diff --git a/common/common.h b/common/common.h index d70744840f..b2453be006 100644 --- a/common/common.h +++ b/common/common.h @@ -420,7 +420,7 @@ struct common_params { bool kv_unified = false; // enable unified KV cache bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix - bool use_mmap = true; // use mmap for faster loads + bool use_mmap = false; // use uncached reads for faster loads bool use_mlock = false; // use mlock to keep model in memory bool verbose_prompt = false; // print prompt tokens before generation bool display_prompt = true; // print prompt before generation diff --git a/src/llama-mmap.cpp b/src/llama-mmap.cpp index 0641c2d22f..d6904714a9 100644 --- a/src/llama-mmap.cpp +++ b/src/llama-mmap.cpp @@ -13,9 +13,10 @@ #ifdef __has_include #if __has_include() #include + #include + #include #if defined(_POSIX_MAPPED_FILES) #include - #include #endif #if defined(_POSIX_MEMLOCK_RANGE) #include @@ -74,7 +75,7 @@ struct llama_file::impl { return ret; } - impl(const char * fname, const char * mode) { + impl(const char * fname, const char * mode, [[maybe_unused]] const bool use_direct_io = false) { fp = ggml_fopen(fname, mode); if (fp == NULL) { throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); @@ -153,13 +154,43 @@ struct llama_file::impl { write_raw(&val, sizeof(val)); } + bool has_direct_io() const { + return false; + } + + void read_aligned_chunk(size_t offset, void * dest, size_t size, size_t alignment) const { + throw std::runtime_error("DirectIO is not implemented on Windows."); + } + ~impl() { if (fp) { std::fclose(fp); } } #else - impl(const char * fname, const char * mode) { + impl(const char * fname, const char * mode, [[maybe_unused]] const bool use_direct_io = false) { +#ifdef __linux__ + // Try unbuffered I/O for read only + if (use_direct_io && std::strcmp(mode, "rb") == 0) { + fd = open(fname, O_RDONLY | O_DIRECT); + + if (fd != -1) { + struct stat file_stats{}; + fstat(fd, &file_stats); + + size = file_stats.st_size; + + off_t ret = lseek(fd, 0, SEEK_SET); + if (ret == -1) { + throw std::runtime_error(format("seek error: %s", strerror(errno))); + } + return; + } + + LLAMA_LOG_WARN("Failed to open model %s with error: %s. Falling back to buffered I/O", + fname, strerror(errno)); + } +#endif fp = ggml_fopen(fname, mode); if (fp == NULL) { throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); @@ -170,27 +201,30 @@ struct llama_file::impl { } size_t tell() const { -// TODO: this ifdef is never true? -#ifdef _WIN32 - __int64 ret = _ftelli64(fp); -#else - long ret = std::ftell(fp); -#endif - if (ret == -1) { - throw std::runtime_error(format("ftell error: %s", strerror(errno))); + if (fd == -1) { + long ret = std::ftell(fp); + if (ret == -1) { + throw std::runtime_error(format("ftell error: %s", strerror(errno))); + } + + return (size_t) ret; } - return (size_t) ret; + off_t pos = lseek(fd, 0, SEEK_CUR); + if (pos == -1) { + throw std::runtime_error(format("lseek error: %s", strerror(errno))); + } + return (size_t) pos; } void seek(size_t offset, int whence) const { -// TODO: this ifdef is never true? -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset, whence); -#else - int ret = std::fseek(fp, (long) offset, whence); -#endif - if (ret != 0) { + off_t ret = 0; + if (fd == -1) { + ret = std::fseek(fp, (long) offset, whence); + } else { + ret = lseek(fd, offset, whence); + } + if (ret == -1) { throw std::runtime_error(format("seek error: %s", strerror(errno))); } } @@ -200,13 +234,55 @@ struct llama_file::impl { return; } errno = 0; - std::size_t ret = std::fread(ptr, len, 1, fp); - if (ferror(fp)) { - throw std::runtime_error(format("read error: %s", strerror(errno))); + if (fd == -1) { + std::size_t ret = std::fread(ptr, len, 1, fp); + if (ferror(fp)) { + throw std::runtime_error(format("read error: %s", strerror(errno))); + } + if (ret != 1) { + throw std::runtime_error("unexpectedly reached end of file"); + } + } else { + bool successful = false; + while (!successful) { + off_t ret = read(fd, ptr, len); + + if (ret == -1) { + if (errno == EINTR) { + continue; // Interrupted by signal, retry + } + throw std::runtime_error(format("read error: %s", strerror(errno))); + } + if (ret == 0) { + throw