Merge remote-tracking branch 'upstream/master' into backend-sampling
This commit is contained in:
commit
2b4c7927ee
|
|
@ -1232,6 +1232,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params, const std::string & value) {
|
||||
const auto sampler_names = string_split<std::string>(value, ';');
|
||||
params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1261,6 +1262,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.temp = std::stof(value);
|
||||
params.sampling.temp = std::max(params.sampling.temp, 0.0f);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1268,6 +1270,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
|
||||
[](common_params & params, int value) {
|
||||
params.sampling.top_k = value;
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1275,6 +1278,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.top_p = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1282,6 +1286,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.min_p = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1296,6 +1301,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.xtc_probability = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1303,6 +1309,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.xtc_threshold = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1321,6 +1328,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
params.sampling.penalty_last_n = value;
|
||||
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1328,6 +1336,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.penalty_repeat = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1425,6 +1434,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
|
||||
[](common_params & params, int value) {
|
||||
params.sampling.mirostat = value;
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1432,6 +1442,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.mirostat_eta = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
@ -1439,6 +1450,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.mirostat_tau = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
|
|
|
|||
|
|
@ -950,6 +950,58 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
|
|||
// Model utils
|
||||
//
|
||||
|
||||
static inline void common_init_sampler_from_model(
|
||||
const llama_model * model,
|
||||
common_params_sampling & sparams) {
|
||||
|
||||
const uint64_t config = sparams.user_sampling_config;
|
||||
|
||||
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
|
||||
if (config & user_config) return;
|
||||
|
||||
char buf[64] = {0};
|
||||
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
|
||||
char * end = nullptr;
|
||||
int32_t v = strtol(buf, &end, 10);
|
||||
if (end && end != buf) dst = v;
|
||||
}
|
||||
};
|
||||
|
||||
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
|
||||
if (config & user_config) return;
|
||||
|
||||
char buf[128] = {0};
|
||||
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
|
||||
char * end = nullptr;
|
||||
float v = strtof(buf, &end);
|
||||
if (end && end != buf) dst = v;
|
||||
}
|
||||
};
|
||||
|
||||
// Sampling sequence
|
||||
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
|
||||
char buf[512] = {0};
|
||||
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
|
||||
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
|
||||
if (!sampler_names.empty()) {
|
||||
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
|
||||
}
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
|
@ -961,6 +1013,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
|||
return iparams;
|
||||
}
|
||||
|
||||
common_init_sampler_from_model(model, params.sampling);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
|
|
|||
|
|
@ -140,6 +140,22 @@ struct common_grammar_trigger {
|
|||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
};
|
||||
|
||||
enum common_params_sampling_config : uint64_t {
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
|
||||
};
|
||||
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
|
@ -172,6 +188,8 @@ struct common_params_sampling {
|
|||
bool no_perf = false; // disable performance metrics
|
||||
bool timing_per_token = false;
|
||||
|
||||
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
|
||||
|
||||
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -565,7 +565,7 @@ class ModelBase:
|
|||
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
|
||||
)
|
||||
)
|
||||
or not new_name.endswith(".weight")
|
||||
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
|
||||
):
|
||||
data_qtype = gguf.GGMLQuantizationType.F32
|
||||
|
||||
|
|
|
|||
|
|
@ -242,7 +242,7 @@ def parse_args() -> argparse.Namespace:
|
|||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f32",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
The example demonstrates batched generation from a given prompt
|
||||
|
||||
```bash
|
||||
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
|
||||
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4 --kv-unified
|
||||
|
||||
...
|
||||
|
||||
|
|
|
|||
|
|
@ -25,16 +25,17 @@ if(GIT_EXE)
|
|||
)
|
||||
endif()
|
||||
|
||||
# Build the version string with optional dirty flag
|
||||
set(GGML_VERSION "${GGML_VERSION_BASE}")
|
||||
if(GGML_GIT_DIRTY AND NOT GGML_GIT_DIRTY EQUAL 0)
|
||||
set(GGML_VERSION "${GGML_VERSION}-dirty")
|
||||
endif()
|
||||
|
||||
if(NOT GGML_BUILD_COMMIT)
|
||||
set(GGML_BUILD_COMMIT "unknown")
|
||||
endif()
|
||||
|
||||
# Build the commit string with optional dirty flag
|
||||
if(DEFINED GGML_GIT_DIRTY AND GGML_GIT_DIRTY EQUAL 1)
|
||||
set(GGML_BUILD_COMMIT "${GGML_BUILD_COMMIT}-dirty")
|
||||
endif()
|
||||
|
||||
include(CheckIncludeFileCXX)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
|
|
|||
|
|
@ -328,6 +328,14 @@ function(ggml_add_cpu_backend_variant tag_name)
|
|||
set(GGML_INTERNAL_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
foreach (feat RVV)
|
||||
set(GGML_INTERNAL_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
|
|
@ -402,6 +410,13 @@ if (GGML_CPU_ALL_VARIANTS)
|
|||
else()
|
||||
message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
ggml_add_cpu_backend_variant(riscv64_0)
|
||||
ggml_add_cpu_backend_variant(riscv64_v RVV)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported RISC-V target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -452,6 +452,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||
ggml-cpu/spacemit/ime_kernels.h
|
||||
)
|
||||
endif()
|
||||
if(NOT GGML_CPU_ALL_VARIANTS)
|
||||
set(MARCH_STR "rv64gc")
|
||||
if (GGML_RV_ZFH)
|
||||
string(APPEND MARCH_STR "_zfh")
|
||||
|
|
@ -468,6 +469,18 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||
string(APPEND MARCH_STR "_zicbop")
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
|
||||
else()
|
||||
# Begin with the lowest baseline
|
||||
set(ARCH_DEFINITIONS "")
|
||||
|
||||
if (GGML_INTERNAL_RVV)
|
||||
message(STATUS "RVV enabled")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_RVV)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_v -mabi=lp64d)
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} riscv ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
|
|
|
|||
|
|
@ -51,10 +51,8 @@
|
|||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
|
|
|
|||
|
|
@ -24,6 +24,29 @@
|
|||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
static inline void decode_q4_Kx8_scales_mins(const uint8_t * scales_in,
|
||||
int16x8_t * out_mins,
|
||||
int8_t * out_scales) {
|
||||
constexpr uint32_t kmask1 = 0x3f3f3f3f;
|
||||
constexpr uint32_t kmask2 = 0x0f0f0f0f;
|
||||
constexpr uint32_t kmask3 = 0x03030303;
|
||||
constexpr uint8_t scales_size = 12;
|
||||
|
||||
uint32_t sm[3];
|
||||
memcpy(sm, scales_in, scales_size);
|
||||
|
||||
const uint32_t mins_0_3 = sm[1] & kmask1;
|
||||
const uint32_t mins_4_7 = ((sm[2] >> 4) & kmask2) | (((sm[1] >> 6) & kmask3) << 4);
|
||||
const uint32x2_t mins_u32 = { mins_0_3, mins_4_7 };
|
||||
|
||||
*out_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins_u32)));
|
||||
|
||||
uint32_t scales_u32[2];
|
||||
scales_u32[0] = sm[0] & kmask1;
|
||||
scales_u32[1] = (sm[2] & kmask2) | (((sm[0] >> 6) & kmask3) << 4);
|
||||
memcpy(out_scales, scales_u32, 8);
|
||||
}
|
||||
|
||||
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
||||
assert(QK8_0 == 32);
|
||||
assert(k % QK8_0 == 0);
|
||||
|
|
@ -474,6 +497,162 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
|||
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n,
|
||||
float * GGML_RESTRICT s,
|
||||
size_t bs,
|
||||
const void * GGML_RESTRICT vx,
|
||||
const void * GGML_RESTRICT vy,
|
||||
int nr,
|
||||
int nc) {
|
||||
constexpr int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
|
||||
constexpr int ncols_interleaved = 8;
|
||||
constexpr int blocklen = 8;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(nr % 4 == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__aarch64__) && defined(__ARM_NEON)
|
||||
constexpr int col_pairs = ncols_interleaved / 2;
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
// 1x8 tile = 2 x 4
|
||||
float32x4_t acc_f32[ncols_interleaved / 4];
|
||||
|
||||
const block_q8_K * GGML_RESTRICT q8_ptr = (const block_q8_K *) vy;
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int i = 0; i < ncols_interleaved / 4; i++) {
|
||||
acc_f32[i] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int b = 0; b < nb; b++) {
|
||||
float32x4_t q4_d_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d)); // d0 d1 d2 d3
|
||||
float32x4_t q4_d_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4)); // d4 d5 d6 d7
|
||||
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d);
|
||||
float32x4_t sb_scale_0 = vmulq_f32(q4_d_0, q8_d);
|
||||
float32x4_t sb_scale_1 = vmulq_f32(q4_d_1, q8_d);
|
||||
float32x4_t q4_dmin_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin)); // dmin 0..3
|
||||
float32x4_t q4_dmin_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4)); // dmin 4..7
|
||||
float32x4_t sb_min_0 = vmulq_f32(q4_dmin_0, q8_d);
|
||||
float32x4_t sb_min_1 = vmulq_f32(q4_dmin_1, q8_d);
|
||||
|
||||
// interleaved bias_acc: [0]->r0 0123, [1]->r0 4567
|
||||
int32x4_t bias_acc[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
|
||||
// 2 sb each iteration
|
||||
int32x4_t acc_lo[col_pairs];
|
||||
int32x4_t acc_hi[col_pairs];
|
||||
|
||||
// Each bsum is 16 elements, pairwise add leaves us with the 8 bsums of the entire block
|
||||
const int16x8_t bsums = vpaddq_s16(vld1q_s16(q8_ptr[b].bsums), vld1q_s16(q8_ptr[b].bsums + 8));
|
||||
int16_t bsums_arr[8];
|
||||
vst1q_s16(bsums_arr, bsums);
|
||||
for (int sb = 0; sb < QK_K / 64; sb++) {
|
||||
for (int i = 0; i < col_pairs; i++) {
|
||||
acc_lo[i] = vdupq_n_s32(0);
|
||||
acc_hi[i] = vdupq_n_s32(0);
|
||||
}
|
||||
// Need scales for the low and high nibbles
|
||||
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
|
||||
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
|
||||
int16x8_t q4sb_scales[2];
|
||||
for (int i = 0; i < 2; i++) {
|
||||
int8_t aux_q4sb[8];
|
||||
const int offset = sb * 24 + i * 12;
|
||||
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
|
||||
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
