Add initial version for top-p sampling

As we only support static graphs for the time and we don't know the size
of the output of top-p, we have to do value-scaling same as for min-p
operator.

Further improvements can be applied to the unit-test (i.e. check for
equivalence of top_p happening on backend with top_p happening on cpu)
and also by constructing candidates and sorting those as opposed to
reversing the sort of the logits (this would be arange +
get_rows instead of argsort + get_rows)
This commit is contained in:
Oliver Simons 2025-11-28 15:08:20 +01:00
parent 117e2079a9
commit 333da805fe
4 changed files with 185 additions and 0 deletions

View File

@ -169,6 +169,7 @@ static bool common_sampler_type_has_backend_support(enum common_sampler_type typ
case COMMON_SAMPLER_TYPE_TOP_K:
case COMMON_SAMPLER_TYPE_TEMPERATURE:
case COMMON_SAMPLER_TYPE_MIN_P:
case COMMON_SAMPLER_TYPE_TOP_P:
return true;
default:
return false;
@ -382,6 +383,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, st
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain_backend, llama_sampler_backend_init_min_p(params.min_p));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain_backend, llama_sampler_backend_init_top_p(params.top_p));
break;
default:
GGML_ASSERT(false && "unsupported backend sampler");
}

View File

@ -1403,6 +1403,9 @@ extern "C" {
/// @details Min-P filtering on backend - filter tokens with a probability less than p times the maximum probability.
LLAMA_API struct llama_sampler * llama_sampler_backend_init_min_p(float p);
/// @details Top-p filtering on backend - filter all tokens with cumulative pseudo-probability less than p.
LLAMA_API struct llama_sampler * llama_sampler_backend_init_top_p(float p);
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);

View File

@ -596,3 +596,125 @@ struct llama_sampler * llama_sampler_backend_init_min_p(float p) {
return sampler;
}
struct llama_sampler_backend_top_p_ctx {
float p;
// Only required for checking operation support and can be removed later.
ggml_backend_dev_t device;
};
static void llama_sampler_backend_top_p_init_ggml(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
auto * sctx = (llama_sampler_backend_top_p_ctx *) smpl->ctx;
sctx->device = ggml_backend_buft_get_device(buft);
}
static void llama_sampler_backend_top_p_apply_ggml(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_ggml_data * ggml_data) {
GGML_UNUSED(gf);
auto * sctx = (llama_sampler_backend_top_p_ctx *) smpl->ctx;
struct ggml_tensor * softmax = ggml_soft_max(ctx, ggml_data->logits);
ggml_set_name(softmax, "top_p_softmax");
// Get the sorted indices of the softmax probabilities in descending order.
struct ggml_tensor * sorted_idx = ggml_argsort(ctx, softmax, GGML_SORT_ORDER_DESC);
ggml_set_name(sorted_idx, "top_p_sorted_idx");
// Do the sorting via reshape + get_rows
struct ggml_tensor * softmax_reshaped = ggml_reshape_2d(ctx, softmax, 1, softmax->ne[0]);
ggml_set_name(softmax_reshaped, "top_p_softmax_reshaped");
struct ggml_tensor * sorted_probs = ggml_get_rows(ctx, softmax_reshaped, sorted_idx);
ggml_set_name(sorted_probs, "top_p_sorted_probs");
struct ggml_tensor * sorted_probs_reshaped = ggml_reshape_2d(ctx, sorted_probs, softmax->ne[0], 1);
ggml_set_name(sorted_probs_reshaped, "top_p_sorted_probs_reshaped");
// Compute Cumulative Distribution Function (CDF) by means of GGML_OP_CUMSUM.
struct ggml_tensor * sorted_cdf = ggml_cumsum(ctx, sorted_probs_reshaped);
ggml_set_name(sorted_cdf, "top_p_sorted_cdf");
// Invert CDF and add top-p value so that ggml_step yields 1 for values we want to keep
struct ggml_tensor * sorted_cdf_scaled = ggml_scale_bias(ctx, sorted_cdf, -1.0f, sctx->p);
ggml_set_name(sorted_cdf_scaled, "top_p_sorted_cdf_scaled");
struct ggml_tensor * sorted_mask = ggml_step(ctx, sorted_cdf_scaled);
ggml_set_name(sorted_mask, "top_p_sorted_mask");
// reverse sorting by argsort(argsort)
// cast to F32 since cuda only supports float inputs
struct ggml_tensor * reverse_argsort = ggml_argsort(ctx, ggml_cast(ctx, sorted_idx, GGML_TYPE_F32), GGML_SORT_ORDER_ASC);
ggml_set_name(reverse_argsort, "top_p_reverse_argsort");
// Do the sorting via reshape + get_rows
struct ggml_tensor * sorted_reshaped_mask = ggml_reshape_2d(ctx, sorted_mask, 1, sorted_mask->ne[0]);
ggml_set_name(sorted_reshaped_mask, "top_p_sorted_reshaped_mask");
struct ggml_tensor * reshaped_mask = ggml_get_rows(ctx, sorted_reshaped_mask, reverse_argsort);
ggml_set_name(reshaped_mask, "top_p_reshaped_mask");
struct ggml_tensor * mask = ggml_reshape_2d(ctx, reshaped_mask, sorted_mask->ne[0], 1);
ggml_set_name(mask, "top_p_mask");
// Use ggml_scale_bias (output = (a * s) + b) which in this case becomes:
// top_p_bias = (mask * 1e9f) - 1e9f.
// So entries in the mask that we want to discard will become -1e9f, and
// others will be 0 (meaning that will not effect the logits).
const float large_val = 1e9f;
struct ggml_tensor * top_p_bias = ggml_scale_bias(ctx, mask, large_val, -large_val);
ggml_set_name(top_p_bias, "top_p_bias");
ggml_data->logits = ggml_add(ctx, ggml_data->logits, top_p_bias);
ggml_set_name(ggml_data->logits, "top_p_logits");
ggml_build_forward_expand(gf, ggml_data->logits);
}
static const char * llama_sampler_backend_top_p_name(const struct llama_sampler *) {
return "backend-top-p";
}
static void llama_sampler_backend_top_p_free(struct llama_sampler * smpl) {
auto * sctx = (llama_sampler_backend_top_p_ctx *) smpl->ctx;
delete sctx;
}
static struct llama_sampler * llama_sampler_backend_top_p_clone(const struct llama_sampler * smpl) {
auto * sctx = (llama_sampler_backend_top_p_ctx *) smpl->ctx;
return llama_sampler_backend_init_top_p(sctx->p);
}
struct llama_sampler * llama_sampler_backend_init_top_p(float p) {
static const llama_sampler_i iface = {
/*.name =*/ llama_sampler_backend_top_p_name,
/*.accept =*/ nullptr,
/*.apply =*/ nullptr,
/*.reset =*/ nullptr,
/*.clone =*/ llama_sampler_backend_top_p_clone,
/*.free =*/ llama_sampler_backend_top_p_free,
/*.apply_ggml =*/ llama_sampler_backend_top_p_apply_ggml,
/*.accept_ggml =*/ nullptr,
/*.set_input_ggml =*/ nullptr,
/*.init_ggml =*/ llama_sampler_backend_top_p_init_ggml,
};
auto * sctx = new llama_sampler_backend_top_p_ctx {
/*.p =*/ p,
/*.device =*/ nullptr,
};
auto * sampler = new llama_sampler {
/*.iface =*/ &iface,
/*.ctx =*/ sctx,
};
return sampler;
}

