vulkan: change graph_compute to be async and enable get_tensor_async (#17158)
* vulkan: change graph_compute to be async and enable get_tensor_async This allows some additional CPU/GPU overlap for large pp workloads. Also seems to help a bit for token gen, maybe getting rid of a small bubble between graph_compute and get_tensor. Async set and copy functions seem to be very rarely used, so I didn't enable them because I didn't have a good way to test them. The async commands need to be ordered against each other, so put them all on the compute queue. The non-async commands still use the transfer queue. The fence for graph_compute/get_tensor_async is submitted and waited on in ggml_vk_synchronize. * fix thread safety errors * teardown context cleanly * Handle async read to non-pinned dst
This commit is contained in:
parent
9b17d74ab7
commit
38eaf32af1
|
|
@ -234,6 +234,7 @@ class vk_memory_logger;
|
|||
#endif
|
||||
class vk_perf_logger;
|
||||
static void ggml_vk_destroy_buffer(vk_buffer& buf);
|
||||
static void ggml_vk_synchronize(ggml_backend_vk_context * ctx);
|
||||
|
||||
static constexpr uint32_t mul_mat_vec_max_cols = 8;
|
||||
static constexpr uint32_t p021_max_gqa_ratio = 8;
|
||||
|
|
@ -1581,8 +1582,9 @@ struct ggml_backend_vk_context {
|
|||
size_t semaphore_idx, event_idx;
|
||||
ggml_vk_garbage_collector gc;
|
||||
size_t prealloc_size_x, prealloc_size_y, prealloc_size_split_k, prealloc_size_add_rms_partials, prealloc_size_add_rms_partials_offset;
|
||||
vk_buffer prealloc_x, prealloc_y, prealloc_split_k, prealloc_add_rms_partials;
|
||||
vk_buffer prealloc_x, prealloc_y, prealloc_split_k, prealloc_add_rms_partials, sync_staging;
|
||||
vk::Fence fence, almost_ready_fence;
|
||||
bool submit_pending {};
|
||||
bool almost_ready_fence_pending {};
|
||||
// Set before op_add and unset after op_rms_norm to indicate that the add should
|
||||
// write partial sums to accumulate the square of the vector components
|
||||
|
|
@ -5602,6 +5604,16 @@ static void ggml_vk_ensure_sync_staging_buffer(vk_device& device, size_t size) {
|
|||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_ensure_sync_staging_buffer(ggml_backend_vk_context * ctx, size_t size) {
|
||||
if (ctx->sync_staging == nullptr || ctx->sync_staging->size < size) {
|
||||
VK_LOG_MEMORY("ggml_vk_ensure_sync_staging_buffer(" << size << ")");
|
||||
ggml_vk_destroy_buffer(ctx->sync_staging);
|
||||
ctx->sync_staging = ggml_vk_create_buffer_check(ctx->device, size,
|
||||
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
|
||||
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context& subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
|
||||
VK_LOG_DEBUG("ggml_vk_buffer_write_nc_async(" << tensor << ")");
|
||||
GGML_ASSERT(!ggml_is_contiguous(tensor));
|
||||
|
|
@ -5803,7 +5815,7 @@ static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src
|
|||
ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1);
|
||||
}
|
||||
|
||||
static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
|
||||
static bool ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
|
||||
VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")");
|
||||
GGML_ASSERT(width > 0);
|
||||
GGML_ASSERT(height > 0);
|
||||
|
|
@ -5836,12 +5848,13 @@ static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size
|
|||
ggml_vk_sync_buffers(nullptr, subctx);
|
||||
subctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices);
|
||||
|
||||
return;
|
||||
return true;
|
||||
}
|
||||
VK_LOG_DEBUG("STAGING");
|
||||
|
||||
if (!sync_staging) {
|
||||
GGML_ABORT("Asynchronous read from non-pinned memory not supported");
|
||||
// copy was not handled caller needs to fall back
|
||||
return false;
|
||||
}
|
||||
|
||||
// Fall back to staging buffer
|
||||
|
|
@ -5854,9 +5867,10 @@ static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size
|
|||
subctx->s->buffer.copyBuffer(src->buffer, staging_buffer->buffer, slices);
|
||||
|
||||
deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
|
||||
static bool ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
|
||||
return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, sync_staging);
|
||||
}
|
||||
|
||||
|
|
@ -5875,7 +5889,8 @@ static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_
|
|||
|
||||
vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue.cmd_pool);
|
||||
ggml_vk_ctx_begin(src->device, subctx);
|
||||
ggml_vk_buffer_read_async(subctx, src, offset, dst, size, true);
|
||||
bool ret = ggml_vk_buffer_read_async(subctx, src, offset, dst, size, true);