|
||||
}
|
||||
|
||||
const uint8_t * q4_base = q4_ptr[b].qs + sb * QK_K;
|
||||
|
||||
// Load the 64 quants from q8K duplicated to use vecdots with the interelaved columns
|
||||
// but still need the qs to use the low and hi bits from q4
|
||||
const int8_t * q8_base = q8_ptr[b].qs + sb * 64;
|
||||
int8x16_t q8_qs[8];
|
||||
for (int i = 0; i < 8; i++) {
|
||||
q8_qs[i] = (int8x16_t) vld1q_dup_s64((const int64_t *) (q8_base + i * 8));
|
||||
}
|
||||
|
||||
// Q4s columns iterated in pairs (01, 23, 45, 67)
|
||||
for (int cp = 0; cp < col_pairs; cp++) {
|
||||
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_base + 16 * cp);
|
||||
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_base + 16 * cp + 64);
|
||||
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_base + 16 * cp + 128);
|
||||
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_base + 16 * cp + 192);
|
||||
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)), q8_qs[0]); // 0 .. 7
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)), q8_qs[1]); // 8 ..15
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)), q8_qs[2]); // 16..23
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)), q8_qs[3]); // 24..31
|
||||
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)), q8_qs[4]); // 32..39
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)), q8_qs[5]); // 40..47
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)), q8_qs[6]); // 48..55
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)), q8_qs[7]); // 56..63
|
||||
}
|
||||
|
||||
// Iterates over a pair of column pairs (4 columns) to use a single 128 register
|
||||
// p = 0 -> 0123 p2 -> 4567
|
||||
for (int i = 0, p = 0; p < col_pairs; i++, p += 2) {
|
||||
int16x4_t group_scales_lo = p == 0 ? vget_low_s16(q4sb_scales[0]) : vget_high_s16(q4sb_scales[0]);
|
||||
int16x4_t group_scales_hi = p == 0 ? vget_low_s16(q4sb_scales[1]) : vget_high_s16(q4sb_scales[1]);
|
||||
float32x4_t sb_scale = p == 0 ? sb_scale_0 : sb_scale_1;
|
||||
|
||||
// 0123 or 4567
|
||||
// TODO: Single superblock mul at the end of the superblock
|
||||
float32x4_t sumf_0 =
|
||||
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_lo), vpaddq_s32(acc_lo[p], acc_lo[p + 1])));
|
||||
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_0);
|
||||
|
||||
float32x4_t sumf_1 =
|
||||
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_hi), vpaddq_s32(acc_hi[p], acc_hi[p + 1])));
|
||||
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_1);
|
||||
}
|
||||
|
||||
// Multiply Acc bsum + mins
|
||||
// Each pair of subblocks share the same bsums
|
||||
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
|
||||
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[2 * sb + 0]);
|
||||
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[2 * sb + 1]);
|
||||
|
||||
// cols 0-3 bias
|
||||
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
|
||||
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
|
||||
|
||||
// cols 4-7 bias
|
||||
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
|
||||
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
|
||||
} // for sb
|
||||
|
||||
acc_f32[0] = vmlsq_f32(acc_f32[0], vcvtq_f32_s32(bias_acc[0]), sb_min_0);
|
||||
acc_f32[1] = vmlsq_f32(acc_f32[1], vcvtq_f32_s32(bias_acc[1]), sb_min_1);
|
||||
} // for b
|
||||
|
||||
int base = x * ncols_interleaved;
|
||||
vst1q_f32(s + base, acc_f32[0]);
|
||||
vst1q_f32(s + base + 4, acc_f32[1]);
|
||||
} // for x
|
||||
return;
|
||||
#endif // defined(__aarch64__) && defined(__ARM_NEON)
|
||||
ggml_gemv_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
|
@ -1889,3 +2068,212 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
|||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n,
|
||||
float * GGML_RESTRICT s,
|
||||
size_t bs,
|
||||
const void * GGML_RESTRICT vx,
|
||||
const void * GGML_RESTRICT vy,
|
||||
int nr,
|
||||
int nc) {
|
||||
constexpr int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
|
||||
constexpr int ncols_interleaved = 8;
|
||||
constexpr int blocklen = 8;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(nr % 4 == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
constexpr int q8_k_blocklen = 4;
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
// 8 accumulators: 2 row pairs × 4 col pairs
|
||||
float32x4_t acc_f32[blocklen];
|
||||
|
||||
for (int y = 0; y < nr / q8_k_blocklen; y++) {
|
||||
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int i = 0; i < blocklen; i++) {
|
||||
acc_f32[i] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int b = 0; b < nb; b++) {
|
||||
// bsums pairs belongs to the same q8_k subblock
|
||||
const int16x8_t bsums[4]{
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
|
||||
};
|
||||
int16_t bsums_arr[4][8];
|
||||
for (int q8_row = 0; q8_row < 4; q8_row++) {
|
||||
vst1q_s16(bsums_arr[q8_row], bsums[q8_row]);
|
||||
}
|
||||
|
||||
int32x4_t sb_acc[4]; // Aux accumulators to store subblock (partial) results
|
||||
int32x4_t acc[8]; // rows 01 stored in [0][1][2][3] rows 23 stored in [4][5][6][7]
|
||||
int32x4_t bias_acc[8]; // interleaved bias_acc: [0]->r0 0123, [1]->r0 4567, [2]->r1 0123 ...
|
||||
for (int i = 0; i < 8; i++) {
|
||||
acc[i] = vdupq_n_s32(0);
|
||||
bias_acc[i] = vdupq_n_s32(0);
|
||||
}
|
||||
|
||||
for (int sb = 0; sb < QK_K / 64; sb++) {
|
||||
// Need scales for the low and high nibbles
|
||||
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
|
||||
int8_t q4sb_scales[2][8];
|
||||
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
|
||||
for (int i = 0; i < 2; i++) {
|
||||
const int offset = sb * 24 + i * 12;
|
||||
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], q4sb_scales[i]);
|
||||
}
|
||||
|
||||
// q8_ptr[b].qs has interleaved Q8 rows (01, 23)
|
||||
const int8_t * q8_base = q8_ptr[b].qs + sb * 256;
|
||||
|
||||
int8x16_t q8_qs_01[8];
|
||||
int8x16_t q8_qs_23[8];
|
||||
|
||||
// Load 32-byte per row pair, 1 subblock each time
|
||||
for (int i = 0; i < 8; i++) {
|
||||
const int offset = i * 32; // 16 for row 01, 16 for row 23
|
||||
q8_qs_01[i] = vld1q_s8(q8_base + offset);
|
||||
q8_qs_23[i] = vld1q_s8(q8_base + offset + 16);
|
||||
}
|
||||
|
||||
const int8x16_t q8s[2][8] = {
|
||||
{ q8_qs_01[0], q8_qs_01[1], q8_qs_01[2], q8_qs_01[3],
|
||||
q8_qs_01[4], q8_qs_01[5], q8_qs_01[6], q8_qs_01[7] },
|
||||
{ q8_qs_23[0], q8_qs_23[1], q8_qs_23[2], q8_qs_23[3],
|
||||
q8_qs_23[4], q8_qs_23[5], q8_qs_23[6], q8_qs_23[7] },
|
||||
};
|
||||
|
||||
// Q4s columns iterated in pairs (01, 23, 45, 67)
|
||||
for (int cp = 0; cp < ncols_interleaved / 2; cp++) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
sb_acc[i] = vdupq_n_s32(0);
|
||||
}
|
||||
|
||||
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 0); // 0 .. 7 & 32..39
|
||||
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 64); // 8 ..15 & 40..47
|
||||
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 128); // 16..23 & 48..55
|
||||
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 192); // 24..31 & 56..63
|
||||
const int8x16_t q4_nibbles[2][4] = {
|
||||
{
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)),
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)),
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)),
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)),
|
||||
},
|
||||
{
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)),
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)),
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)),
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)),
|
||||
}
|
||||
};
|
||||
|
||||
// Calculates the Qs muladd of every row pair (rp) rows 01 and 23 of q8
|
||||
// for each of the internal 32 qs subblock (blk)
|
||||
for (int rp = 0; rp < 2; rp++) {
|
||||
for (int blk = 0; blk < 2; blk++) {
|
||||
const int8x16_t * q8 = &q8s[rp][4 * blk];
|
||||
const int8x16_t * q4 = q4_nibbles[blk];
|
||||
int32x4_t acc = sb_acc[2 * rp + blk];
|
||||
// mul add for each qs in the same subblock
|
||||
for (int qs_offset = 0; qs_offset < 4; qs_offset++) {
|
||||
acc = vmmlaq_s32(acc, q4[qs_offset], q8[qs_offset]);
|
||||
}
|
||||
sb_acc[2 * rp + blk] = acc;
|
||||
}
|
||||
}
|
||||
|
||||
// Scales[i] corresponds to column i
|
||||
const int scale_offset = cp * 2;
|
||||
for (int blk = 0; blk < 2; blk++) {
|
||||
const int32x4_t block_scale = {
|
||||
(int32_t) q4sb_scales[blk][scale_offset],
|
||||
(int32_t) q4sb_scales[blk][scale_offset],
|
||||
(int32_t) q4sb_scales[blk][scale_offset + 1],
|
||||
(int32_t) q4sb_scales[blk][scale_offset + 1],
|
||||
};
|
||||
acc[cp] = vmlaq_s32(acc[cp], sb_acc[blk], block_scale);
|
||||
acc[cp + 4] = vmlaq_s32(acc[cp + 4], sb_acc[blk + 2], block_scale);
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply Acc bsum + mins
|
||||
for (int q8_row = 0; q8_row < 4; q8_row++) {
|
||||
// Each pair of subblocks share the same bsums
|
||||
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
|
||||
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[sb][q8_row * 2]);
|
||||
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[sb][q8_row * 2 + 1]);
|
||||
|
||||
bias_acc[2 * q8_row] =
|
||||
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
|
||||
bias_acc[2 * q8_row] =
|
||||
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
|
||||
bias_acc[2 * q8_row + 1] =
|
||||
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
|
||||
bias_acc[2 * q8_row + 1] =
|
||||
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
|
||||
}
|
||||
} // for sb
|
||||
|
||||
// Reorder of i8mm output with bias and output layout
|
||||
for (int i = 0; i < 8; i++) {
|
||||
int32x2x2_t aux = vzip_s32(vget_low_s32(acc[i]), vget_high_s32(acc[i]));
|
||||
acc[i] = vcombine_s32(aux.val[0], aux.val[1]);
|
||||
}
|
||||
int32x4_t reorder_acc[8] = {
|
||||
vcombine_s32(vget_low_s32(acc[0]), vget_low_s32(acc[1])),
|
||||
vcombine_s32(vget_low_s32(acc[2]), vget_low_s32(acc[3])),
|
||||
vcombine_s32(vget_high_s32(acc[0]), vget_high_s32(acc[1])),
|
||||
vcombine_s32(vget_high_s32(acc[2]), vget_high_s32(acc[3])),
|
||||
vcombine_s32(vget_low_s32(acc[4]), vget_low_s32(acc[5])),
|
||||
vcombine_s32(vget_low_s32(acc[6]), vget_low_s32(acc[7])),
|
||||
vcombine_s32(vget_high_s32(acc[4]), vget_high_s32(acc[5])),
|
||||
vcombine_s32(vget_high_s32(acc[6]), vget_high_s32(acc[7])),
|
||||
};
|
||||
|
||||
for (int i = 0; i < q8_k_blocklen; i++) {
|
||||
for (int j = 0; j < 2; j++) {
|
||||
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d[i]);
|
||||
float32x4_t q4_dmin = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].dmin + j * 4)));
|
||||
const float32x4_t dmins = vmulq_f32(q4_dmin, q8_d);
|
||||
|
||||
float32x4_t q4_d = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].d + j * 4)));
|
||||
const float32x4_t scale = vmulq_f32(q4_d, q8_d);
|
||||
|
||||
acc_f32[2 * i + j] = vmlsq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(bias_acc[2 * i + j]), dmins);
|
||||
acc_f32[2 * i + j] =
|
||||
vmlaq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(reorder_acc[2 * i + j]), scale);
|
||||
}
|
||||
}
|
||||
} // for b
|
||||
|
||||
// With the previous reorder, the tile is already in the correct memory layout.
