models/wavtokenizer-dec.cpp
models/xverse.cpp
models/mistral3.cpp
models/graph-context-mamba.cpp
)
set_target_properties(llama PROPERTIES

View File

@ -0,0 +1,333 @@
#include "models.h"
#define CHUNK_SIZE 64
// utility to get one slice from the third dimension
// input dim: [x, y, c, b]
// output dim: [x, y, 1, b]
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
llm_build_delta_net_base::llm_build_delta_net_base(const llm_graph_params & params) : llm_graph_context(params) {}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_delta_net_base::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
g = ggml_permute(ctx0, g, 2, 1, 3, 0); // [ 1, n_tokens, H_v, n_seqs]
b = ggml_permute(ctx0, b, 2, 0, 1, 3); // [ 1, n_tokens, H_v, n_seqs]
const int CS = CHUNK_SIZE;
const int pad = (CS - n_tokens % CS) % CS;
const int n_chunks = (n_tokens + pad) / CS;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, 0, pad, 0, 0);
b = ggml_pad(ctx0, b, 0, pad, 0, 0);
ggml_tensor * v_b = ggml_mul(ctx0, v, b);
ggml_tensor * k_b = ggml_mul(ctx0, k, b);
cb(v_b, "v_b", il);
cb(k_b, "k_b", il);
q = ggml_reshape_4d(ctx0, q, S_k, CS, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, CS, n_chunks, H_k * n_seqs);
k_b = ggml_reshape_4d(ctx0, k_b, S_k, CS, n_chunks, H_v * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, CS, n_chunks, H_v * n_seqs);
v_b = ggml_reshape_4d(ctx0, v_b, S_v, CS, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, CS, 1, n_chunks, H_v * n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, CS, n_chunks, H_v * n_seqs);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_cs = ggml_cumsum(ctx0, g);
cb(g_cs, "g_cs", il);
ggml_tensor * g_cs_i = g_cs;
ggml_tensor * g_cs_j = ggml_reshape_4d(ctx0, g_cs, 1, CS, n_chunks, H_v * n_seqs);
g_cs_j = ggml_repeat_4d(ctx0, g_cs_j, CS, CS, n_chunks, H_v * n_seqs);
// [CS, CS, n_chunks, H_v * n_seqs]
ggml_tensor * decay_mask;
decay_mask = ggml_sub(ctx0, g_cs_j, g_cs_i);
decay_mask = ggml_tri(ctx0, decay_mask, GGML_TRI_TYPE_LOWER_DIAG);
decay_mask = ggml_exp(ctx0, decay_mask);
cb(decay_mask, "decay_mask", il);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kb;
kb = ggml_mul_mat(ctx0, k, k_b);
kb = ggml_mul (ctx0, kb, decay_mask);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * attn;
attn = ggml_tri(ctx0, kb, GGML_TRI_TYPE_LOWER);
ggml_tensor * identity;
identity = ggml_view_1d(ctx0, attn, CS, 0);
identity = ggml_fill (ctx0, identity, 1.0f);
identity = ggml_diag (ctx0, identity);
ggml_tensor * lhs = ggml_add(ctx0, attn, identity);
cb(lhs, "dnet_add_ch_lhs", il);
attn = ggml_neg(ctx0, attn);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_add(ctx0, lin_solve, identity);
cb(attn, "dnet_add_ch_attn_solved", il); // [CS, CS, n_chunks, H_k * n_seqs]
// [S_v, CS, n_chunks, H_v * n_seqs]
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_b)), attn);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_exp = ggml_exp(ctx0, g_cs);
k_b = ggml_cont(ctx0, ggml_transpose(ctx0, k_b));
// [CS, S_k, n_chunks, H_k * n_seqs]
ggml_tensor * kbg = ggml_mul(ctx0, k_b, g_exp);
cb(kbg, "k_beta_g_exp", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * k_cd = ggml_mul_mat(ctx0, kbg, attn);
cb(k_cd, "k_cumdecay", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * g_exp_t = ggml_transpose(ctx0, g_exp);
ggml_tensor * q_g_exp = ggml_mul(ctx0, q, g_exp_t);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
kq = ggml_mul(ctx0, kq, decay_mask);
kq = ggml_tri(ctx0, kq, GGML_TRI_TYPE_LOWER_DIAG);
cb(kq, "kq", il);
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along CS dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cs, 1, 1, g_cs->ne[2], g_cs->ne[3],
g_cs->nb[1],
g_cs->nb[2],
g_cs->nb[3],
ggml_row_size(g_cs->type, g_cs->ne[0] - 1));