|
||||
GGML_ASSERT(ret);
|
||||
ggml_vk_ctx_end(subctx);
|
||||
|
||||
ggml_vk_submit(subctx, src->device->fence);
|
||||
|
|
@ -11204,8 +11219,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx, vk_contex
|
|||
if (subctx) {
|
||||
// Submit and wait for any pending work before reallocating the buffers
|
||||
ggml_vk_ctx_end(subctx);
|
||||
ggml_vk_submit(subctx, ctx->fence);
|
||||
ggml_vk_wait_for_fence(ctx);
|
||||
ggml_vk_submit(subctx, {});
|
||||
ctx->submit_pending = true;
|
||||
ggml_vk_synchronize(ctx);
|
||||
ggml_vk_ctx_begin(ctx->device, subctx);
|
||||
}
|
||||
|
||||
|
|
@ -11243,7 +11259,7 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx, vk_contex
|
|||
}
|
||||
}
|
||||
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_cgraph * cgraph, ggml_tensor* tensor, int tensor_idx, bool use_fence, bool almost_ready);
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_cgraph * cgraph, ggml_tensor* tensor, int tensor_idx, bool almost_ready);
|
||||
|
||||
// Returns true if node has enqueued work into the queue, false otherwise
|
||||
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
|
||||
|
|
@ -11787,7 +11803,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
ctx->compute_ctx.reset();
|
||||
|
||||
bool ok = ggml_vk_compute_forward(ctx, cgraph, node_begin, node_idx_begin, false, almost_ready);
|
||||
bool ok = ggml_vk_compute_forward(ctx, cgraph, node_begin, node_idx_begin, almost_ready);
|
||||
if (!ok) {
|
||||
if (node->op == GGML_OP_UNARY) {
|
||||
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
|
||||
|
|
@ -11802,7 +11818,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
return true;
|
||||
}
|
||||
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, ggml_tensor * tensor, int tensor_idx, bool use_fence = true, bool almost_ready = false) {
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, ggml_tensor * tensor, int tensor_idx, bool almost_ready = false) {
|
||||
GGML_UNUSED(cgraph);
|
||||
ggml_backend_buffer * buf = nullptr;
|
||||
|
||||
|
|
@ -11919,16 +11935,10 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
|
|||
|
||||
vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock();
|
||||
|
||||
// always wait for the GPU work to be done for the last submit
|
||||
if (tensor_idx == subctx->exit_tensor_idx) {
|
||||
use_fence = true;
|
||||
}
|
||||
|
||||
// Only run if ctx hasn't been submitted yet
|
||||
if (!subctx->seqs.empty()) {
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
ggml_vk_check_results_0(ctx, cgraph, tensor_idx);
|
||||
use_fence = true;
|
||||
#endif
|
||||
|
||||
// Do staging buffer copies
|
||||
|
|
@ -11940,17 +11950,16 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
|
|||
memset(mset.dst, mset.val, mset.n);
|
||||
}
|
||||
|
||||
if (almost_ready && !ctx->almost_ready_fence_pending && !use_fence) {
|
||||
if (almost_ready && !ctx->almost_ready_fence_pending) {
|
||||
ggml_vk_submit(subctx, ctx->almost_ready_fence);
|
||||
ctx->almost_ready_fence_pending = true;
|
||||
} else {
|
||||
ggml_vk_submit(subctx, use_fence ? ctx->fence : vk::Fence{});
|
||||
ggml_vk_submit(subctx, {});
|
||||
}
|
||||
ctx->submit_pending = true;
|
||||
|
||||
if (use_fence) {
|
||||
ggml_vk_wait_for_fence(ctx);
|
||||
}
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
ggml_vk_synchronize(ctx);
|
||||
ggml_vk_check_results_1(ctx, cgraph, tensor_idx);
|
||||
#endif
|
||||
}
|
||||
|
|
@ -12006,11 +12015,19 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
|
|||
// Clean up on backend free
|
||||
static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
|
||||
VK_LOG_DEBUG("ggml_vk_cleanup(" << ctx->name << ")");
|
||||
// discard any unsubmitted command buffers
|
||||
ctx->transfer_ctx.reset();
|
||||
// wait for any pending command buffers to finish
|
||||
ggml_vk_synchronize(ctx);
|
||||
|
||||
ggml_vk_graph_cleanup(ctx);
|
||||
|
||||
ggml_vk_destroy_buffer(ctx->prealloc_x);
|
||||
ggml_vk_destroy_buffer(ctx->prealloc_y);
|
||||
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
|
||||
ggml_vk_destroy_buffer(ctx->prealloc_add_rms_partials);
|
||||
ggml_vk_destroy_buffer(ctx->sync_staging);
|
||||
|
||||
ctx->prealloc_y_last_pipeline_used = nullptr;
|
||||
|
||||
ctx->prealloc_size_x = 0;
|
||||
|
|
@ -12305,7 +12322,7 @@ static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor
|
|||
|
||||
if (ctx->transfer_ctx.expired()) {
|
||||
// Initialize new transfer context
|
||||
transfer_ctx = ggml_vk_create_context(ctx, ctx->transfer_cmd_pool);
|
||||
transfer_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