std::runtime_error("unexpectedly reached end of file"); + } + + successful = true; + } } - if (ret != 1) { - throw std::runtime_error("unexpectedly reached end of file"); + } + + void read_aligned_chunk(size_t offset, void * dest, size_t size, size_t alignment) const { + off_t aligned_offset = offset & ~(alignment - 1); + off_t offset_from_alignment = offset - aligned_offset; + size_t bytes_to_read = (offset_from_alignment + size + alignment - 1) & ~(alignment - 1); + + void * raw_buffer = nullptr; + int ret = posix_memalign(&raw_buffer, alignment, bytes_to_read); + if (ret != 0) { + throw std::runtime_error(format("posix_memalign failed with error %d", ret)); } + + struct aligned_buffer_deleter { + void operator()(void * p) const { free(p); } + }; + std::unique_ptr buffer(raw_buffer); + + seek(aligned_offset, SEEK_SET); + read_raw(buffer.get(), bytes_to_read); + + uintptr_t actual_data = reinterpret_cast(buffer.get()) + offset_from_alignment; + memcpy(dest, reinterpret_cast(actual_data), size); } uint32_t read_u32() const { @@ -230,23 +306,33 @@ struct llama_file::impl { write_raw(&val, sizeof(val)); } + bool has_direct_io() const { + return fd != -1; + } + ~impl() { - if (fp) { + if (fd != -1) { + close(fd); + } else { std::fclose(fp); } } + int fd = -1; #endif - FILE * fp; - size_t size; + FILE * fp{}; + size_t size{}; }; -llama_file::llama_file(const char * fname, const char * mode) : pimpl(std::make_unique(fname, mode)) {} +llama_file::llama_file(const char * fname, const char * mode, const bool use_direct_io) : + pimpl(std::make_unique(fname, mode, use_direct_io)) {} llama_file::~llama_file() = default; size_t llama_file::tell() const { return pimpl->tell(); } size_t llama_file::size() const { return pimpl->size; } +bool llama_file::has_direct_io() const { return pimpl->has_direct_io(); } + int llama_file::file_id() const { #ifdef _WIN32 return _fileno(pimpl->fp); @@ -261,6 +347,9 @@ int llama_file::file_id() const { void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); } void llama_file::read_raw(void * ptr, size_t len) const { pimpl->read_raw(ptr, len); } +void llama_file::read_aligned_chunk(size_t offset, void * dest, size_t size, size_t alignment) const + { pimpl->read_aligned_chunk(offset, dest, size, alignment); } + uint32_t llama_file::read_u32() const { return pimpl->read_u32(); } diff --git a/src/llama-mmap.h b/src/llama-mmap.h index 4e5aec3f44..5a9361e4c3 100644 --- a/src/llama-mmap.h +++ b/src/llama-mmap.h @@ -13,7 +13,7 @@ using llama_mmaps = std::vector>; using llama_mlocks = std::vector>; struct llama_file { - llama_file(const char * fname, const char * mode); + llama_file(const char * fname, const char * mode, bool use_direct_io = false); ~llama_file(); size_t tell() const; @@ -24,11 +24,13 @@ struct llama_file { void seek(size_t offset, int whence) const; void read_raw(void * ptr, size_t len) const; + void read_aligned_chunk(size_t offset, void * dest, size_t size, size_t alignment) const; uint32_t read_u32() const; void write_raw(const void * ptr, size_t len) const; void write_u32(uint32_t val) const; + bool has_direct_io() const; private: struct impl; std::unique_ptr pimpl; diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp index ca2ea2461d..ec7cea3f22 100644 --- a/src/llama-model-loader.cpp +++ b/src/llama-model-loader.cpp @@ -504,7 +504,7 @@ llama_model_loader::llama_model_loader( get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); llm_kv = LLM_KV(llm_arch_from_string(arch_name)); - files.emplace_back(new llama_file(fname.c_str(), "rb")); + files.emplace_back(new llama_file(fname.c_str(), "rb", !use_mmap)); contexts.emplace_back(ctx); // Save tensors data offset of the main file. @@ -935,7 +935,17 @@ bool llama_model_loader::load_all_data( // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives. // NVMe raid configurations might require more / larger buffers. constexpr size_t n_buffers = 4; - constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB + + + bool direct_io = false; + for (const auto& file : files) { + direct_io |= file->has_direct_io(); + } + + constexpr size_t alignment = 4 * 1024; // 4 KB for Direct I/O + // Buffer size: balance between memory usage and I/O efficiency + // 64MB works well for NVMe drives + const size_t buffer_size = direct_io ? 