cb(g_last, "g_last", il);
// TODO: remove this cont when CUDA supports non-cont unary ops
g_last = ggml_cont(ctx0, g_last);
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cs, g_last));
cb(g_diff, "g_diff", il);
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_transpose(ctx0, g_diff_exp);
// [S_k, CS, n_chunks, H_v * n_seqs]
ggml_tensor * kg = ggml_mul(ctx0, k, g_diff_exp_t);
cb(kg, "key_gdiff", il);
// [CS, S_k, n_chunks, H_v * n_seqs]
ggml_tensor * kg_t = ggml_cont(ctx0, ggml_transpose(ctx0, kg));
cb(kg_t, "key_gdiff_t", il);
ggml_tensor * s_t = ggml_transpose(ctx0, s);
s_t = ggml_cont_4d(ctx0, s_t, S_v, S_v, 1, H_v * n_seqs);
cb(s_t, "dnet_add_ch_state", il);
// [CS, S_v, n_chunks, H_v * n_seqs]
ggml_tensor * v_t = ggml_cont(ctx0, ggml_transpose(ctx0, v));
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
ggml_tensor * ch_k_cd = get_slice_2d(ctx0, k_cd, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_v_t = get_slice_2d(ctx0, v_t, chunk); // [ CS, S_v, 1, H_v * n_seqs]
ggml_tensor * ch_kq = get_slice_2d(ctx0, kq, chunk); // [ CS, CS, 1, H_k * n_seqs]
ggml_tensor * ch_q_g_exp = get_slice_2d(ctx0, q_g_exp, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_kg_t = get_slice_2d(ctx0, kg_t, chunk); // [ CS, S_k, 1, H_v * n_seqs]
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_p = ggml_mul_mat(ctx0, ch_k_cd, s_t);
cb(v_t_p, "v_prime", il);
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_new = ggml_sub(ctx0, ch_v_t, v_t_p);
cb(v_t_new, "v_t_new", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_t_new, ch_kq);
cb(v_attn, "v_attn", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, s_t, ch_q_g_exp);
cb(attn_inter, "attn_inter", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * o_ch = ggml_add(ctx0, attn_inter, v_attn);
cb(o_ch, "dnet_add_ch_attn_out", il);
v = ggml_set_inplace(ctx0, v, o_ch, v->nb[1], v->nb[2], v->nb[3], chunk * v->nb[2]);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// TODO: head broadcast might not work here - probably will need a transpose
ggml_tensor * kgv = ggml_mul_mat(ctx0, ch_kg_t, v_t_new); // [S_k, S_v, 1, H_k * n_seqs]
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * ch_g_last_exp = get_slice_2d(ctx0, g_last_exp, chunk);
s_t = ggml_mul(ctx0, s_t, ch_g_last_exp);
s_t = ggml_add(ctx0, s_t, kgv);
cb(s_t, "dnet_add_ch_state", il);
}
s_t = ggml_reshape_4d(ctx0, s_t, S_v, S_v, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * o = ggml_view_4d(ctx0, v,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(v->type, S_v),
ggml_row_size(v->type, S_v * CS * n_chunks),
ggml_row_size(v->type, S_v * CS * n_chunks * H_v), 0);
o = ggml_permute (ctx0, o, 0, 2, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_delta_net_base::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b, // beta
ggml_tensor * s, // state
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
g = ggml_reshape_4d(ctx0, g, 1, 1, H_v, n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, 1, H_v, n_seqs);
// [S_v, S_v, H_v, n_seqs]
g = ggml_exp(ctx0, g);
s = ggml_mul(ctx0, s, g);
ggml_tensor * s_t = ggml_cont(ctx0, ggml_transpose(ctx0, s));
// [1, S_v, H_v, n_seqs]
ggml_tensor * sk;
sk = ggml_mul (ctx0, s_t, k);
sk = ggml_sum_rows(ctx0, sk);
// [S_v, 1, H_v, n_seqs]
ggml_tensor * d;
d = ggml_sub(ctx0, v, ggml_transpose(ctx0, sk));
d = ggml_mul(ctx0, d, b);
// [1, S_v, H_v, n_seqs]
ggml_tensor * d_t;
d_t = ggml_transpose(ctx0, d);
// [S_v, S_v, H_v, n_seqs]
ggml_tensor * kd;
k = ggml_repeat(ctx0, k, s);
kd = ggml_mul (ctx0, k, d_t);
s_t = ggml_add(ctx0, s_t, kd);
cb(s_t, "dnet_add_ar_state", il);
ggml_tensor * s_q = ggml_mul (ctx0, s_t, q);
ggml_tensor * o = ggml_sum_rows(ctx0, s_q);
o = ggml_permute (ctx0, o, 2, 0, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}