|
||||
for (int i = 0; i < q8_k_blocklen; i++) {
|
||||
int row = y * q8_k_blocklen + i;
|
||||
for (int j = 0; j < 2; j++) {
|
||||
int col = x * ncols_interleaved + j * 4;
|
||||
int offset = row * bs + col;
|
||||
vst1q_f32(s + offset, acc_f32[2 * i + j]);
|
||||
}
|
||||
}
|
||||
} // for x
|
||||
} // for y
|
||||
return;
|
||||
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
ggml_gemm_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,35 @@
|
|||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__riscv) && __riscv_xlen == 64
|
||||
#include <sys/auxv.h>
|
||||
|
||||
//https://github.com/torvalds/linux/blob/master/arch/riscv/include/uapi/asm/hwcap.h#L24
|
||||
#ifndef COMPAT_HWCAP_ISA_V
|
||||
#define COMPAT_HWCAP_ISA_V (1 << ('V' - 'A'))
|
||||
#endif
|
||||
|
||||
struct riscv64_features {
|
||||
bool has_rvv = false;
|
||||
|
||||
riscv64_features() {
|
||||
uint32_t hwcap = getauxval(AT_HWCAP);
|
||||
|
||||
has_rvv = !!(hwcap & COMPAT_HWCAP_ISA_V);
|
||||
}
|
||||
};
|
||||
|
||||
static int ggml_backend_cpu_riscv64_score() {
|
||||
int score = 1;
|
||||
riscv64_features rf;
|
||||
|
||||
#ifdef GGML_USE_RVV
|
||||
if (!rf.has_rvv) { return 0; }
|
||||
score += 1 << 1;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_riscv64_score)
|
||||
|
||||
#endif // __riscv && __riscv_xlen == 64
|
||||
|
|
@ -1961,6 +1961,11 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
|
|||
return &q4_K_8x8_q8_K;
|
||||
}
|
||||
}
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
|
||||
if (cur->ne[1] % 8 == 0) {
|
||||
return &q4_K_8x8_q8_K;
|
||||
}
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_Q2_K) {
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
if (cur->ne[1] % 8 == 0) {
|
||||
|
|
|
|||
|
|
@ -73,34 +73,7 @@ namespace ggml_cuda_mma {
|
|||
static constexpr int I = I_;
|
||||
static constexpr int J = J_;
|
||||
|
||||
#if defined(GGML_USE_HIP)
|
||||
#if defined(RDNA4)
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 16 && J == 16) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 16 && J == 16) {
|
||||
return 8 * (threadIdx.x / 16) + l;
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 16 && J == 16) {
|
||||
return threadIdx.x % 16;
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
#if defined(AMD_MFMA_AVAILABLE)
|
||||
static constexpr int ne = I * J / 64;
|
||||
T x[ne] = {0};
|
||||
|
||||
|
|
@ -146,7 +119,6 @@ namespace ggml_cuda_mma {
|
|||
return -1;
|
||||
}
|
||||
}
|
||||
#endif // defined(RDNA4)
|
||||
#elif __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
|
@ -177,6 +149,34 @@ namespace ggml_cuda_mma {
|
|||
return -1;
|
||||
}
|
||||
}
|
||||
#elif defined(AMD_WMMA_AVAILABLE)
|
||||
#if defined(RDNA4)
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 16 && J == 16) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 16 && J == 16) {
|
||||
return 8 * (threadIdx.x / 16) + l;
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 16 && J == 16) {
|
||||
return threadIdx.x % 16;
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
|
@ -437,7 +437,20 @@ namespace ggml_cuda_mma {
|
|||
xi[0] = xs[0];
|
||||
}
|
||||
#elif defined(AMD_WMMA_AVAILABLE)
|
||||
ggml_cuda_memcpy_1<sizeof(t.x)>(t.x, xs0 + t.get_i(0) * stride + t.get_j(0));
|
||||
if constexpr (I == 16 && J == 4) {
|
||||
int64_t * xi = (int64_t *) t.x;
|
||||
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
|
||||
xi[0] = xs[0];
|
||||
}else if constexpr (I == 16 && J == 8) {
|
||||
int64_t * xi = (int64_t *) t.x;
|
||||
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I));
|
||||
xi[0] = xs[0];
|
||||
|
||||
const int64_t * xs1 = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I) + 2);
|
||||
xi[1] = xs1[0];
|
||||
}else{
|
||||
NO_DEVICE_CODE;
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int l = 0; l < t.ne; ++l) {
|
||||
|
|
@ -772,6 +785,36 @@ namespace ggml_cuda_mma {
|
|||
acc[0],
|
||||
0, 0, 0);
|
||||
#endif // defined(CDNA3)
|
||||
|
||||
#elif defined(AMD_WMMA_AVAILABLE)
|
||||
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
|
||||
int32x2_t * a_vec = (int32x2_t *) A.x;
|
||||
int32x2_t * b_vec = (int32x2_t *) B.x;
|
||||
|
||||
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
|
||||
int32x8_t * acc = (int32x8_t *) D.x;
|
||||
|
||||
#if defined(RDNA4)
|
||||
|
||||
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
|
||||
true,
|
||||
a_vec[0],
|
||||
true,
|
||||
b_vec[0],
|
||||
acc[0],
|
||||
true
|
||||
);
|
||||
|
||||
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
|
||||
true,
|
||||
a_vec[1],
|
||||
true,
|
||||
b_vec[1],
|
||||
acc[0],
|
||||
true
|
||||
);
|
||||
#endif // defined(RDNA4)
|
||||
|
||||
#else
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
|
|
@ -798,6 +841,7 @@ namespace ggml_cuda_mma {
|
|||
acc[0],
|
||||
0, 0, 0);
|
||||
#endif // defined(CDNA3)
|
||||
|
||||
#else
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
|
|
@ -842,4 +886,31 @@ namespace ggml_cuda_mma {
|
|||
mma(D16[1], A16[1], B);
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<16, 16, int> & D, const tile<16, 4, int> & A, const tile<16, 4, int> & B) {
|
||||
#if defined(AMD_WMMA_AVAILABLE)
|
||||
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
|
||||
int32x2_t * a_vec = (int32x2_t *) A.x;
|
||||
int32x2_t * b_vec = (int32x2_t *) B.x;
|
||||
|
||||
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
|
||||
int32x8_t * acc = (int32x8_t *) D.x;
|
||||
|
||||
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
|
||||
true,
|
||||
a_vec[0],
|
||||
true,
|
||||
b_vec[0],
|
||||
acc[0],
|
||||
false
|
||||
);
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -306,5 +306,11 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
|||
return false;
|
||||
}
|
||||
|
||||
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
if (amd_wmma_available(cc)) {
|
||||
if (GGML_CUDA_CC_IS_RDNA4(cc)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -1629,6 +1629,22 @@ class vk_perf_logger {
|
|||
timings[name].push_back(time);
|
||||
return;
|
||||
}
|
||||
if (node->op == GGML_OP_FLASH_ATTN_EXT) {
|
||||
const ggml_tensor * dst = node;
|
||||
const ggml_tensor * q = node->src[0];
|
||||
const ggml_tensor * k = node->src[1];
|
||||
const ggml_tensor * v = node->src[2];
|
||||
const ggml_tensor * m = node->src[3];
|
||||
std::stringstream name;
|
||||
name << ggml_op_name(node->op) <<
|
||||
" dst(" << dst->ne[0] << "," << dst->ne[1] << "," << dst->ne[2] << "," << dst->ne[3] << "), " <<
|
||||
" q(" << q->ne[0] << "," << q->ne[1] << "," << q->ne[2] << "," << q->ne[3] << "), " <<
|
||||
" k(" << k->ne[0] << "," << k->ne[1] << "," << k->ne[2] << "," << k->ne[3] << "), " <<
|
||||
" v(" << v->ne[0] << "," << v->ne[1] << "," << v->ne[2] << "," << v->ne[3] << "), " <<
|
||||
" m(" << (m?m->ne[0]:0) << "," << (m?m->ne[1]:0) << "," << (m?m->ne[2]:0) << "," << (m?m->ne[3]:0) << ")";
|
||||
timings[name.str()].push_back(time);
|
||||
return;
|
||||
}
|
||||
timings[ggml_op_name(node->op)].push_back(time);
|
||||
}
|
||||
private:
|
||||
|
|
|
|||
|
|
@ -25,6 +25,20 @@ class Keys:
|
|||
ALIGNMENT = "general.alignment"
|
||||
FILE_TYPE = "general.file_type"
|
||||
|
||||
# Recommended Sampler Parameters
|
||||
SAMPLING_SEQUENCE = "general.sampling.sequence"
|
||||
SAMPLING_TOP_K = "general.sampling.top_k"
|
||||
SAMPLING_TOP_P = "general.sampling.top_p"
|
||||
SAMPLING_MIN_P = "general.sampling.min_p"
|
||||
SAMPLING_XTC_PROBABILITY = "general.sampling.xtc_probability"
|
||||
SAMPLING_XTC_THRESHOLD = "general.sampling.xtc_threshold"
|
||||
SAMPLING_TEMP = "general.sampling.temp"
|
||||
SAMPLING_PENALTY_LAST_N = "general.sampling.penalty_last_n"
|
||||
SAMPLING_PENALTY_REPEAT = "general.sampling.penalty_repeat"
|
||||
SAMPLING_MIROSTAT = "general.sampling.mirostat"
|
||||
SAMPLING_MIROSTAT_TAU = "general.sampling.mirostat_tau"
|
||||
SAMPLING_MIROSTAT_ETA = "general.sampling.mirostat_eta"
|
||||
|
||||
# Authorship Metadata
|
||||
NAME = "general.name"
|
||||
AUTHOR = "general.author"
|
||||
|
|
|
|||
|
|
@ -496,6 +496,42 @@ class GGUFWriter:
|
|||
def add_file_type(self, ftype: int) -> None:
|
||||
self.add_uint32(Keys.General.FILE_TYPE, ftype)
|
||||
|
||||
def add_sampling_sequence(self, sequence: str) -> None:
|
||||
self.add_string(Keys.General.SAMPLING_SEQUENCE, sequence)
|
||||
|
||||
def add_sampling_top_k(self, top_k: int) -> None:
|
||||
self.add_int32(Keys.General.SAMPLING_TOP_K, top_k)
|
||||
|
||||
def add_sampling_top_p(self, top_p: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_TOP_P, top_p)
|
||||
|
||||
def add_sampling_min_p(self, min_p: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_MIN_P, min_p)
|
||||
|
||||
def add_sampling_xtc_probability(self, xtc_probability: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_XTC_PROBABILITY, xtc_probability)