64 * 1024 * 1024 + 2 * alignment : 1 * 1024 * 1024; std::vector host_buffers; std::vector events; @@ -985,6 +995,7 @@ bool llama_model_loader::load_all_data( // If the backend is supported, create pinned memory buffers and events for synchronisation. for (size_t idx = 0; idx < n_buffers; ++idx) { auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size); + if (!buf) { LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func, ggml_backend_dev_name(dev)); @@ -1066,37 +1077,97 @@ bool llama_model_loader::load_all_data( } } else { const auto & file = files.at(weight->idx); + if (ggml_backend_buffer_is_host(cur->buffer)) { - file->seek(weight->offs, SEEK_SET); - file->read_raw(cur->data, n_size); + if (file->has_direct_io()) { + file->read_aligned_chunk(weight->offs, cur->data, n_size, alignment); + } else { + file->seek(weight->offs, SEEK_SET); + file->read_raw(cur->data, n_size); + } if (check_tensors) { validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); })); } } else { + file->seek(weight->offs, SEEK_SET); // If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU. if (upload_backend) { - file->seek(weight->offs, SEEK_SET); + if (file->has_direct_io()) { + auto offset = (off_t) weight->offs; + off_t aligned_offset = offset & ~(alignment - 1); + off_t offset_from_alignment = offset - aligned_offset; - size_t bytes_read = 0; + // Calculate aligned read boundaries + size_t read_start = aligned_offset; + size_t read_end = (offset + n_size + alignment - 1) & ~(alignment - 1); - while (bytes_read < n_size) { - size_t read_iteration = std::min(buffer_size, n_size - bytes_read); + size_t bytes_read = 0; + size_t data_read = 0; // Actual tensor data copied (excluding padding) - ggml_backend_event_synchronize(events[buffer_idx]); - file->read_raw(host_ptrs[buffer_idx], read_iteration); - ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); - ggml_backend_event_record(events[buffer_idx], upload_backend); + while (bytes_read < read_end - read_start) { + size_t read_size = std::min(buffer_size, read_end - read_start - bytes_read); - bytes_read += read_iteration; - ++buffer_idx; - buffer_idx %= n_buffers; + // Align the destination pointer within the pinned buffer + uintptr_t ptr_dest_aligned = (reinterpret_cast(host_ptrs[buffer_idx]) + alignment - 1) & ~(alignment - 1); + + // Wait for previous upload to complete before reusing buffer + ggml_backend_event_synchronize(events[buffer_idx]); + + // Read aligned chunk from file + file->read_raw(reinterpret_cast(ptr_dest_aligned), read_size); + + // Calculate actual data portion (excluding alignment padding) + uintptr_t ptr_data = ptr_dest_aligned; + size_t data_to_copy = read_size; + + // Skip alignment padding at start of first chunk + if (bytes_read == 0) { + ptr_data += offset_from_alignment; + data_to_copy -= offset_from_alignment; + } + + // Trim alignment padding at end of last chunk + if (aligned_offset + bytes_read + read_size > offset + n_size) { + data_to_copy -= (read_end - (offset + n_size)); + } + + // Async upload actual data to GPU + ggml_backend_tensor_set_async(upload_backend, cur, + reinterpret_cast(ptr_data), data_read, data_to_copy); + ggml_backend_event_record(events[buffer_idx], upload_backend); + + data_read += data_to_copy; + bytes_read += read_size; + + ++buffer_idx; + buffer_idx %= n_buffers; + } + } else { + size_t bytes_read = 0; + + while (bytes_read < n_size) { + size_t read_iteration = std::min(buffer_size, n_size - bytes_read); + + ggml_backend_event_synchronize(events[buffer_idx]); + file->read_raw(host_ptrs[buffer_idx], read_iteration); + ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); + ggml_backend_event_record(events[buffer_idx], upload_backend); + + bytes_read += read_iteration; + ++buffer_idx; + buffer_idx %= n_buffers; + } } } else { read_buf.resize(n_size); - file->seek(weight->offs, SEEK_SET); - file->read_raw(read_buf.data(), n_size); + if (file->has_direct_io()) { + file->read_aligned_chunk(weight->offs, read_buf.data(), n_size, alignment); + } else { + file->seek(weight->offs, SEEK_SET); + file->read_raw(read_buf.data(), n_size); + } ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));