View File

@ -1,9 +1,7 @@
#include "models.h"
llm_build_falcon_h1::llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;

View File

@ -2,7 +2,7 @@
llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

View File

@ -1,6 +1,6 @@
#include "models.h"
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;

View File

@ -1,6 +1,8 @@
#include "models.h"
#include "ggml.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
// Causal Conv1d function for Q,K,V
@ -65,7 +67,7 @@ static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_t
}
llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_build_mamba_base(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@ -1,8 +1,10 @@
#include "models.h"
llm_graph_context_mamba::llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
#include "llama-memory-recurrent.h"
ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * inp,
llm_build_mamba_base::llm_build_mamba_base(const llm_graph_params & params) : llm_graph_context(params) {}
ggml_tensor * llm_build_mamba_base::build_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
@ -143,7 +145,7 @@ ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * in
return cur;
}
ggml_tensor * llm_graph_context_mamba::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * llm_build_mamba_base::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,

View File

@ -1,7 +1,6 @@
#include "models.h"
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_build_mamba_base(params) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@ -1,23 +1,48 @@
#pragma once
#include "../llama-model.h"
#include "../llama-graph.h"
#include "llama-model.h"
#include "llama-graph.h"
// TODO: remove in follow-up PR - move to .cpp files
#include "../llama-memory-recurrent.h"
#include <cmath>
//
// base classes
//
struct llm_graph_context_mamba : public llm_graph_context {
llm_graph_context_mamba(const llm_graph_params & params);
struct llm_build_mamba_base : public llm_graph_context {
llm_build_mamba_base(const llm_graph_params & params);
virtual ~llm_graph_context_mamba() = default;
virtual ~llm_build_mamba_base() = default;
ggml_tensor * build_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
ggml_tensor * build_mamba2_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il) const;
};
// Base class for RWKV-related models
struct llm_build_delta_net_base : public llm_graph_context {
llm_build_delta_net_base(const llm_graph_params & params);
virtual ~llm_build_delta_net_base() = default;
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il);
};
struct llm_build_rwkv6_base : public llm_graph_context {
const llama_model & model;
@ -58,6 +83,10 @@ struct llm_build_rwkv7_base : public llm_graph_context {
int il) const;
};
//
// models
//
struct llm_build_afmoe : public llm_graph_context {
llm_build_afmoe(const llama_model & model, const llm_graph_params & params);
};
@ -175,7 +204,7 @@ struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
struct llm_build_falcon_h1 : public llm_build_mamba_base {
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params);
};
@ -253,7 +282,7 @@ private:
const int il);
};
struct llm_build_granite_hybrid : public llm_graph_context_mamba {
struct llm_build_granite_hybrid : public llm_build_mamba_base {
llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_layer_ffn(ggml_tensor * cur, ggml_tensor * inpSA, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn,
@ -284,11 +313,12 @@ struct llm_build_jais : public llm_graph_context {
llm_build_jais(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_jamba : public llm_graph_context_mamba {
struct llm_build_jamba : public llm_build_mamba_base {
llm_build_jamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_kimi_linear : public llm_graph_context_mamba {
// TODO: derive llm_build_delta_net_base instead
struct llm_build_kimi_linear : public llm_build_mamba_base {
llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params);
std::pair<ggml_tensor *, ggml_tensor *> build_kda_autoregressive(
@ -347,7 +377,7 @@ struct llm_build_maincoder : public llm_graph_context {
llm_build_maincoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mamba : public llm_graph_context_mamba {
struct llm_build_mamba : public llm_build_mamba_base {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};
@ -379,11 +409,11 @@ struct llm_build_nemotron : public llm_graph_context {
llm_build_nemotron(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_nemotron_h : public llm_graph_context_mamba {
struct llm_build_nemotron_h : public llm_build_mamba_base {
llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, llm_graph_input_attn_kv * inp_attn,
const llama_model & model, const int64_t n_embd_head, const int il);
const llama_model & model, int64_t n_embd_head, int il);
};
struct llm_build_neo_bert : public llm_graph_context {
@ -428,7 +458,7 @@ struct llm_build_phi3 : public llm_graph_context {
llm_build_phi3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plamo2 : public llm_graph_context_mamba {
struct llm_build_plamo2 : public llm_build_mamba_base {
llm_build_plamo2(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_plamo2_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
@ -477,7 +507,7 @@ struct llm_build_qwen3vlmoe : public llm_graph_context {
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3next : public llm_graph_context_mamba {
struct llm_build_qwen3next : public llm_build_delta_net_base {
llm_build_qwen3next(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(
@ -495,26 +525,6 @@ private:
ggml_tensor * cur,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
ggml_tensor * build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,
@ -529,7 +539,7 @@ private:
const llama_model & model;
};
struct llm_build_qwen35 : public llm_graph_context_mamba {
struct llm_build_qwen35 : public llm_build_delta_net_base {
llm_build_qwen35(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(
@ -542,38 +552,12 @@ private:
ggml_tensor * build_layer_attn_linear(
llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il);
ggml_tensor * build_layer_ffn(
ggml_tensor * cur,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
ggml_tensor * build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,
@ -588,7 +572,7 @@ private:
const llama_model & model;
};
struct llm_build_qwen35moe : public llm_graph_context_mamba {
struct llm_build_qwen35moe : public llm_build_delta_net_base {
llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(
@ -601,38 +585,12 @@ private:
ggml_tensor * build_layer_attn_linear(
llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il);
ggml_tensor * build_layer_ffn(
ggml_tensor * cur,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
ggml_tensor * build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,

View File

@ -1,9 +1,7 @@
#include "models.h"
llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -65,8 +63,8 @@ llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_
ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor * cur,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
int64_t n_embd_head,
int il) {
// compute Q and K
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
@ -106,7 +104,7 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
return cur;
}
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, int il) {
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,