View File

@ -481,6 +481,61 @@ static void test_backend_min_p_sampling(const char * model_path) {
llama_sampler_free(chain);
}
static void test_backend_top_p_sampling(const char * model_path) {
test_model_context test_ctx;
const int seq_id = 0;
const float p = 0.9;
struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
struct llama_sampler * backend_sampler_chain = llama_sampler_chain_init(backend_chain_params);
llama_sampler_chain_add(backend_sampler_chain, llama_sampler_backend_init_top_p(p));
std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain }};
if (!test_ctx.setup(model_path, backend_sampler_configs)) {
return;
}
if (!test_ctx.decode({{seq_id, "Hello"}})) {
return;
}
int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
float * logits = llama_get_backend_sampled_logits_ith(test_ctx.ctx, batch_idx);
uint32_t n_logits = llama_get_backend_sampled_logits_count_ith(test_ctx.ctx, batch_idx);
// Print the logits that are above the min-p threshold
std::vector<float> filtered_logits;
for (size_t i = 0; i < n_logits; ++i) {
if (logits[i] > -1e9f) {
filtered_logits.push_back(logits[i]);
}
}
GGML_ASSERT(filtered_logits.size() < (size_t) test_ctx.n_vocab);
// Sample using CPU sampler for verification to inspect they are reasonable
struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
struct llama_sampler * chain = llama_sampler_chain_init(chain_params);
llama_sampler_chain_add(chain, llama_sampler_init_dist(88));
llama_token token = llama_sampler_sample(chain, test_ctx.ctx, batch_idx);
const std::string token_str = test_ctx.token_to_piece(token, false);
printf("top-p cpu sampled token id:%d, string: '%s'\n", token, token_str.c_str());
GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
// Decode and sampler 10 more tokens
for (int i = 0; i < 10; i++) {
int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
llama_token token = llama_sampler_sample(chain, test_ctx.ctx, loop_idx);
printf("top-p gen step %d: token id :%5.d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
test_ctx.decode_token(token, 0);
}
printf("top-p sampling test PASSED\n");
llama_sampler_free(chain);
}
static void test_backend_multi_sequence_sampling(const char * model_path) {
test_model_context test_ctx;
@ -934,6 +989,7 @@ static const backend_test_case BACKEND_TESTS[] = {
{ "mixed", test_backend_mixed_sampling, true },
{ "min_p", test_backend_min_p_sampling, true },
{ "cpu_mixed", test_backend_cpu_mixed_batch, true },
{ "top_p", test_backend_top_p_sampling, true },
};
struct backend_cli_args {