|
||||
|
||||
def add_sampling_xtc_threshold(self, xtc_threshold: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_XTC_THRESHOLD, xtc_threshold)
|
||||
|
||||
def add_sampling_temp(self, temp: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_TEMP, temp)
|
||||
|
||||
def add_sampling_penalty_last_n(self, penalty_last_n: int) -> None:
|
||||
self.add_int32(Keys.General.SAMPLING_PENALTY_LAST_N, penalty_last_n)
|
||||
|
||||
def add_sampling_penalty_repeat(self, penalty_repeat: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_PENALTY_REPEAT, penalty_repeat)
|
||||
|
||||
def add_sampling_mirostat(self, mirostat: int) -> None:
|
||||
self.add_int32(Keys.General.SAMPLING_MIROSTAT, mirostat)
|
||||
|
||||
def add_sampling_mirostat_tau(self, mirostat_tau: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_MIROSTAT_TAU, mirostat_tau)
|
||||
|
||||
def add_sampling_mirostat_eta(self, mirostat_eta: float) -> None:
|
||||
self.add_float32(Keys.General.SAMPLING_MIROSTAT_ETA, mirostat_eta)
|
||||
|
||||
def add_name(self, name: str) -> None:
|
||||
self.add_string(Keys.General.NAME, name)
|
||||
|
||||
|
|
|
|||
|
|
@ -17,6 +17,20 @@ logger = logging.getLogger("metadata")
|
|||
|
||||
@dataclass
|
||||
class Metadata:
|
||||
# Recommended Sampler Parameters to be written to GGUF KV Store
|
||||
sampling_sequence: Optional[str] = None
|
||||
sampling_top_k: Optional[int] = None
|
||||
sampling_top_p: Optional[float] = None
|
||||
sampling_min_p: Optional[float] = None
|
||||
sampling_xtc_probability: Optional[float] = None
|
||||
sampling_xtc_threshold: Optional[float] = None
|
||||
sampling_temp: Optional[float] = None
|
||||
sampling_penalty_last_n: Optional[int] = None
|
||||
sampling_penalty_repeat: Optional[float] = None
|
||||
sampling_mirostat: Optional[int] = None
|
||||
sampling_mirostat_tau: Optional[float] = None
|
||||
sampling_mirostat_eta: Optional[float] = None
|
||||
|
||||
# Authorship Metadata to be written to GGUF KV Store
|
||||
name: Optional[str] = None
|
||||
author: Optional[str] = None
|
||||
|
|
@ -54,15 +68,43 @@ class Metadata:
|
|||
|
||||
model_card = Metadata.load_model_card(model_path)
|
||||
hf_params = Metadata.load_hf_parameters(model_path)
|
||||
gen_config = Metadata.load_generation_config(model_path)
|
||||
# TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
|
||||
|
||||
# heuristics
|
||||
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
|
||||
|
||||
if gen_config:
|
||||
metadata.sampling_sequence = gen_config.get("sequence", metadata.sampling_sequence)
|
||||
metadata.sampling_top_k = gen_config.get("top_k", metadata.sampling_top_k)
|
||||
metadata.sampling_top_p = gen_config.get("top_p", metadata.sampling_top_p)
|
||||
metadata.sampling_min_p = gen_config.get("min_p", metadata.sampling_min_p)
|
||||
metadata.sampling_xtc_probability = gen_config.get("xtc_probability", metadata.sampling_xtc_probability)
|
||||
metadata.sampling_xtc_threshold = gen_config.get("xtc_threshold", metadata.sampling_xtc_threshold)
|
||||
metadata.sampling_temp = gen_config.get("temperature", metadata.sampling_temp)
|
||||
metadata.sampling_penalty_last_n = gen_config.get("penalty_last_n", metadata.sampling_penalty_last_n)
|
||||
metadata.sampling_penalty_repeat = gen_config.get("penalty_repeat", metadata.sampling_penalty_repeat)
|
||||
metadata.sampling_mirostat = gen_config.get("mirostat", metadata.sampling_mirostat)
|
||||
metadata.sampling_mirostat_tau = gen_config.get("mirostat_tau", metadata.sampling_mirostat_tau)
|
||||
metadata.sampling_mirostat_eta = gen_config.get("mirostat_eta", metadata.sampling_mirostat_eta)
|
||||
|
||||
# Metadata Override File Provided
|
||||
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
||||
metadata_override = Metadata.load_metadata_override(metadata_override_path)
|
||||
|
||||
metadata.sampling_sequence = metadata_override.get(Keys.General.SAMPLING_SEQUENCE, metadata.sampling_sequence)
|
||||
metadata.sampling_top_k = metadata_override.get(Keys.General.SAMPLING_TOP_K, metadata.sampling_top_k)
|
||||
metadata.sampling_top_p = metadata_override.get(Keys.General.SAMPLING_TOP_P, metadata.sampling_top_p)
|
||||
metadata.sampling_min_p = metadata_override.get(Keys.General.SAMPLING_MIN_P, metadata.sampling_min_p)
|
||||
metadata.sampling_xtc_probability = metadata_override.get(Keys.General.SAMPLING_XTC_PROBABILITY, metadata.sampling_xtc_probability)
|
||||
metadata.sampling_xtc_threshold = metadata_override.get(Keys.General.SAMPLING_XTC_THRESHOLD, metadata.sampling_xtc_threshold)
|
||||
metadata.sampling_temp = metadata_override.get(Keys.General.SAMPLING_TEMP, metadata.sampling_temp)
|
||||
metadata.sampling_penalty_last_n = metadata_override.get(Keys.General.SAMPLING_PENALTY_LAST_N, metadata.sampling_penalty_last_n)
|
||||
metadata.sampling_penalty_repeat = metadata_override.get(Keys.General.SAMPLING_PENALTY_REPEAT, metadata.sampling_penalty_repeat)
|
||||
metadata.sampling_mirostat = metadata_override.get(Keys.General.SAMPLING_MIROSTAT, metadata.sampling_mirostat)
|
||||
metadata.sampling_mirostat_tau = metadata_override.get(Keys.General.SAMPLING_MIROSTAT_TAU, metadata.sampling_mirostat_tau)
|
||||
metadata.sampling_mirostat_eta = metadata_override.get(Keys.General.SAMPLING_MIROSTAT_ETA, metadata.sampling_mirostat_eta)
|
||||
|
||||
metadata.name = metadata_override.get(Keys.General.NAME, metadata.name)
|
||||
metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
|
||||
metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
|
||||
|
|
@ -172,6 +214,23 @@ class Metadata:
|
|||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
|
||||
@staticmethod
|
||||
def load_generation_config(model_path: Optional[Path] = None) -> dict[str, Any]:
|
||||
if model_path is None or not model_path.is_dir():
|
||||
return {}
|
||||
|
||||
generation_config_path = model_path / "generation_config.json"
|
||||
|
||||
if not generation_config_path.is_file():
|
||||
return {}
|
||||
|
||||
try:
|
||||
with open(generation_config_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
except (json.JSONDecodeError, IOError):
|
||||
# not all models have valid generation_config.json
|
||||
return {}
|
||||
|
||||
@staticmethod
|
||||
def id_to_title(string):
|
||||
# Convert capitalization into title form unless acronym or version number
|
||||
|
|
@ -546,6 +605,32 @@ class Metadata:
|
|||
|
||||
def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
|
||||
assert self.name is not None
|
||||
|
||||
if self.sampling_sequence is not None:
|
||||
gguf_writer.add_sampling_sequence(self.sampling_sequence)
|
||||
if self.sampling_top_k is not None:
|
||||
gguf_writer.add_sampling_top_k(self.sampling_top_k)
|
||||
if self.sampling_top_p is not None:
|
||||
gguf_writer.add_sampling_top_p(self.sampling_top_p)
|
||||
if self.sampling_min_p is not None:
|
||||
gguf_writer.add_sampling_min_p(self.sampling_min_p)
|
||||
if self.sampling_xtc_probability is not None:
|
||||
gguf_writer.add_sampling_xtc_probability(self.sampling_xtc_probability)
|
||||
if self.sampling_xtc_threshold is not None:
|
||||
gguf_writer.add_sampling_xtc_threshold(self.sampling_xtc_threshold)
|
||||
if self.sampling_temp is not None:
|
||||
gguf_writer.add_sampling_temp(self.sampling_temp)
|
||||
if self.sampling_penalty_last_n is not None:
|
||||
gguf_writer.add_sampling_penalty_last_n(self.sampling_penalty_last_n)
|
||||
if self.sampling_penalty_repeat is not None:
|
||||
gguf_writer.add_sampling_penalty_repeat(self.sampling_penalty_repeat)
|
||||
if self.sampling_mirostat is not None:
|
||||
gguf_writer.add_sampling_mirostat(self.sampling_mirostat)
|
||||
if self.sampling_mirostat_tau is not None:
|
||||
gguf_writer.add_sampling_mirostat_tau(self.sampling_mirostat_tau)
|
||||
if self.sampling_mirostat_eta is not None:
|
||||
gguf_writer.add_sampling_mirostat_eta(self.sampling_mirostat_eta)
|
||||
|
||||
gguf_writer.add_name(self.name)
|
||||
|
||||
if self.author is not None:
|
||||
|
|
|
|||
|
|
@ -253,6 +253,21 @@ extern "C" {
|
|||
LLAMA_KV_OVERRIDE_TYPE_STR,
|
||||
};
|
||||
|
||||
enum llama_model_meta_key {
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_TOP_K,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_TOP_P,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIN_P,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_TEMP,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
enum llama_model_kv_override_type tag;
|
||||
|
||||
|
|
@ -534,6 +549,9 @@ extern "C" {
|
|||
// Get the number of metadata key/value pairs
|
||||
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
|
||||
|
||||
// Get sampling metadata key name. Returns nullptr if the key is invalid
|
||||
LLAMA_API const char * llama_model_meta_key_str(enum llama_model_meta_key key);
|
||||
|
||||
// Get metadata key name by index