View File

@ -1,7 +1,9 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_plamo2::llm_build_plamo2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
llm_build_mamba_base(params) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@ -1,10 +1,9 @@
#include "ggml.h"
#include "models.h"
#define CHUNK_SIZE 64
#include "llama-memory-recurrent.h"
llm_build_qwen35::llm_build_qwen35(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_build_delta_net_base(params), model(model) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -24,17 +23,6 @@ llm_build_qwen35::llm_build_qwen35(const llama_model & model, const llm_graph_pa
ggml_tensor * inp_pos = build_inp_pos();
ggml_tensor * inp_out_ids = build_inp_out_ids();
ggml_tensor * causal_mask =
ggml_tri(ctx0, ggml_fill(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
GGML_TRI_TYPE_LOWER);
ggml_tensor * identity = ggml_diag(ctx0, ggml_fill(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity);
ggml_build_forward_expand(gf, causal_mask);
ggml_build_forward_expand(gf, identity);
ggml_build_forward_expand(gf, diag_mask);
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
@ -44,7 +32,7 @@ llm_build_qwen35::llm_build_qwen35(const llama_model & model, const llm_graph_pa
// Determine layer type and build appropriate attention mechanism
if (hparams.is_recurrent(il)) {
// Linear attention layer (gated delta net)
cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, diag_mask, il);
cur = build_layer_attn_linear(inp->get_recr(), cur, il);
} else {
// Full attention layer
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, sections, il);
@ -94,361 +82,6 @@ llm_build_qwen35::llm_build_qwen35(const llama_model & model, const llm_graph_pa
ggml_build_forward_expand(gf, cur);
}
// utility to get one slice from the third dimension
// input dim: [x, y, c, b]
// output dim: [x, y, 1, b]
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
const float scale = 1.0f / sqrtf(S_v);
q = ggml_scale(ctx0, q, scale);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(g, "g_in", il);
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
cb(q, "q_perm", il);
cb(k, "k_perm", il);
cb(v, "v_perm", il);
cb(beta, "beta_perm", il);
cb(g, "g_perm", il);
cb(state, "state_in", il);
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
// Do padding
const int64_t chunk_size = CHUNK_SIZE;
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, pad, 0, 0, 0);
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
cb(q, "q_pad", il);
cb(k, "k_pad", il);
cb(v, "v_pad", il);
cb(beta, "beta_pad", il);
cb(g, "g_pad", il);
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
cb(v_beta, "v_beta", il);
cb(k_beta, "k_beta", il);
q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
cb(g_cumsum, "g_cumsum", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
ggml_tensor * gcs_i = g_cumsum; // ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
ggml_tensor * gcs_j_broadcast =
ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
cb(decay_mask, "decay_mask", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
decay_mask = ggml_exp(ctx0, decay_mask);
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
cb(attn, "attn_pre_solve", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_mul(ctx0, lin_solve, causal_mask);
attn = ggml_add(ctx0, attn, identity);
cb(attn, "attn_solved", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
cb(kbeta_gexp, "kbeta_gexp", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * k_cumdecay =
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
cb(k_cumdecay, "k_cumdecay", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * attn_kq = ggml_mul_mat(ctx0, k, q);
attn_kq = ggml_mul(ctx0, attn_kq, decay_mask);
attn_kq = ggml_mul(ctx0, attn_kq, diag_mask);
cb(attn_kq, "attn_kq", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along chunk_size dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cumsum, 1, 1, g_cumsum->ne[2], g_cumsum->ne[3],
g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3],
(g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum));
g_last = ggml_cont(ctx0, g_last);
cb(g_last, "g_last", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last));
cb(g_diff, "g_diff", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_reshape_4d(ctx0, g_diff_exp,
1, chunk_size, n_chunks, g_diff_exp->ne[3]);
ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp_t);
cb(key_gdiff, "key_gdiff", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * key_gdiff_t = ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff));
cb(key_gdiff_t, "key_gdiff_t", il); // shape: (chunk_size, S_k, n_chunks, H_v * n_seqs)
// state to be updated per chunk
ggml_tensor * new_state = state; // ggml_dup(ctx0, state);
cb(new_state, "new_state", il); // shape: (S_v, S_v, H_v, n_seqs)
// shape after loop of chunks: (S_v, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * core_attn_out = nullptr;
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
// shape: (S_k, chunk_size, 1, H_k * n_seqs)
ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk); // (no cont), next op: ggml_mul
// shape: (S_v, chunk_size, 1, H_v * n_seqs)
ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk); // (no cont), next op: ggml_repeat
// shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
ggml_tensor * gexp_chunk = get_slice_2d(ctx0, gexp, chunk); // (no cont), next op: ggml_mul
// shape: (chunk_size, 1, H_v * n_seqs)
ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk); // (no cont), next op: ggml_mul_mat
// attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
// replaced by precomputed attn_kq
ggml_tensor * attn_chunk = get_slice_2d(ctx0, attn_kq, chunk);
cb(attn_chunk, "attn_chunk", il);
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
cb(v_prime, "v_prime_chunk", il); // shape: (S_v, 1, H_v * n_seqs)
// v_new = v_i - v_prime
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
cb(v_new, "v_new_chunk", il);
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
cb(attn_inter, "attn_inter_chunk", il);
// core_attn_out[:, :, i] = attn_inter + attn @ v_new
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_chunk);
cb(v_attn, "v_attn_chunk", il);
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
cb(core_attn_out_chunk, "core_attn_out_chunk", il); // shape: (S_v, chunk_size, 1, H_v * n_seqs)
core_attn_out = core_attn_out == nullptr
? core_attn_out_chunk
: ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
ggml_tensor * k_gdiff_t = get_slice_2d(ctx0, key_gdiff_t, chunk);
//ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, k_gdiff, v_new); // this is slower on metal, why?
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, k_gdiff_t);
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk));
new_state = ggml_add(ctx0,
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last_chunk, gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs)),
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
}
// truncate padded tokens
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(core_attn_out->type, S_v),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
output_tokens = ggml_cont(ctx0, output_tokens);
cb(output_tokens, "output_tokens", il);
// permute back to (S_v, H_v, n_tokens, n_seqs)
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
output_tokens = ggml_cont(ctx0, output_tokens);
return {output_tokens, new_state};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1); // This function is optimized for single token processing
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
const float scale = 1.0f / sqrtf(S_v);
q = ggml_scale(ctx0, q, scale);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(g, "g_in", il);
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
ggml_tensor * g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
// Apply exponential to g_t
g_t = ggml_exp(ctx0, g_t);
// Apply the gated delta rule for the single timestep
// last_recurrent_state = last_recurrent_state * g_t
state = ggml_mul(ctx0, state, g_t);
// kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs);
ggml_tensor * kv_mem = ggml_mul(ctx0, state, k_t_unsqueezed);
// we need to sum over dim=-2, so we transpose, sum, then transpose again
kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem))));
// v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v)
ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
// delta = (v_t - kv_mem) * beta_t
ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem); // both should be [S_v, 1, H_v, n_seqs]
ggml_tensor * delta = ggml_mul(ctx0, v_diff, beta_t);
// last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta
ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta);
state = ggml_add(ctx0, state, k_t_delta);
// Compute the attention output
// core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs); // unsqueeze q_t
ggml_tensor * state_q = ggml_mul(ctx0, state, q_t_unsqueezed);
// again, since it's over dim = -2, transpose, sum, transpose back
ggml_tensor * core_attn_out =
ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q))));
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
cb(core_attn_out, "output_tokens", il);
cb(state, "new_state", il);
return {core_attn_out, state};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35::build_qkvz(
ggml_tensor * input,
int il) {
@ -560,9 +193,6 @@ ggml_tensor * llm_build_qwen35::build_layer_attn(
ggml_tensor * llm_build_qwen35::build_layer_attn_linear(
llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il) {
const auto * mctx_cur = inp->mctx;
@ -688,7 +318,7 @@ ggml_tensor * llm_build_qwen35::build_layer_attn_linear(
if (n_seq_tokens == 1) {
attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il);
} else {
attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il);
attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, il);
}
ggml_tensor * output = attn_out.first;
ggml_tensor * new_state = attn_out.second;