|
||||
ctx->transfer_ctx = transfer_ctx;
|
||||
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
|
||||
} else {
|
||||
|
|
@ -12328,7 +12345,7 @@ static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_
|
|||
|
||||
if (ctx->transfer_ctx.expired()) {
|
||||
// Initialize new transfer context
|
||||
transfer_ctx = ggml_vk_create_context(ctx, ctx->transfer_cmd_pool);
|
||||
transfer_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
|
||||
ctx->transfer_ctx = transfer_ctx;
|
||||
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
|
||||
} else {
|
||||
|
|
@ -12337,7 +12354,23 @@ static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_
|
|||
|
||||
vk_buffer buf = buf_ctx->dev_buffer;
|
||||
|
||||
ggml_vk_buffer_read_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
||||
auto src_offset = vk_tensor_offset(tensor) + tensor->view_offs + offset;
|
||||
bool ret = ggml_vk_buffer_read_async(transfer_ctx, buf, src_offset, data, size);
|
||||
|
||||
// If that failed, copy synchronously through a staging buffer
|
||||
if (!ret) {
|
||||
ggml_vk_ensure_sync_staging_buffer(ctx, size);
|
||||
ggml_vk_sync_buffers(nullptr, transfer_ctx);
|
||||
|
||||
vk::BufferCopy buffer_cpy;
|
||||
buffer_cpy.srcOffset = src_offset;
|
||||
buffer_cpy.dstOffset = 0;
|
||||
buffer_cpy.size = size;
|
||||
|
||||
transfer_ctx->s->buffer.copyBuffer(buf->buffer, ctx->sync_staging->buffer, { buffer_cpy });
|
||||
deferred_memcpy(data, ctx->sync_staging->ptr, size, &transfer_ctx->out_memcpys);
|
||||
ggml_vk_synchronize(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
|
|
@ -12351,7 +12384,7 @@ static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_
|
|||
|
||||
if (ctx->transfer_ctx.expired()) {
|
||||
// Initialize new transfer context
|
||||
transfer_ctx = ggml_vk_create_context(ctx, ctx->transfer_cmd_pool);
|
||||
transfer_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
|
||||
ctx->transfer_ctx = transfer_ctx;
|
||||
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
|
||||
} else {
|
||||
|
|
@ -12368,14 +12401,14 @@ static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_
|
|||
return false;
|
||||
}
|
||||
|
||||
static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
if(ctx->transfer_ctx.expired()) {
|
||||
return;
|
||||
}
|
||||
static void ggml_vk_synchronize(ggml_backend_vk_context * ctx) {
|
||||
VK_LOG_DEBUG("ggml_vk_synchronize()");
|
||||
|
||||
vk_context transfer_ctx = ctx->transfer_ctx.lock();
|
||||
bool do_transfer = !ctx->transfer_ctx.expired();
|
||||
|
||||
vk_context transfer_ctx;
|
||||
if (do_transfer) {
|
||||
transfer_ctx = ctx->transfer_ctx.lock();
|
||||
|
||||
ggml_vk_ctx_end(transfer_ctx);
|
||||
|
||||
|
|
@ -12383,15 +12416,35 @@ static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
|||
memcpy(cpy.dst, cpy.src, cpy.n);
|
||||
}
|
||||
|
||||
ggml_vk_submit(transfer_ctx, ctx->fence);
|
||||
ggml_vk_wait_for_fence(ctx);
|
||||
ggml_vk_submit(transfer_ctx, {});
|
||||
ctx->submit_pending = true;
|
||||
}
|
||||
|
||||
if (ctx->submit_pending) {
|
||||
{
|
||||
std::lock_guard<std::mutex> guard(queue_mutex);
|
||||
ctx->device->compute_queue.queue.submit({}, ctx->fence);
|
||||
}
|
||||
ggml_vk_wait_for_fence(ctx);
|
||||
ctx->submit_pending = false;
|
||||
}
|
||||
|
||||
if (do_transfer) {
|
||||
for (auto& cpy : transfer_ctx->out_memcpys) {
|
||||
memcpy(cpy.dst, cpy.src, cpy.n);
|
||||
}
|
||||
|
||||
ctx->transfer_ctx.reset();
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
|
||||
ggml_vk_synchronize(ctx);
|
||||
|
||||
ggml_vk_graph_cleanup(ctx);
|
||||
}
|
||||
|
||||
static bool ggml_vk_is_empty(ggml_tensor * node) {
|
||||
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
|
||||
|
|
@ -12938,8 +12991,6 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
ctx->device->perf_logger->print_timings();
|
||||
}
|
||||
|
||||
ggml_vk_graph_cleanup(ctx);
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
UNUSED(backend);
|
||||
|
|
@ -13168,9 +13219,9 @@ static ggml_backend_i ggml_backend_vk_interface = {
|
|||
/* .get_name = */ ggml_backend_vk_name,
|
||||
/* .free = */ ggml_backend_vk_free,
|
||||
/* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async,
|
||||
/* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_vk_get_tensor_async,
|
||||
/* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
|
||||
/* .synchronize = */ NULL, // ggml_backend_vk_synchronize,
|
||||
/* .synchronize = */ ggml_backend_vk_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
|
|
|
|||
Loading…
Reference in New Issue