diff --git a/common/chat.cpp b/common/chat.cpp index 0a426f4478..be44c8abb0 100644 --- a/common/chat.cpp +++ b/common/chat.cpp @@ -319,7 +319,7 @@ json common_chat_msgs_to_json_oaicompat(const std::vector & msg } } } else { - jmsg["content"] = json(); // null + jmsg["content"] = ""; } if (!msg.reasoning_content.empty()) { jmsg["reasoning_content"] = msg.reasoning_content; diff --git a/common/common.cpp b/common/common.cpp index 58fef59546..79c4756125 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1109,6 +1109,25 @@ common_init_result::common_init_result(common_params & params) : const llama_vocab * vocab = llama_model_get_vocab(model); + // load and optionally apply lora adapters (must be loaded before context creation) + for (auto & la : params.lora_adapters) { + llama_adapter_lora_ptr lora; + lora.reset(llama_adapter_lora_init(model, la.path.c_str())); + if (lora == nullptr) { + LOG_ERR("%s: failed to load lora adapter '%s'\n", __func__, la.path.c_str()); + pimpl->model.reset(model); + return; + } + + char buf[1024]; + la.ptr = lora.get(); + llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf)); + la.task_name = buf; + llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf)); + la.prompt_prefix = buf; + pimpl->lora.emplace_back(std::move(lora)); // copy to list of loaded adapters + } + // updates params.sampling // TODO: fix naming common_init_sampler_from_model(model, params.sampling); @@ -1245,24 +1264,6 @@ common_init_result_ptr common_init_from_params(common_params & params) { } } - // load and optionally apply lora adapters - for (auto & la : params.lora_adapters) { - llama_adapter_lora_ptr lora; - lora.reset(llama_adapter_lora_init(model, la.path.c_str())); - if (lora == nullptr) { - LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str()); - return res; - } - - char buf[1024]; - la.ptr = lora.get(); - llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf)); - la.task_name = buf; - llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf)); - la.prompt_prefix = buf; - res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters - } - if (!params.lora_init_without_apply) { common_set_adapter_lora(lctx, params.lora_adapters); } diff --git a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh index c53c89d48a..2ae4dc7061 100755 --- a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh +++ b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh @@ -5,8 +5,11 @@ set -e MODEL_PATH="${1:-"$MODEL_PATH"}" MODEL_NAME="${2:-$(basename "$MODEL_PATH")}" +CONVERTED_MODEL_PATH="${1:-"$CONVERTED_MODEL"}" +CONVERTED_MODEL_NAME="${2:-$(basename "$CONVERTED_MODEL_PATH" ".gguf")}" + if [ -t 0 ]; then - CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin" + CPP_EMBEDDINGS="data/llamacpp-${CONVERTED_MODEL_NAME}-embeddings.bin" else # Process piped JSON data and convert to binary (matching logits.cpp format) TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn) diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 25f25c4236..6192a87046 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -401,8 +401,8 @@ if (GGML_CPU_ALL_VARIANTS) ggml_add_cpu_backend_variant(android_armv8.2_2 DOTPROD FP16_VECTOR_ARITHMETIC) ggml_add_cpu_backend_variant(android_armv8.6_1 DOTPROD FP16_VECTOR_ARITHMETIC MATMUL_INT8) ggml_add_cpu_backend_variant(android_armv9.0_1 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE2) - ggml_add_cpu_backend_variant(android_armv9.2_1 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SME) - ggml_add_cpu_backend_variant(android_armv9.2_2 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE SME) + ggml_add_cpu_backend_variant(android_armv9.2_1 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE SME) + ggml_add_cpu_backend_variant(android_armv9.2_2 DOTPROD