View File

@ -1,10 +1,9 @@
#include "ggml.h"
#include "models.h"
#define CHUNK_SIZE 64
#include "llama-memory-recurrent.h"
llm_build_qwen35moe::llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_build_delta_net_base(params), model(model) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -24,17 +23,6 @@ llm_build_qwen35moe::llm_build_qwen35moe(const llama_model & model, const llm_gr
ggml_tensor * inp_pos = build_inp_pos();
ggml_tensor * inp_out_ids = build_inp_out_ids();
ggml_tensor * causal_mask =
ggml_tri(ctx0, ggml_fill(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
GGML_TRI_TYPE_LOWER);
ggml_tensor * identity = ggml_diag(ctx0, ggml_fill(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity);
ggml_build_forward_expand(gf, causal_mask);
ggml_build_forward_expand(gf, identity);
ggml_build_forward_expand(gf, diag_mask);
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
@ -44,7 +32,7 @@ llm_build_qwen35moe::llm_build_qwen35moe(const llama_model & model, const llm_gr
// Determine layer type and build appropriate attention mechanism
if (hparams.is_recurrent(il)) {
// Linear attention layer (gated delta net)
cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, diag_mask, il);
cur = build_layer_attn_linear(inp->get_recr(), cur, il);
} else {
// Full attention layer
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, sections, il);
@ -94,362 +82,6 @@ llm_build_qwen35moe::llm_build_qwen35moe(const llama_model & model, const llm_gr
ggml_build_forward_expand(gf, cur);
}
// utility to get one slice from the third dimension
// input dim: [x, y, c, b]
// output dim: [x, y, 1, b]
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35moe::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
const float scale = 1.0f / sqrtf(S_v);
q = ggml_scale(ctx0, q, scale);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(g, "g_in", il);
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
cb(q, "q_perm", il);
cb(k, "k_perm", il);
cb(v, "v_perm", il);
cb(beta, "beta_perm", il);
cb(g, "g_perm", il);
cb(state, "state_in", il);
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
// Do padding
const int64_t chunk_size = CHUNK_SIZE;
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, pad, 0, 0, 0);
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
cb(q, "q_pad", il);
cb(k, "k_pad", il);
cb(v, "v_pad", il);
cb(beta, "beta_pad", il);
cb(g, "g_pad", il);
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
cb(v_beta, "v_beta", il);
cb(k_beta, "k_beta", il);
q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
cb(g_cumsum, "g_cumsum", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
ggml_tensor * gcs_i = g_cumsum; // ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
ggml_tensor * gcs_j_broadcast =
ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
cb(decay_mask, "decay_mask", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
decay_mask = ggml_exp(ctx0, decay_mask);
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
cb(attn, "attn_pre_solve", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_mul(ctx0, lin_solve, causal_mask);
attn = ggml_add(ctx0, attn, identity);
cb(attn, "attn_solved", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
cb(kbeta_gexp, "kbeta_gexp", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * k_cumdecay =
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
cb(k_cumdecay, "k_cumdecay", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * attn_kq = ggml_mul_mat(ctx0, k, q);
attn_kq = ggml_mul(ctx0, attn_kq, decay_mask);
attn_kq = ggml_mul(ctx0, attn_kq, diag_mask);
cb(attn_kq, "attn_kq", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along chunk_size dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cumsum, 1, 1, g_cumsum->ne[2], g_cumsum->ne[3],
g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3],
(g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum));
g_last = ggml_cont(ctx0, g_last);
cb(g_last, "g_last", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last));
cb(g_diff, "g_diff", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_reshape_4d(ctx0, g_diff_exp,
1, chunk_size, n_chunks, g_diff_exp->ne[3]);
ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp_t);
cb(key_gdiff, "key_gdiff", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * key_gdiff_t = ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff));
cb(key_gdiff_t, "key_gdiff_t", il); // shape: (chunk_size, S_k, n_chunks, H_v * n_seqs)
// state to be updated per chunk
ggml_tensor * new_state = state; // ggml_dup(ctx0, state);
cb(new_state, "new_state", il); // shape: (S_v, S_v, H_v, n_seqs)
// shape after loop of chunks: (S_v, chunk_size, n_chunks, H_v * n_seqs)
ggml_tensor * core_attn_out = nullptr;
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
// shape: (S_k, chunk_size, 1, H_k * n_seqs)
ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk); // (no cont), next op: ggml_mul