|
||||
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||||
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
781baf2a14d9e0aaee542b2e1bb918bfc4132199
|
||||
55bc9320a4aae82af18e23eefd5de319a755d7b9
|
||||
|
|
|
|||
|
|
@ -119,6 +119,18 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|||
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
|
||||
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
|
||||
{ LLM_KV_GENERAL_FILE_TYPE, "general.file_type" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_SEQUENCE, "general.sampling.sequence" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_TOP_K, "general.sampling.top_k" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_TOP_P, "general.sampling.top_p" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIN_P, "general.sampling.min_p" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY, "general.sampling.xtc_probability" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD, "general.sampling.xtc_threshold" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_TEMP, "general.sampling.temp" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N, "general.sampling.penalty_last_n" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT, "general.sampling.penalty_repeat" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT, "general.sampling.mirostat" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU, "general.sampling.mirostat_tau" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA, "general.sampling.mirostat_eta" },
|
||||
{ LLM_KV_GENERAL_NAME, "general.name" },
|
||||
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
|
||||
{ LLM_KV_GENERAL_VERSION, "general.version" },
|
||||
|
|
|
|||
|
|
@ -123,6 +123,18 @@ enum llm_kv {
|
|||
LLM_KV_GENERAL_QUANTIZATION_VERSION,
|
||||
LLM_KV_GENERAL_ALIGNMENT,
|
||||
LLM_KV_GENERAL_FILE_TYPE,
|
||||
LLM_KV_GENERAL_SAMPLING_SEQUENCE,
|
||||
LLM_KV_GENERAL_SAMPLING_TOP_K,
|
||||
LLM_KV_GENERAL_SAMPLING_TOP_P,
|
||||
LLM_KV_GENERAL_SAMPLING_MIN_P,
|
||||
LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY,
|
||||
LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD,
|
||||
LLM_KV_GENERAL_SAMPLING_TEMP,
|
||||
LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N,
|
||||
LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT,
|
||||
LLM_KV_GENERAL_SAMPLING_MIROSTAT,
|
||||
LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU,
|
||||
LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA,
|
||||
LLM_KV_GENERAL_NAME,
|
||||
LLM_KV_GENERAL_AUTHOR,
|
||||
LLM_KV_GENERAL_VERSION,
|
||||
|
|
|
|||
|
|
@ -1594,7 +1594,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// note: this is mostly relevant for recurrent models atm
|
||||
if (!sorted_output) {
|
||||
if (!sorted_output && n_outputs > 1) {
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
|
||||
// TODO: is there something more efficient which also minimizes swaps?
|
||||
|
|
|
|||
|
|
@ -7690,6 +7690,24 @@ int32_t llama_model_meta_count(const llama_model * model) {
|
|||
return (int)model->gguf_kv.size();
|
||||
}
|
||||
|
||||
const char * llama_model_meta_key_str(llama_model_meta_key key) {
|
||||
switch (key) {
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE: return "general.sampling.sequence";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_TOP_K: return "general.sampling.top_k";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_TOP_P: return "general.sampling.top_p";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_MIN_P: return "general.sampling.min_p";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY: return "general.sampling.xtc_probability";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD: return "general.sampling.xtc_threshold";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_TEMP: return "general.sampling.temp";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N: return "general.sampling.penalty_last_n";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT: return "general.sampling.penalty_repeat";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT: return "general.sampling.mirostat";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU: return "general.sampling.mirostat_tau";
|
||||
case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA: return "general.sampling.mirostat_eta";
|
||||
default: return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
|
||||
if (i < 0 || i >= (int)model->gguf_kv.size()) {
|
||||
if (buf_size > 0) {
|
||||
|
|
|
|||
|
|
@ -13,9 +13,14 @@ endif()
|
|||
|
||||
set(TARGET_SRCS
|
||||
server.cpp
|
||||
utils.hpp
|
||||
server-http.cpp
|
||||
server-http.h
|
||||
server-task.cpp
|
||||
server-task.h
|
||||
server-queue.cpp
|
||||
server-queue.h
|
||||
server-common.cpp
|
||||
server-common.h
|
||||
)
|
||||
set(PUBLIC_ASSETS
|
||||
index.html.gz
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,349 @@
|
|||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
#include "chat.h"
|
||||
#include "mtmd.h"
|
||||
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <cinttypes>
|
||||
|
||||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
|
||||
|
||||
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
|
||||
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
|
||||
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
|
||||
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
|
||||
|
||||
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
|
||||
using raw_buffer = std::vector<uint8_t>;
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json & body, const std::string & key, const T & default_value) {
|
||||
// Fallback null to default value
|
||||
if (body.contains(key) && !body.at(key).is_null()) {
|
||||
try {
|
||||
return body.at(key);
|
||||
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const & err) {
|
||||
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value: %s\n", key.c_str(), json(default_value).type_name(), err.what());
|
||||
return default_value;
|
||||
}
|
||||
} else {
|
||||
return default_value;
|
||||
}
|
||||
}
|
||||
|
||||
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
|
||||
enum error_type {
|
||||
ERROR_TYPE_INVALID_REQUEST,
|
||||
ERROR_TYPE_AUTHENTICATION,
|
||||
ERROR_TYPE_SERVER,
|
||||
ERROR_TYPE_NOT_FOUND,
|
||||
ERROR_TYPE_PERMISSION,
|
||||
ERROR_TYPE_UNAVAILABLE, // custom error
|
||||
ERROR_TYPE_NOT_SUPPORTED, // custom error
|
||||
ERROR_TYPE_EXCEED_CONTEXT_SIZE, // custom error
|
||||
};
|
||||
|
||||
// thin wrapper around common_grammar_trigger with (de)serialization functions
|
||||
struct server_grammar_trigger {
|
||||
common_grammar_trigger value;
|
||||
|
||||
server_grammar_trigger() = default;
|
||||
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
|
||||
server_grammar_trigger(const json & in) {
|
||||
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
|
||||
value.value = in.at("value").get<std::string>();
|
||||
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
value.token = (llama_token) in.at("token").get<int>();
|
||||
}
|
||||
}
|
||||
|
||||
json to_json() const {
|
||||
json out {
|
||||
{"type", (int) value.type},
|
||||
{"value", value.value},
|
||||
};
|
||||
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out["token"] = (int) value.token;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
json format_error_response(const std::string & message, const enum error_type type);
|
||||
|
||||
//
|
||||
// random string / id
|
||||
//
|
||||
|
||||
std::string random_string();
|
||||
std::string gen_chatcmplid();
|
||||
std::string gen_tool_call_id();
|
||||
|
||||
//
|
||||
// lora utils
|
||||
//
|
||||
|
||||
// check whether the given lora set has only aloras activated (empty => false)
|
||||
bool lora_all_alora(const std::vector<common_adapter_lora_info> & loras);
|
||||
|
||||
// if the two sets of loras are different, they require a cache clear unless the
|
||||
// change is only from aloras to aloras.
|
||||
bool lora_should_clear_cache(
|
||||
const std::vector<common_adapter_lora_info> & current,
|
||||
const std::vector<common_adapter_lora_info> & next);
|
||||
|
||||
std::vector<common_adapter_lora_info> parse_lora_request(
|
||||
const std::vector<common_adapter_lora_info> & lora_base,
|
||||
const json & data);
|
||||
|
||||
bool are_lora_equal(
|
||||
const std::vector<common_adapter_lora_info> & l1,
|
||||
const std::vector<common_adapter_lora_info> & l2);
|
||||
|
||||
// get the ids of all enabled loras
|
||||
std::vector<size_t> lora_get_enabled_ids(const std::vector<common_adapter_lora_info> & loras);
|
||||
|
||||
//
|
||||
// server_tokens
|
||||
//
|
||||
|
||||
/**
|
||||
* server_tokens is a helper to manage the input tokens and image for the server.
|
||||
* it is made this way to simplify the logic of KV cache management.