MATMUL_INT8 FP16_VECTOR_ARITHMETIC SVE SVE2 SME) elseif (APPLE) ggml_add_cpu_backend_variant(apple_m1 DOTPROD) ggml_add_cpu_backend_variant(apple_m2_m3 DOTPROD MATMUL_INT8) diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index 28fb7612e5..7622d0bf49 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -561,9 +561,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name) # Fetch KleidiAI sources: include(FetchContent) - set(KLEIDIAI_COMMIT_TAG "v1.14.0") + set(KLEIDIAI_COMMIT_TAG "v1.16.0") set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz") - set(KLEIDIAI_ARCHIVE_MD5 "45e110675d93f99f82c23a1afcca76bc") + set(KLEIDIAI_ARCHIVE_MD5 "0a9e9008adb6031f9e8cf70dff4a3321") if (POLICY CMP0135) cmake_policy(SET CMP0135 NEW) @@ -615,6 +615,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name) string(FIND "${ARCH_FLAGS_TEMP}" "+dotprod" DOTPROD_ENABLED) string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED) string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED) + string(FIND "${ARCH_FLAGS_TEMP}" "+sve" SVE_ENABLED) set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS_TEMP}) @@ -659,6 +660,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name) set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2") endif() + if (NOT SVE_ENABLED MATCHES -1) + list(APPEND GGML_KLEIDIAI_SOURCES + ${KLEIDIAI_SRC}/kai/kai_common_sve_asm.S + ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod_asm.S + ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod.c + ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm_asm.S + ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm.c) + endif() + set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}") list(APPEND GGML_CPU_SOURCES ${GGML_KLEIDIAI_SOURCES}) endif() diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.cpp b/ggml/src/ggml-cpu/kleidiai/kernels.cpp index 55a00f008a..d114f2d49b 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kernels.cpp @@ -18,6 +18,8 @@ #include "kai_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod.h" #include "kai_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod.h" #include "kai_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm.h" +#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm.h" +#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod.h" #include "kai_lhs_pack_bf16p2vlx2_f32_sme.h" #include "kai_lhs_quant_pack_qsi8d32p_f32.h" @@ -69,9 +71,9 @@ static inline void kernel_run_fn10(size_t m, size_t n, size_t k, size_t /*bl*/, template static inline void kernel_run_float_fn10(size_t m, size_t n, size_t k, size_t /*bl*/, - const void* lhs, const void* rhs, void* dst, - size_t dst_stride_row, size_t dst_stride_col, - float clamp_min, float clamp_max) { + const void* lhs, const void* rhs, void* dst, + size_t dst_stride_row, size_t dst_stride_col, + float clamp_min, float clamp_max) { Fn(m, n, k, lhs, rhs, static_cast(dst), dst_stride_row, dst_stride_col, clamp_min, clamp_max); } @@ -152,8 +154,8 @@ static inline void rhs_pack_fn12(size_t num_groups, size_t n, size_t k, size_t n template static inline void rhs_pack_scale_fn12(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t /*bl*/, - size_t /*rhs_stride*/, const void* rhs, const void* bias, const void* scale, - void* rhs_packed, size_t extra_bytes, const void* params) { + size_t /*rhs_stride*/, const void* rhs, const void* bias, const void* scale, + void* rhs_packed, size_t extra_bytes, const void* params) { Fn(num_groups, n, k, nr, kr, sr, static_cast(rhs), static_cast(bias), @@ -524,6 +526,61 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { }, #endif #else +#if defined(__ARM_FEATURE_SVE) + { + /* SVE i8mm GEMM */ + /* .kern_info = */ { + /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p8x8_16x8_sve_i8mm, + /* .get_lhs_offset_ex = */ &kernel_offs_fn3, + /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3, + /* .run_kernel_ex = */ &kernel_run_fn11, + }, + /* .gemm_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon, + /* .get_packed_offset_ex = */ &lhs_offs_fn6, + /* .packed_size_ex = */ &lhs_ps_fn6, + /* .pack_func_ex = */ &lhs_pack_float_fn10, + }, + /* SVE dotprod GEMV */ + /* .kern_info = */ { + /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p8x8_1x8_sve_dotprod, + /* .get_lhs_offset_ex = */ &kernel_offs_fn3, + /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3, + /* .run_kernel_ex = */ &kernel_run_fn11, + }, + /* .gemv_lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32, + /* .get_packed_offset_ex = */ &lhs_offs_fn6, + /* .packed_size_ex = */ &lhs_ps_fn6, + /* .pack_func_ex = */ &lhs_pack_float_fn10, + }, + /* .rhs_info = */ { + /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, + /* .to_float = */ dequantize_row_qsi4c32pscalef16, + /* .packed_size_ex = */ &rhs_ps_fn5, + /* .packed_stride_ex = */ &rhs_stride_fn4, + /* .pack_func_ex = */ &rhs_pack_fn12, + }, + /* .required_cpu = */ CPU_FEATURE_SVE | CPU_FEATURE_I8MM | CPU_FEATURE_DOTPROD, + /* .lhs_type = */ GGML_TYPE_F32, + /* .rhs_type = */ GGML_TYPE_Q4_0, + /* .op_type = */ GGML_TYPE_F32, + }, +#endif #if defined(__ARM_FEATURE_MATMUL_INT8) { /* i8mm GEMM */ @@ -578,7 +635,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .rhs_type = */ GGML_TYPE_Q4_0, /* .op_type = */ GGML_TYPE_F32, }, -#endif +#endif // __ARM_FEATURE_MATMUL_INT8 #if defined(__ARM_FEATURE_DOTPROD) { /* DOTPROD GEMM */ @@ -811,26 +868,27 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c ggml_kleidiai_kernels * kernel = nullptr; if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) { -#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8) - for (size_t i = 0; i < NELEMS(gemm_gemv_kernels) - 1; ++i) { - if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu && - gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type && - gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type && - gemm_gemv_kernels[i].op_type == tensor->type) { - kernel = &gemm_gemv_kernels[i]; - break; - } - } - if (!kernel) { - for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8) - 1; ++i) { - if ((cpu_features & gemm_gemv_kernels_q8[i].required_cpu) == gemm_gemv_kernels_q8[i].required_cpu && - gemm_gemv_kernels_q8[i].lhs_type == tensor->src[1]->type && - gemm_gemv_kernels_q8[i].rhs_type == tensor->src[0]->type && - gemm_gemv_kernels_q8[i].op_type == tensor->type) { - kernel = &gemm_gemv_kernels_q8[i]; - break; +#if defined(__ARM_FEATURE_SME) || \ + defined(__ARM_FEATURE_DOTPROD) || \ + defined(__ARM_FEATURE_MATMUL_INT8) || \ + defined(__ARM_FEATURE_SVE) + auto try_table = [&](auto & table) { + for (size_t i = 0; i < NELEMS(table) - 1; ++i) { + if ((cpu_features & table[i].required_cpu) == table[i].required_cpu && + table[i].lhs_type == tensor->src[1]->type && + table[i].rhs_type == tensor->src[0]->type && + table[i].op_type == tensor->type) { + kernel = &table[i]; + return true; } } + return false; + }; + + if (tensor->src[0]->type == GGML_TYPE_Q8_0) { + try_table(gemm_gemv_kernels_q8); + } else { + try_table(gemm_gemv_kernels); } #else GGML_UNUSED(gemm_gemv_kernels); @@ -845,7 +903,10 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) { ggml_kleidiai_kernels * kernels = nullptr; -#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8) +#if defined(__ARM_FEATURE_SME) || \ + defined(__ARM_FEATURE_DOTPROD) || \ + defined(__ARM_FEATURE_MATMUL_INT8) || \ + defined(__ARM_FEATURE_SVE) for (size_t i = 0; i < NELEMS(gemm_gemv_kernels) - 1; ++i) { if ((features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu) { kernels = &gemm_gemv_kernels[i]; diff --git a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp index 6f2a90fbda..ad23e73184 100644 --- a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp @@ -46,13 +46,20 @@ struct ggml_kleidiai_context { } static ctx = { CPU_FEATURE_NONE, NULL, NULL }; static const char* cpu_feature_to_string(cpu_feature f) { - switch (f) { - case CPU_FEATURE_NONE: return "NONE"; - case CPU_FEATURE_DOTPROD: return "DOTPROD"; - case CPU_FEATURE_I8MM: return "I8MM"; - case CPU_FEATURE_SVE: return "SVE"; - case CPU_FEATURE_SME: return "SME"; - default: return "UNKNOWN"; + if (f == CPU_FEATURE_NONE) { + return "NONE"; + } else if ((f & CPU_FEATURE_SME) == CPU_FEATURE_SME) { + return "SME"; + } else if ((f & CPU_FEATURE_SVE) == CPU_FEATURE_SVE) { + return "SVE"; + } + else if ((f & CPU_FEATURE_I8MM) == CPU_FEATURE_I8MM) { + return "I8MM"; + } else if ((f & CPU_FEATURE_DOTPROD) == CPU_FEATURE_DOTPROD) { + return "DOTPROD"; + } + else { + return "UNKNOWN"; } } @@ -68,7 +75,7 @@ static void init_kleidiai_context(void) { ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) | - (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE); + ((ggml_cpu_has_sve() && ggml_cpu_get_sve_cnt() == QK8_0) ? CPU_FEATURE_SVE : CPU_FEATURE_NONE); if (env_var) { sme_enabled = atoi(env_var); diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 40ffe92c57..55e1c20c96 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -4785,6 +4785,16 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t features.push_back({ "FA_ALL_QUANTS", "1" }); #endif + { + const auto & info = ggml_cuda_info(); + for (int id = 0; id < info.device_count; ++id) { + if (blackwell_mma_available(info.devices[id].cc)) { + features.push_back({ "BLACKWELL_NATIVE_FP4", "1"}); + break; + } + } + } + #undef _STRINGIFY #undef STRINGIFY diff --git a/include/llama.h b/include/llama.h index 1b3cc16f1a..90f9045ef1 100644 --- a/include/llama.h +++ b/include/llama.h @@ -607,6 +607,8 @@ extern "C" { // // Load a LoRA adapter from file + // The adapter is valid as long as the associated model is not freed + // All adapters must be loaded before context creation LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init( struct llama_model * model, const char * path_lora); diff --git a/models/templates/llama-cpp-deepseek-r1.jinja b/models/templates/llama-cpp-deepseek-r1.jinja index fcb1732eb8..0d18870870 100644 --- a/models/templates/llama-cpp-deepseek-r1.jinja +++ b/models/templates/llama-cpp-deepseek-r1.jinja @@ -38,7 +38,7 @@ Example function tool call syntax: {%- if message['role'] == 'user' -%} {{- '<|User|>' + message['content'] + '<|end▁of▁sentence|>' -}} {%- endif -%} - {%- if message['role'] == 'assistant' and message['content'] is none -%} + {%- if message['role'] == 'assistant' and not message['content'] -%} {{- '<|Assistant|><|tool▁calls▁begin|>' -}} {%- set ns.is_first = true -%} {%- for tc in message['tool_calls'] -%} @@ -53,7 +53,7 @@ Example function tool call syntax: {%- endfor -%} {{- '<|tool▁calls▁end|><|end▁of▁sentence|>' -}} {%- endif -%} - {%- if message['role'] == 'assistant' and message['content'] is not none -%} + {%- if message['role'] == 'assistant' and message['content'] -%} {{- flush_tool_outputs() -}} {%- set content = message['content'] -%} {%- if '' in content -%} @@ -73,4 +73,4 @@ Example function tool call syntax: {{- flush_tool_outputs() -}} {%- if add_generation_prompt and not ns.is_tool_outputs -%} {{- '<|Assistant|>\n' -}} -{%- endif -%} \ No newline at end of file +{%- endif -%} diff --git a/src/llama-adapter.cpp b/src/llama-adapter.cpp index d8eef75a7a..bdc24c2d6b 100644 --- a/src/llama-adapter.cpp +++ b/src/llama-adapter.cpp @@ -146,9 +146,11 @@ llama_adapter_lora_weight * llama_adapter_lora::get_weight(ggml_tensor * w) { return nullptr; } -static void llama_adapter_lora_init_impl(llama_model & model, const char * path_lora, llama_adapter_lora & adapter) { +static void llama_adapter_lora_init_impl(const char * path_lora, llama_adapter_lora & adapter) { LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora); + llama_model & model = adapter.model; + ggml_context * ctx_init; gguf_init_params meta_gguf_params = { /* .no_alloc = */ true, @@ -411,14 +413,17 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_ } } + // update number of nodes used + model.n_lora_nodes += adapter.get_n_nodes(); + LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2); } llama_adapter_lora * llama_adapter_lora_init(llama_model * model, const char * path_lora) { - llama_adapter_lora * adapter = new llama_adapter_lora(); + llama_adapter_lora * adapter = new llama_adapter_lora(*model); try { - llama_adapter_lora_init_impl(*model, path_lora, *adapter); + llama_adapter_lora_init_impl(path_lora, *adapter); return adapter; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); @@ -469,6 +474,10 @@ int32_t llama_adapter_meta_val_str_by_index(const llama_adapter_lora * adapter, } void llama_adapter_lora_free(llama_adapter_lora * adapter) { + // update number of nodes used + GGML_ASSERT(adapter->model.n_lora_nodes >= adapter->get_n_nodes()); + adapter->model.n_lora_nodes -= adapter->get_n_nodes(); + delete adapter; } diff --git a/src/llama-adapter.h b/src/llama-adapter.h index 4f65247c0f..42d64a6e0b 100644 --- a/src/llama-adapter.h +++ b/src/llama-adapter.h @@ -59,6 +59,8 @@ struct llama_adapter_lora_weight { }; struct llama_adapter_lora { + llama_model & model; + // map tensor name to lora_a_b std::unordered_map ab_map; @@ -73,10 +75,14 @@ struct llama_adapter_lora { // activated lora (aLoRA) std::vector alora_invocation_tokens; - llama_adapter_lora() = default; + llama_adapter_lora(llama_model & model) : model(model) {} ~llama_adapter_lora() = default; llama_adapter_lora_weight * get_weight(ggml_tensor * w); + + uint32_t get_n_nodes() const { + return ab_map.size() * 6u; // a, b, scale, add, 2 x mul_mat + } }; using llama_adapter_loras = std::unordered_map; diff --git a/src/llama-context.cpp b/src/llama-context.cpp index 1c530fdc91..34dfcd4724 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -1442,7 +1442,9 @@ uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const { if (model.arch == LLM_ARCH_QWEN3NEXT) { return std::max(n_tokens * 40, 32u * model.n_tensors()); } - return std::max(1024u, 8u*model.n_tensors()); + uint32_t res = std::max(1024u, 8u*model.n_tensors()); + res += model.n_lora_nodes; + return res; } llm_graph_result * llama_context::get_gf_res_reserve() const { diff --git a/src/llama-kv-cache.h b/src/llama-kv-cache.h index 1868f11857..0c4ed64845 100644 --- a/src/llama-kv-cache.h +++ b/src/llama-kv-cache.h @@ -305,7 +305,7 @@ public: bool do_shift, stream_copy_info sc_info); - // used to create a batch procesing context from a batch + // used to create a batch processing context from a batch llama_kv_cache_context( llama_kv_cache * kv, slot_info_vec_t sinfos, diff --git a/src/llama-model.h b/src/llama-model.h index dbe5edc153..f4f44a92b6 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -475,6 +475,9 @@ struct llama_model { // for quantize-stats only std::vector> tensors_by_name; + // for keeping track of extra nodes used by lora adapters + uint32_t n_lora_nodes = 0; + int64_t t_load_us = 0; int64_t t_start_us = 0; diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp index 137c865c30..b3256d0962 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampling.cpp @@ -421,39 +421,6 @@ void llama_sampler_free(struct llama_sampler * smpl) { delete smpl; } -llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { - const auto * logits = llama_get_logits_ith(ctx, idx); - - const llama_model * model = llama_get_model(ctx); - const llama_vocab * vocab = llama_model_get_vocab(model); - - const int n_vocab = llama_vocab_n_tokens(vocab); - - // TODO: do not allocate each time - std::vector cur; - cur.reserve(n_vocab); - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); - } - - llama_token_data_array cur_p = { - /* .data = */ cur.data(), - /* .size = */ cur.size(), - /* .selected = */ -1, - /* .sorted = */ false, - }; - - llama_sampler_apply(smpl, &cur_p); - - GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size); - - auto token = cur_p.data[cur_p.selected].id; - - llama_sampler_accept(smpl, token); - - return token; -} - // sampler chain static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) { @@ -527,12 +494,56 @@ struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_param /* .ctx = */ new llama_sampler_chain { /* .params = */ params, /* .samplers = */ {}, + /* .cur = */ {}, /* .t_sample_us = */ 0, /* .n_sample = */ 0, } ); } +llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { + const auto * logits = llama_get_logits_ith(ctx, idx); + + const llama_model * model = llama_get_model(ctx); + const llama_vocab * vocab = llama_model_get_vocab(model); + + const int n_vocab = llama_vocab_n_tokens(vocab); + + // use pre-allocated buffer from chain if available, otherwise allocate locally + std::vector * cur_ptr; + std::vector cur_local; + + if (smpl->iface == &llama_sampler_chain_i) { + auto * chain = (llama_sampler_chain *) smpl->ctx; + cur_ptr = &chain->cur; + } else { + cur_ptr = &cur_local; + } + + auto & cur = *cur_ptr; + cur.resize(n_vocab); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; + } + + llama_token_data_array cur_p = { + /* .data = */ cur.data(), + /* .size = */ cur.size(), + /* .selected = */ -1, + /* .sorted = */ false, + }; + + llama_sampler_apply(smpl, &cur_p); + + GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size); + + auto token = cur_p.data[cur_p.selected].id; + + llama_sampler_accept(smpl, token); + + return token; +} + void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) { auto * p = (llama_sampler_chain *) chain->ctx; p->samplers.push_back(smpl); diff --git a/src/llama-sampling.h b/src/llama-sampling.h index 759dd7dcb7..1e3de4e2ec 100644 --- a/src/llama-sampling.h +++ b/src/llama-sampling.h @@ -16,6 +16,9 @@ struct llama_sampler_chain { std::vector samplers; + // pre-allocated buffer for llama_sampler_sample to avoid repeated allocations + std::vector cur; + // timing mutable int64_t t_sample_us; diff --git a/tests/test-chat.cpp b/tests/test-chat.cpp index 02af5251cc..a78627604e 100644 --- a/tests/test-chat.cpp +++ b/tests/test-chat.cpp @@ -650,7 +650,7 @@ static void test_msgs_oaicompat_json_conversion() { "[\n" " {\n" " \"role\": \"assistant\",\n" - " \"content\": null,\n" + " \"content\": \"\",\n" " \"tool_calls\": [\n" " {\n" " \"type\": \"function\",\n" @@ -906,7 +906,8 @@ static void test_template_output_parsers() { " },\n" " \"id\": \"123456789\"\n" " }\n" - " ]\n" + " ],\n" + " \"content\": \"\"\n" "}"); } { @@ -1713,7 +1714,8 @@ static void test_template_output_parsers() { " },\n" " \"id\": \"123456789\"\n" " }\n" - " ]\n" + " ],\n" + " \"content\": \"\"\n" "}", /* expect_grammar_triggered= */ false ); diff --git a/tools/server/CMakeLists.txt b/tools/server/CMakeLists.txt index ae1a497be6..a39b4c5b35 100644 --- a/tools/server/CMakeLists.txt +++ b/tools/server/CMakeLists.txt @@ -38,14 +38,6 @@ set(TARGET_SRCS server-http.h server-models.cpp server-models.h - server-task.cpp - server-task.h - server-queue.cpp - server-queue.h - server-common.cpp - server-common.h - server-context.cpp - server-context.h ) set(PUBLIC_ASSETS index.html.gz