// shape: (S_v, chunk_size, 1, H_v * n_seqs)
ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk); // (no cont), next op: ggml_repeat
// shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
ggml_tensor * gexp_chunk = get_slice_2d(ctx0, gexp, chunk); // (no cont), next op: ggml_mul
// shape: (chunk_size, 1, H_v * n_seqs)
ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk); // (no cont), next op: ggml_mul_mat
// attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
// replaced by precomputed attn_kq
ggml_tensor * attn_chunk = get_slice_2d(ctx0, attn_kq, chunk);
cb(attn_chunk, "attn_chunk", il);
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
cb(v_prime, "v_prime_chunk", il); // shape: (S_v, 1, H_v * n_seqs)
// v_new = v_i - v_prime
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
cb(v_new, "v_new_chunk", il);
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
cb(attn_inter, "attn_inter_chunk", il);
// core_attn_out[:, :, i] = attn_inter + attn @ v_new
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_chunk);
cb(v_attn, "v_attn_chunk", il);
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
cb(core_attn_out_chunk, "core_attn_out_chunk", il); // shape: (S_v, chunk_size, 1, H_v * n_seqs)
core_attn_out = core_attn_out == nullptr
? core_attn_out_chunk
: ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
ggml_tensor * k_gdiff_t = get_slice_2d(ctx0, key_gdiff_t, chunk);
//ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, k_gdiff, v_new); // this is slower on metal, why?
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, k_gdiff_t);
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk));
new_state = ggml_add(ctx0,
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last_chunk, gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs)),
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
}
// truncate padded tokens
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(core_attn_out->type, S_v),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
output_tokens = ggml_cont(ctx0, output_tokens);
cb(output_tokens, "output_tokens", il);
// permute back to (S_v, H_v, n_tokens, n_seqs)
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
output_tokens = ggml_cont(ctx0, output_tokens);
return {output_tokens, new_state};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35moe::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1); // This function is optimized for single token processing
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
const float scale = 1.0f / sqrtf(S_v);
q = ggml_scale(ctx0, q, scale);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(g, "g_in", il);
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
ggml_tensor * g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
// Apply exponential to g_t
g_t = ggml_exp(ctx0, g_t);
// Apply the gated delta rule for the single timestep
// last_recurrent_state = last_recurrent_state * g_t
state = ggml_mul(ctx0, state, g_t);
// kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs);
ggml_tensor * kv_mem = ggml_mul(ctx0, state, k_t_unsqueezed);
// we need to sum over dim=-2, so we transpose, sum, then transpose again
kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem))));
// v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v)
ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
// delta = (v_t - kv_mem) * beta_t
ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem); // both should be [S_v, 1, H_v, n_seqs]
ggml_tensor * delta = ggml_mul(ctx0, v_diff, beta_t);
// last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta
ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta);
state = ggml_add(ctx0, state, k_t_delta);
// Compute the attention output
// core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs); // unsqueeze q_t
ggml_tensor * state_q = ggml_mul(ctx0, state, q_t_unsqueezed);
// again, since it's over dim = -2, transpose, sum, transpose back
ggml_tensor * core_attn_out =
ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q))));
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
cb(core_attn_out, "output_tokens", il);
cb(state, "new_state", il);
return {core_attn_out, state};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35moe::build_qkvz(
ggml_tensor * input,
int il) {
@ -561,9 +193,6 @@ ggml_tensor * llm_build_qwen35moe ::build_layer_attn(
ggml_tensor * llm_build_qwen35moe ::build_layer_attn_linear(
llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il) {
const auto * mctx_cur = inp->mctx;
@ -689,7 +318,7 @@ ggml_tensor * llm_build_qwen35moe ::build_layer_attn_linear(
if (n_seq_tokens == 1) {
attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il);
} else {
attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il);
attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, il);
}
ggml_tensor * output = attn_out.first;
ggml_tensor * new_state = attn_out.second;