|
||||
*/
|
||||
struct server_tokens {
|
||||
bool has_mtmd = false;
|
||||
|
||||
private: // disallow accessing these members directly, risking out-of-sync
|
||||
|
||||
// map a **start** index in tokens to the image chunk
|
||||
// note: the order need to be in-sync with tokens
|
||||
std::map<size_t, mtmd::input_chunk_ptr> map_idx_to_media;
|
||||
|
||||
// list of tokens
|
||||
// if the token is LLAMA_TOKEN_NULL, it indicates that this position is occupied by media chunk
|
||||
// otherwise, it is a normal text token
|
||||
// note: a non-text chunk can occupy multiple tokens (aka memory cells) in the token list
|
||||
// note(2): for M-RoPE, an image can occupy different number of pos; do not assume 1-to-1 mapping tokens <-> pos
|
||||
llama_tokens tokens;
|
||||
|
||||
// for ex. with input of 5 text tokens and 2 images (each image occupies 3 tokens and 2 pos):
|
||||
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] [img1]
|
||||
// idx 0 1 2 3 4 5 6 7 8 9 10
|
||||
// pos 0 1 2 3 4 5 5 5 7 7 7
|
||||
// map_idx_to_media will contain: {5, img0}, {8, img1}
|
||||
|
||||
public:
|
||||
server_tokens() = default;
|
||||
~server_tokens() = default;
|
||||
|
||||
// Prevent copying
|
||||
// TODO: server_tokens should be copyable - remove this:
|
||||
server_tokens(const server_tokens&) = delete;
|
||||
server_tokens& operator=(const server_tokens&) = delete;
|
||||
|
||||
// Allow moving (usually implicitly generated if members are movable)
|
||||
server_tokens(server_tokens&&) = default;
|
||||
server_tokens& operator=(server_tokens&&) = default;
|
||||
|
||||
// Allow accessing elements using [] operator
|
||||
llama_token operator[](size_t index) { return tokens[index]; }
|
||||
const llama_token& operator[](size_t index) const { return tokens[index]; }
|
||||
|
||||
server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd);
|
||||
server_tokens(const llama_tokens & tokens, bool has_mtmd);
|
||||
|
||||
// for debugging
|
||||
std::string str() const;
|
||||
|
||||
llama_pos pos_next() const;
|
||||
const mtmd::input_chunk_ptr & find_chunk(size_t idx) const;
|
||||
|
||||
void push_back(llama_token tok);
|
||||
|
||||
// will create a copy of the chunk if it contains non-text data
|
||||
void push_back(const mtmd_input_chunk * chunk);
|
||||
|
||||
// appends server tokens, updates the media map. copies media chunks.
|
||||
void push_back(server_tokens & tokens);
|
||||
|
||||
// for compatibility with context shift and prompt truncation
|
||||
void insert(const llama_tokens & inp_tokens);
|
||||
|
||||
// for compatibility with speculative decoding, ctx shift, slot save/load
|
||||
const llama_tokens & get_text_tokens() const;
|
||||
|
||||
// for compatibility with speculative decoding
|
||||
void set_token(llama_pos pos, llama_token id);
|
||||
|
||||
size_t size() const { return tokens.size(); }
|
||||
|
||||
bool empty() const { return tokens.empty(); }
|
||||
|
||||
void clear() {
|
||||
map_idx_to_media.clear();
|
||||
tokens.clear();
|
||||
}
|
||||
|
||||
void keep_first(size_t n);
|
||||
|
||||
std::string detokenize(const llama_context * ctx, bool special) const;
|
||||
|
||||
size_t get_common_prefix(const server_tokens & b) const;
|
||||
|
||||
// make sure all text tokens are within the vocab range
|
||||
bool validate(const struct llama_context * ctx) const;
|
||||
|
||||
// encode and decode the image chunk
|
||||
int32_t process_chunk(
|
||||
llama_context * ctx,
|
||||
mtmd_context * mctx,
|
||||
size_t idx,
|
||||
llama_pos pos,
|
||||
int32_t seq_id,
|
||||
size_t & n_tokens_out) const;
|
||||
};
|
||||
|
||||
|
||||
//
|
||||
// tokenizer and input processing utils
|
||||
//
|
||||
|
||||
bool json_is_array_of_numbers(const json & data);
|
||||
|
||||
// is array having BOTH numbers & strings?
|
||||
bool json_is_array_of_mixed_numbers_strings(const json & data);
|
||||
|
||||
// does array have any individual integers/tokens?
|
||||
bool json_is_array_and_contains_numbers(const json & data);
|
||||
|
||||
// get value by path(key1 / key2)
|
||||
json json_get_nested_values(const std::vector<std::string> & paths, const json & js);
|
||||
|
||||
/**
|
||||
* this handles 2 cases:
|
||||
* - only string, example: "string"
|
||||
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
|
||||
*/
|
||||
llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special);
|
||||
|
||||
// return the last index of character that can form a valid string
|
||||
// if the last character is potentially cut in half, return the index before the cut
|
||||
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
|
||||
size_t validate_utf8(const std::string& text);
|
||||
|
||||
// process mtmd prompt, return the server_tokens containing both text tokens and media chunks
|
||||
server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files);
|
||||
|
||||
/**
|
||||
* break the input "prompt" object into multiple prompt if needed, then tokenize them
|
||||
* this supports these cases:
|
||||
* - "prompt": "string"
|
||||
* - "prompt": [12, 34, 56]
|
||||
* - "prompt": [12, 34, "string", 56, 78]
|
||||
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
|
||||
* and multiple prompts (multi-tasks):
|
||||
* - "prompt": ["string1", "string2"]
|
||||
* - "prompt": ["string1", [12, 34, 56]]
|
||||
* - "prompt": [[12, 34, 56], [78, 90, 12]]
|
||||
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56], { "prompt_string": "string", "multimodal_data": [ "base64" ]}]
|
||||
*/
|
||||
std::vector<server_tokens> tokenize_input_prompts(
|
||||
const llama_vocab * vocab,
|
||||
mtmd_context * mctx,
|
||||
const json & json_prompt,
|
||||
bool add_special,
|
||||
bool parse_special);
|
||||
|
||||
//
|
||||
// OAI utils
|
||||
//
|
||||
|
||||
// used by /completions endpoint
|
||||
json oaicompat_completion_params_parse(const json & body);
|
||||
|
||||
struct oaicompat_parser_options {
|
||||
bool use_jinja;
|
||||
bool prefill_assistant;
|
||||
common_reasoning_format reasoning_format;
|
||||
std::map<std::string,std::string> chat_template_kwargs;
|
||||
common_chat_templates * tmpls;
|
||||
bool allow_image;
|
||||
bool allow_audio;
|
||||
bool enable_thinking = true;
|
||||
};
|
||||
|
||||
// used by /chat/completions endpoint
|
||||
json oaicompat_chat_params_parse(
|
||||
json & body, /* openai api json semantics */
|
||||
const oaicompat_parser_options & opt,
|
||||
std::vector<raw_buffer> & out_files);
|
||||
|
||||
// TODO: move it to server-task.cpp
|
||||
json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false);
|
||||
|
||||
// TODO: move it to server-task.cpp
|
||||
json format_response_rerank(
|
||||
const json & request,
|
||||
const json & ranks,
|
||||
bool is_tei_format,
|
||||
std::vector<std::string> & texts,
|
||||
int top_n);
|
||||
|
||||
//
|
||||
// other utils
|
||||
//
|
||||
|
||||
std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx);
|
||||
|
||||
std::string safe_json_to_str(const json & data);
|
||||
|
||||
std::string tokens_to_str(llama_context * ctx, const llama_tokens & tokens);
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token);
|
||||
|
||||
// format server-sent event (SSE), return the formatted string to send
|
||||
// note: if data is a json array, it will be sent as multiple events, one per item
|
||||
std::string format_sse(const json & data);
|
||||
|
||||
bool is_valid_utf8(const std::string & str);
|
||||
|
||||
//
|
||||
// formatting output responses
|
||||
// TODO: move these to server-task.cpp
|
||||
//
|
||||
|
||||
llama_tokens format_prompt_infill(
|
||||
const llama_vocab * vocab,
|
||||
const json & input_prefix,
|
||||
const json & input_suffix,
|
||||
const json & input_extra,
|
||||
const int n_batch,
|
||||
const int n_predict,
|
||||
const int n_ctx,
|
||||
const bool spm_infill,
|
||||
const llama_tokens & tokens_prompt);
|
||||
|
||||
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
|
||||
server_tokens format_prompt_rerank(
|
||||
const struct llama_model * model,
|
||||
const struct llama_vocab * vocab,
|
||||
mtmd_context * mctx,
|
||||
const std::string & query,
|
||||
const std::string & doc);
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
#include "utils.hpp"
|
||||
#include "common.h"
|
||||
#include "server-http.h"
|
||||
#include "server-common.h"
|
||||
|
||||
#include <cpp-httplib/httplib.h>
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,268 @@
|
|||
#include "server-task.h"
|
||||
#include "server-queue.h"
|
||||
|
||||
#include "log.h"
|
||||
|
||||
#include <chrono>
|
||||
|
||||
#define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
|
||||
#define RES_INF(fmt, ...) LOG_INF("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define RES_WRN(fmt, ...) LOG_WRN("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define RES_ERR(fmt, ...) LOG_ERR("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define RES_DBG(fmt, ...) LOG_DBG("res %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// server_queue
|
||||
//
|
||||
|
||||
int server_queue::post(server_task && task, bool front) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
GGML_ASSERT(task.id != -1);
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
const int task_id = task.id;
|
||||
QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
|
||||
if (front) {
|
||||
queue_tasks.push_front(std::move(task));
|
||||
} else {
|
||||
queue_tasks.push_back(std::move(task));
|
||||
}
|
||||
condition_tasks.notify_one();
|
||||
return task_id;
|
||||
}
|
||||
|
||||
int server_queue::post(std::vector<server_task> && tasks, bool front) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
for (auto & task : tasks) {
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
}
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
|
||||
if (front) {
|
||||
queue_tasks.push_front(std::move(task));
|
||||
} else {
|
||||
queue_tasks.push_back(std::move(task));
|
||||
}
|
||||
}
|
||||
condition_tasks.notify_one();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void server_queue::defer(server_task && task) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
QUE_DBG("defer task, id = %d\n", task.id);
|
||||
queue_tasks_deferred.push_back(std::move(task));
|
||||
condition_tasks.notify_one();
|
||||
}
|
||||
|
||||
int server_queue::get_new_id() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
int new_id = id++;
|
||||
return new_id;
|
||||
}
|
||||
|
||||
void server_queue::on_new_task(std::function<void(server_task &&)> callback) {
|
||||
callback_new_task = std::move(callback);
|
||||
}
|
||||
|
||||
void server_queue::on_update_slots(std::function<void(void)> callback) {
|
||||
callback_update_slots = std::move(callback);
|
||||
}
|
||||
|
||||
void server_queue::pop_deferred_task() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (!queue_tasks_deferred.empty()) {
|
||||
queue_tasks.emplace_front(std::move(queue_tasks_deferred.front()));
|
||||
queue_tasks_deferred.pop_front();
|
||||
}
|
||||
condition_tasks.notify_one();
|
||||
}
|
||||
|
||||
void server_queue::terminate() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
running = false;
|
||||
condition_tasks.notify_all();
|
||||
}
|
||||
|
||||
void server_queue::start_loop() {
|
||||
running = true;
|
||||
|
||||
while (true) {
|
||||
QUE_DBG("%s", "processing new tasks\n");
|
||||
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (!running) {
|
||||
QUE_DBG("%s", "terminate\n");
|
||||
return;
|
||||
}
|
||||
if (queue_tasks.empty()) {
|
||||
lock.unlock();
|
||||
break;
|
||||
}
|
||||
server_task task = std::move(queue_tasks.front());
|
||||
queue_tasks.pop_front();
|
||||
lock.unlock();
|
||||
|
||||
QUE_DBG("processing task, id = %d\n", task.id);
|
||||
callback_new_task(std::move(task));
|
||||
}
|
||||
|
||||
// all tasks in the current loop is processed, slots data is now ready
|
||||
QUE_DBG("%s", "update slots\n");
|
||||
|
||||
callback_update_slots();
|
||||
|
||||
QUE_DBG("%s", "waiting for new tasks\n");
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (!running) {
|
||||
QUE_DBG("%s", "terminate\n");
|
||||
return;
|
||||
}
|
||||
if (queue_tasks.empty()) {
|
||||
condition_tasks.wait(lock, [&]{
|
||||
return (!queue_tasks.empty() || !running);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void server_queue::cleanup_pending_task(int id_target) {
|
||||
// no need lock because this is called exclusively by post()
|
||||
auto rm_func = [id_target](const server_task & task) {
|
||||
return task.id == id_target;
|
||||
};
|
||||
queue_tasks.erase(
|
||||
std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
|
||||
queue_tasks.end());
|
||||
queue_tasks_deferred.erase(
|
||||
std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
|
||||
queue_tasks_deferred.end());
|
||||
}
|
||||
|
||||
//
|
||||
// server_response
|
||||
//
|
||||
|
||||
void server_response::add_waiting_task_id(int id_task) {
|
||||
RES_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
|
||||
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.insert(id_task);
|
||||
}
|
||||
|
||||
void server_response::add_waiting_tasks(const std::vector<server_task> & tasks) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
|
||||
for (const auto & task : tasks) {
|
||||
RES_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
|
||||
waiting_task_ids.insert(task.id);
|
||||
}
|
||||
}
|
||||
|
||||
void server_response::remove_waiting_task_id(int id_task) {
|
||||
RES_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
|
||||
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.erase(id_task);
|
||||
// make sure to clean up all pending results
|
||||
queue_results.erase(
|
||||
std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
|
||||
return res->id == id_task;
|
||||
}),
|
||||
queue_results.end());
|
||||
}
|
||||
|
||||
void server_response::remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
|
||||
for (const auto & id_task : id_tasks) {
|
||||
RES_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
|
||||
waiting_task_ids.erase(id_task);
|
||||
}
|
||||
}
|
||||
|
||||
server_task_result_ptr server_response::recv(const std::unordered_set<int> & id_tasks) {
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
condition_results.wait(lock, [&]{
|
||||
if (!running) {
|
||||
RES_DBG("%s : queue result stop\n", __func__);
|
||||
std::terminate(); // we cannot return here since the caller is HTTP code
|
||||
}
|
||||
return !queue_results.empty();
|
||||
});
|
||||
|
||||
for (size_t i = 0; i < queue_results.size(); i++) {
|
||||
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
|
||||
server_task_result_ptr res = std::move(queue_results[i]);
|
||||
queue_results.erase(queue_results.begin() + i);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here
|
||||
}
|
||||
|
||||
server_task_result_ptr server_response::recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++) {
|
||||
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
|
||||
server_task_result_ptr res = std::move(queue_results[i]);
|
||||
queue_results.erase(queue_results.begin() + i);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
|
||||
if (!running) {
|
||||
RES_DBG("%s : queue result stop\n", __func__);
|
||||
std::terminate(); // we cannot return here since the caller is HTTP code
|
||||
}
|
||||
if (cr_res == std::cv_status::timeout) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here
|
||||
}
|
||||
|
||||
server_task_result_ptr server_response::recv(int id_task) {
|
||||
std::unordered_set<int> id_tasks = {id_task};
|
||||
return recv(id_tasks);
|
||||
}
|
||||
|
||||
void server_response::send(server_task_result_ptr && result) {
|
||||
RES_DBG("sending result for task id = %d\n", result->id);
|
||||
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
for (const auto & id_task : waiting_task_ids) {
|
||||
if (result->id == id_task) {
|
||||
RES_DBG("task id = %d pushed to result queue\n", result->id);
|
||||
|
||||
queue_results.emplace_back(std::move(result));
|
||||
condition_results.notify_all();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void server_response::terminate() {
|
||||
running = false;
|
||||
condition_results.notify_all();
|
||||
}
|
||||
|
|
@ -0,0 +1,110 @@
|
|||
#pragma once
|
||||
|
||||
#include "server-task.h"
|
||||
|
||||
#include <condition_variable>
|
||||
#include <deque>
|
||||
#include <mutex>
|
||||
#include <unordered_set>
|
||||
|
||||
struct server_queue {
|
||||
private:
|
||||
int id = 0;
|
||||
bool running;
|
||||
|
||||
// queues
|
||||
std::deque<server_task> queue_tasks;
|
||||
std::deque<server_task> queue_tasks_deferred;
|
||||
|
||||
std::mutex mutex_tasks;
|
||||
std::condition_variable condition_tasks;
|
||||
|
||||
// callback functions
|
||||
std::function<void(server_task &&)> callback_new_task;
|
||||
std::function<void(void)> callback_update_slots;
|
||||
|
||||
public:
|
||||
// Add a new task to the end of the queue
|
||||
int post(server_task && task, bool front = false);
|
||||
|
||||
// multi-task version of post()
|
||||
int post(std::vector<server_task> && tasks, bool front = false);
|
||||
|
||||
// Add a new task, but defer until one slot is available
|
||||
void defer(server_task && task);
|
||||
|
||||
// Get the next id for creating a new task
|
||||
int get_new_id();
|
||||
|
||||
// Register function to process a new task
|
||||
void on_new_task(std::function<void(server_task &&)> callback);
|
||||
|
||||
// Register the function to be called when all slots data is ready to be processed
|
||||
void on_update_slots(std::function<void(void)> callback);
|
||||
|
||||
// Call when the state of one slot is changed, it will move one task from deferred to main queue
|
||||
void pop_deferred_task();
|
||||
|
||||
// end the start_loop routine
|
||||
void terminate();
|
||||
|
||||
/**
|
||||
* Main loop consists of these steps:
|
||||
* - Wait until a new task arrives
|
||||
* - Process the task (i.e. maybe copy data into slot)
|
||||
* - Check if multitask is finished
|
||||
* - Update all slots
|
||||
*/
|
||||
void start_loop();
|
||||
|
||||
// for metrics
|
||||
size_t queue_tasks_deferred_size() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
return queue_tasks_deferred.size();
|
||||
}
|
||||
|
||||
private:
|
||||
void cleanup_pending_task(int id_target);
|
||||
};
|
||||
|
||||
struct server_response {
|
||||
private:
|
||||
bool running = true;
|
||||
|
||||
// for keeping track of all tasks waiting for the result
|
||||
std::unordered_set<int> waiting_task_ids;
|
||||
|
||||
// the main result queue (using ptr for polymorphism)
|
||||
std::vector<server_task_result_ptr> queue_results;
|
||||
|
||||
std::mutex mutex_results;
|
||||
std::condition_variable condition_results;
|
||||
|
||||
public:
|
||||
// add the id_task to the list of tasks waiting for response
|
||||
void add_waiting_task_id(int id_task);
|
||||
|
||||
void add_waiting_tasks(const std::vector<server_task> & tasks);
|
||||
|
||||
// when the request is finished, we can remove task associated with it
|
||||
void remove_waiting_task_id(int id_task);
|
||||
|
||||
// remove multiple tasks from waiting list
|
||||
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks);
|
||||
|
||||
// This function blocks the thread until there is a response for one of the id_tasks
|
||||
server_task_result_ptr recv(const std::unordered_set<int> & id_tasks);
|
||||
|
||||
// same as recv(), but have timeout in seconds
|
||||
// if timeout is reached, nullptr is returned
|
||||
server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout);
|
||||
|
||||
// single-task version of recv()
|
||||
server_task_result_ptr recv(int id_task);
|
||||
|
||||
// Send a new result to a waiting id_task
|
||||
void send(server_task_result_ptr && result);
|
||||
|
||||
// terminate the waiting loop
|
||||
void terminate();
|
||||
};
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,453 @@
|
|||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <string>
|
||||
#include <unordered_set>
|
||||
#include <list>
|
||||
|
||||
// TODO: prevent including the whole server-common.h as we only use server_tokens
|
||||
#include "server-common.h"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