View File

@ -1,10 +1,9 @@
#include "ggml.h"
#include "models.h"
#define CHUNK_SIZE 64
#include "llama-memory-recurrent.h"
llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
llm_build_delta_net_base(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;
@ -83,326 +82,6 @@ static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
g = ggml_permute(ctx0, g, 2, 1, 3, 0); // [ 1, n_tokens, H_v, n_seqs]
b = ggml_permute(ctx0, b, 2, 0, 1, 3); // [ 1, n_tokens, H_v, n_seqs]
const int CS = CHUNK_SIZE;
const int pad = (CS - n_tokens % CS) % CS;
const int n_chunks = (n_tokens + pad) / CS;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, 0, pad, 0, 0);
b = ggml_pad(ctx0, b, 0, pad, 0, 0);
ggml_tensor * v_b = ggml_mul(ctx0, v, b);
ggml_tensor * k_b = ggml_mul(ctx0, k, b);
cb(v_b, "v_b", il);
cb(k_b, "k_b", il);
q = ggml_reshape_4d(ctx0, q, S_k, CS, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, CS, n_chunks, H_k * n_seqs);
k_b = ggml_reshape_4d(ctx0, k_b, S_k, CS, n_chunks, H_v * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, CS, n_chunks, H_v * n_seqs);
v_b = ggml_reshape_4d(ctx0, v_b, S_v, CS, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, CS, 1, n_chunks, H_v * n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, CS, n_chunks, H_v * n_seqs);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_cs = ggml_cumsum(ctx0, g);
cb(g_cs, "g_cs", il);
ggml_tensor * g_cs_i = g_cs;
ggml_tensor * g_cs_j = ggml_reshape_4d(ctx0, g_cs, 1, CS, n_chunks, H_v * n_seqs);
g_cs_j = ggml_repeat_4d(ctx0, g_cs_j, CS, CS, n_chunks, H_v * n_seqs);
// [CS, CS, n_chunks, H_v * n_seqs]
ggml_tensor * decay_mask;
decay_mask = ggml_sub(ctx0, g_cs_j, g_cs_i);
decay_mask = ggml_tri(ctx0, decay_mask, GGML_TRI_TYPE_LOWER_DIAG);
decay_mask = ggml_exp(ctx0, decay_mask);
cb(decay_mask, "decay_mask", il);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kb;
kb = ggml_mul_mat(ctx0, k, k_b);
kb = ggml_mul (ctx0, kb, decay_mask);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * attn;
attn = ggml_tri(ctx0, kb, GGML_TRI_TYPE_LOWER);
ggml_tensor * identity;
identity = ggml_view_1d(ctx0, attn, CS, 0);
identity = ggml_fill (ctx0, identity, 1.0f);
identity = ggml_diag (ctx0, identity);
ggml_tensor * lhs = ggml_add(ctx0, attn, identity);
cb(lhs, "dnet_add_ch_lhs", il);
attn = ggml_neg(ctx0, attn);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_add(ctx0, lin_solve, identity);
cb(attn, "dnet_add_ch_attn_solved", il); // [CS, CS, n_chunks, H_k * n_seqs]
// [S_v, CS, n_chunks, H_v * n_seqs]
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_b)), attn);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_exp = ggml_exp(ctx0, g_cs);
k_b = ggml_cont(ctx0, ggml_transpose(ctx0, k_b));
// [CS, S_k, n_chunks, H_k * n_seqs]
ggml_tensor * kbg = ggml_mul(ctx0, k_b, g_exp);
cb(kbg, "k_beta_g_exp", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * k_cd = ggml_mul_mat(ctx0, kbg, attn);
cb(k_cd, "k_cumdecay", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * g_exp_t = ggml_transpose(ctx0, g_exp);
ggml_tensor * q_g_exp = ggml_mul(ctx0, q, g_exp_t);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
kq = ggml_mul(ctx0, kq, decay_mask);
kq = ggml_tri(ctx0, kq, GGML_TRI_TYPE_LOWER_DIAG);
cb(kq, "kq", il);
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along CS dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cs, 1, 1, g_cs->ne[2], g_cs->ne[3],
g_cs->nb[1],
g_cs->nb[2],
g_cs->nb[3],
ggml_row_size(g_cs->type, g_cs->ne[0] - 1));
cb(g_last, "g_last", il);
// TODO: remove this cont when CUDA supports non-cont unary ops
g_last = ggml_cont(ctx0, g_last);
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cs, g_last));
cb(g_diff, "g_diff", il);
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_transpose(ctx0, g_diff_exp);
// [S_k, CS, n_chunks, H_v * n_seqs]
ggml_tensor * kg = ggml_mul(ctx0, k, g_diff_exp_t);
cb(kg, "key_gdiff", il);
// [CS, S_k, n_chunks, H_v * n_seqs]
ggml_tensor * kg_t = ggml_cont(ctx0, ggml_transpose(ctx0, kg));
cb(kg_t, "key_gdiff_t", il);
ggml_tensor * s_t = ggml_transpose(ctx0, s);
s_t = ggml_cont_4d(ctx0, s_t, S_v, S_v, 1, H_v * n_seqs);
cb(s_t, "dnet_add_ch_state", il);
// [CS, S_v, n_chunks, H_v * n_seqs]
ggml_tensor * v_t = ggml_cont(ctx0, ggml_transpose(ctx0, v));
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
ggml_tensor * ch_k_cd = get_slice_2d(ctx0, k_cd, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_v_t = get_slice_2d(ctx0, v_t, chunk); // [ CS, S_v, 1, H_v * n_seqs]
ggml_tensor * ch_kq = get_slice_2d(ctx0, kq, chunk); // [ CS, CS, 1, H_k * n_seqs]
ggml_tensor * ch_q_g_exp = get_slice_2d(ctx0, q_g_exp, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_kg_t = get_slice_2d(ctx0, kg_t, chunk); // [ CS, S_k, 1, H_v * n_seqs]
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_p = ggml_mul_mat(ctx0, ch_k_cd, s_t);
cb(v_t_p, "v_prime", il);
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_new = ggml_sub(ctx0, ch_v_t, v_t_p);
cb(v_t_new, "v_t_new", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_t_new, ch_kq);
cb(v_attn, "v_attn", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, s_t, ch_q_g_exp);
cb(attn_inter, "attn_inter", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * o_ch = ggml_add(ctx0, attn_inter, v_attn);
cb(o_ch, "dnet_add_ch_attn_out", il);
v = ggml_set_inplace(ctx0, v, o_ch, v->nb[1], v->nb[2], v->nb[3], chunk * v->nb[2]);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// TODO: head broadcast might not work here - probably will need a transpose
ggml_tensor * kgv = ggml_mul_mat(ctx0, ch_kg_t, v_t_new); // [S_k, S_v, 1, H_k * n_seqs]
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * ch_g_last_exp = get_slice_2d(ctx0, g_last_exp, chunk);
s_t = ggml_mul(ctx0, s_t, ch_g_last_exp);
s_t = ggml_add(ctx0, s_t, kgv);
cb(s_t, "dnet_add_ch_state", il);
}
s_t = ggml_reshape_4d(ctx0, s_t, S_v, S_v, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * o = ggml_view_4d(ctx0, v,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(v->type, S_v),
ggml_row_size(v->type, S_v * CS * n_chunks),
ggml_row_size(v->type, S_v * CS * n_chunks * H_v), 0);
o = ggml_permute (ctx0, o, 0, 2, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b, // beta
ggml_tensor * s, // state
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
g = ggml_reshape_4d(ctx0, g, 1, 1, H_v, n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, 1, H_v, n_seqs);
// [S_v, S_v, H_v, n_seqs]
g = ggml_exp(ctx0, g);
s = ggml_mul(ctx0, s, g);
ggml_tensor * s_t = ggml_cont(ctx0, ggml_transpose(ctx0, s));
// [1, S_v, H_v, n_seqs]
ggml_tensor * sk;
sk = ggml_mul (ctx0, s_t, k);
sk = ggml_sum_rows(ctx0, sk);
// [S_v, 1, H_v, n_seqs]
ggml_tensor * d;
d = ggml_sub(ctx0, v, ggml_transpose(ctx0, sk));
d = ggml_mul(ctx0, d, b);
// [1, S_v, H_v, n_seqs]
ggml_tensor * d_t;
d_t = ggml_transpose(ctx0, d);
// [S_v, S_v, H_v, n_seqs]
ggml_tensor * kd;
k = ggml_repeat(ctx0, k, s);
kd = ggml_mul (ctx0, k, d_t);
s_t = ggml_add(ctx0, s_t, kd);
cb(s_t, "dnet_add_ar_state", il);
ggml_tensor * s_q = ggml_mul (ctx0, s_t, q);
ggml_tensor * o = ggml_sum_rows(ctx0, s_q);
o = ggml_permute (ctx0, o, 2, 0, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
ggml_tensor * llm_build_qwen3next::build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,

View File

@ -1,5 +1,7 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_rwkv6_base::llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}

View File

@ -1,5 +1,7 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_rwkv7_base::llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}