enum server_task_type {
|
||||
SERVER_TASK_TYPE_COMPLETION,
|
||||
SERVER_TASK_TYPE_EMBEDDING,
|
||||
SERVER_TASK_TYPE_RERANK,
|
||||
SERVER_TASK_TYPE_INFILL,
|
||||
SERVER_TASK_TYPE_CANCEL,
|
||||
SERVER_TASK_TYPE_NEXT_RESPONSE,
|
||||
SERVER_TASK_TYPE_METRICS,
|
||||
SERVER_TASK_TYPE_SLOT_SAVE,
|
||||
SERVER_TASK_TYPE_SLOT_RESTORE,
|
||||
SERVER_TASK_TYPE_SLOT_ERASE,
|
||||
SERVER_TASK_TYPE_SET_LORA,
|
||||
};
|
||||
|
||||
// TODO: change this to more generic "response_format" to replace the "format_response_*" in server-common
|
||||
enum oaicompat_type {
|
||||
OAICOMPAT_TYPE_NONE,
|
||||
OAICOMPAT_TYPE_CHAT,
|
||||
OAICOMPAT_TYPE_COMPLETION,
|
||||
OAICOMPAT_TYPE_EMBEDDING,
|
||||
};
|
||||
|
||||
enum stop_type {
|
||||
STOP_TYPE_NONE,
|
||||
STOP_TYPE_EOS,
|
||||
STOP_TYPE_WORD,
|
||||
STOP_TYPE_LIMIT,
|
||||
};
|
||||
|
||||
struct task_params {
|
||||
bool stream = true;
|
||||
bool include_usage = false;
|
||||
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
|
||||
bool return_tokens = false;
|
||||
bool return_progress = false;
|
||||
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_indent = 0; // minimum line indentation for the generated text in number of whitespace characters
|
||||
|
||||
int64_t t_max_prompt_ms = -1; // TODO: implement
|
||||
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
|
||||
|
||||
std::vector<common_adapter_lora_info> lora;
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
std::vector<std::string> response_fields;
|
||||
bool timings_per_token = false;
|
||||
bool post_sampling_probs = false;
|
||||
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
|
||||
// OAI-compat fields
|
||||
bool verbose = false;
|
||||
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
|
||||
std::string oaicompat_model;
|
||||
std::string oaicompat_cmpl_id;
|
||||
common_chat_syntax oaicompat_chat_syntax;
|
||||
|
||||
// Embeddings
|
||||
int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
|
||||
|
||||
json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const;
|
||||
json to_json(bool only_metrics = false) const;
|
||||
};
|
||||
|
||||
struct server_task {
|
||||
int id = -1; // to be filled by server_queue
|
||||
int index = -1; // used when there are multiple prompts (batch request)
|
||||
|
||||
// used by SERVER_TASK_TYPE_CANCEL
|
||||
int id_target = -1;
|
||||
int id_slot = -1;
|
||||
|
||||
// used by SERVER_TASK_TYPE_INFERENCE
|
||||
task_params params;
|
||||
server_tokens tokens;
|
||||
|
||||
server_task_type type;
|
||||
|
||||
// used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
|
||||
struct slot_action {
|
||||
int slot_id;
|
||||
std::string filename;
|
||||
std::string filepath;
|
||||
};
|
||||
slot_action slot_action;
|
||||
|
||||
// used by SERVER_TASK_TYPE_METRICS
|
||||
bool metrics_reset_bucket = false;
|
||||
|
||||
// used by SERVER_TASK_TYPE_SET_LORA
|
||||
std::vector<common_adapter_lora_info> set_lora;
|
||||
|
||||
server_task() = default;
|
||||
|
||||
server_task(server_task_type type) : type(type) {}
|
||||
|
||||
int32_t n_tokens() const {
|
||||
return tokens.size();
|
||||
}
|
||||
|
||||
static task_params params_from_json_cmpl(
|
||||
const llama_context * ctx,
|
||||
const common_params & params_base,
|
||||
const json & data);
|
||||
|
||||
// utility function
|
||||
static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
|
||||
std::unordered_set<int> ids(tasks.size());
|
||||
for (size_t i = 0; i < tasks.size(); i++) {
|
||||
ids.insert(tasks[i].id);
|
||||
}
|
||||
return ids;
|
||||
}
|
||||
};
|
||||
|
||||
struct result_timings {
|
||||
int32_t cache_n = -1;
|
||||
|
||||
int32_t prompt_n = -1;
|
||||
double prompt_ms;
|
||||
double prompt_per_token_ms;
|
||||
double prompt_per_second;
|
||||
|
||||
int32_t predicted_n = -1;
|
||||
double predicted_ms;
|
||||
double predicted_per_token_ms;
|
||||
double predicted_per_second;
|
||||
|
||||
// Optional speculative metrics - only included when > 0
|
||||
int32_t draft_n = 0;
|
||||
int32_t draft_n_accepted = 0;
|
||||
|
||||
json to_json() const;
|
||||
};
|
||||
|
||||
struct result_prompt_progress {
|
||||
int32_t total = 0;
|
||||
int32_t cache = 0;
|
||||
int32_t processed = 0;
|
||||
int64_t time_ms = 0;
|
||||
|
||||
json to_json() const;
|
||||
};
|
||||
|
||||
struct server_task_result {
|
||||
int id = -1;
|
||||
int id_slot = -1;
|
||||
virtual bool is_error() {
|
||||
// only used by server_task_result_error
|
||||
return false;
|
||||
}
|
||||
virtual bool is_stop() {
|
||||
// only used by server_task_result_cmpl_*
|
||||
return true;
|
||||
}
|
||||
virtual int get_index() {
|
||||
return -1;
|
||||
}
|
||||
virtual json to_json() = 0;
|
||||
virtual ~server_task_result() = default;
|
||||
};
|
||||
|
||||
// using shared_ptr for polymorphism of server_task_result
|
||||
using server_task_result_ptr = std::unique_ptr<server_task_result>;
|
||||
|
||||
struct completion_token_output {
|
||||
llama_token tok;
|
||||
float prob;
|
||||
std::string text_to_send;
|
||||
struct prob_info {
|
||||
llama_token tok;
|
||||
std::string txt;
|
||||
float prob;
|
||||
};
|
||||
std::vector<prob_info> probs;
|
||||
|
||||
json to_json(bool post_sampling_probs) const;
|
||||
|
||||
static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs);
|
||||
|
||||
static float logarithm(float x);
|
||||
|
||||
static std::vector<unsigned char> str_to_bytes(const std::string & str);
|
||||
|
||||
};
|
||||
|
||||
struct server_task_result_cmpl_final : server_task_result {
|
||||
int index = 0;
|
||||
|
||||
std::string content;
|
||||
llama_tokens tokens;
|
||||
|
||||
bool stream;
|
||||
bool include_usage;
|
||||
result_timings timings;
|
||||
std::string prompt;
|
||||
|
||||
bool truncated;
|
||||
int32_t n_decoded;
|
||||
int32_t n_prompt_tokens;
|
||||
int32_t n_tokens_cached;
|
||||
bool has_new_line;
|
||||
std::string stopping_word;
|
||||
stop_type stop = STOP_TYPE_NONE;
|
||||
|
||||
bool post_sampling_probs;
|
||||
std::vector<completion_token_output> probs_output;
|
||||
std::vector<std::string> response_fields;
|
||||
|
||||
task_params generation_params;
|
||||
|
||||
// OAI-compat fields
|
||||
bool verbose = false;
|
||||
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
|
||||
std::string oaicompat_model;
|
||||
std::string oaicompat_cmpl_id;
|
||||
common_chat_msg oaicompat_msg;
|
||||
|
||||
std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
|
||||
|
||||
virtual int get_index() override {
|
||||
return index;
|
||||
}
|
||||
|
||||
virtual bool is_stop() override {
|
||||
return true; // in stream mode, final responses are considered stop
|
||||
}
|
||||
|
||||
virtual json to_json() override;
|
||||
|
||||
json to_json_non_oaicompat();
|
||||
|
||||
json to_json_oaicompat();
|
||||
|
||||
json to_json_oaicompat_chat();
|
||||
|
||||
json to_json_oaicompat_chat_stream();
|
||||
};
|
||||
|
||||
struct server_task_result_cmpl_partial : server_task_result {
|
||||
int index = 0;
|
||||
|
||||
std::string content;
|
||||
llama_tokens tokens;
|
||||
|
||||
int32_t n_decoded;
|
||||
int32_t n_prompt_tokens;
|
||||
|
||||
bool post_sampling_probs;
|
||||
bool is_progress = false;
|
||||
completion_token_output prob_output;
|
||||
result_timings timings;
|
||||
result_prompt_progress progress;
|
||||
|
||||
// OAI-compat fields
|
||||
bool verbose = false;
|
||||
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
|
||||
std::string oaicompat_model;
|
||||
std::string oaicompat_cmpl_id;
|
||||
std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
|
||||
|
||||
virtual int get_index() override {
|
||||
return index;
|
||||
}
|
||||
|
||||
virtual bool is_stop() override {
|
||||
return false; // in stream mode, partial responses are not considered stop
|
||||
}
|
||||
|
||||
virtual json to_json() override;
|
||||
|
||||
json to_json_non_oaicompat();
|
||||
|
||||
json to_json_oaicompat();
|
||||
|
||||
json to_json_oaicompat_chat();
|
||||
};
|
||||
|
||||
struct server_task_result_embd : server_task_result {
|
||||
int index = 0;
|
||||
std::vector<std::vector<float>> embedding;
|
||||
|
||||
int32_t n_tokens;
|
||||
|
||||
// OAI-compat fields
|
||||
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
|
||||
|
||||
virtual int get_index() override {
|
||||
return index;
|
||||
}
|
||||
|
||||
virtual json to_json() override;
|
||||
|
||||
json to_json_non_oaicompat();
|
||||
|
||||
json to_json_oaicompat();
|
||||
};
|
||||
|
||||
struct server_task_result_rerank : server_task_result {
|
||||
int index = 0;
|
||||
float score = -1e6;
|
||||
|
||||
int32_t n_tokens;
|
||||
|
||||
virtual int get_index() override {
|
||||
return index;
|
||||
}
|
||||
|
||||
virtual json to_json() override;
|
||||
};
|
||||
|
||||
struct server_task_result_error : server_task_result {
|
||||
int index = 0;
|
||||
error_type err_type = ERROR_TYPE_SERVER;
|
||||
std::string err_msg;
|
||||
|
||||
// for ERROR_TYPE_EXCEED_CONTEXT_SIZE
|
||||
int32_t n_prompt_tokens = 0;
|
||||
int32_t n_ctx = 0;
|
||||
|
||||
virtual bool is_error() override {
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual json to_json() override;
|
||||
};
|
||||
|
||||
struct server_task_result_metrics : server_task_result {
|
||||
int n_idle_slots;
|
||||
int n_processing_slots;
|
||||
int n_tasks_deferred;
|
||||
int64_t t_start;
|
||||
|
||||
// TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
|
||||
uint64_t n_prompt_tokens_processed_total = 0;
|
||||
uint64_t t_prompt_processing_total = 0;
|
||||
uint64_t n_tokens_predicted_total = 0;
|
||||
uint64_t t_tokens_generation_total = 0;
|
||||
|
||||
uint64_t n_tokens_max = 0;
|
||||
|
||||
uint64_t n_prompt_tokens_processed = 0;
|
||||
uint64_t t_prompt_processing = 0;
|
||||
|
||||
uint64_t n_tokens_predicted = 0;
|
||||
uint64_t t_tokens_generation = 0;
|
||||
|
||||
uint64_t n_decode_total = 0;
|
||||
uint64_t n_busy_slots_total = 0;
|
||||
|
||||
// while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
|
||||
// therefore, we use json to temporarily store the slot.to_json() result
|
||||
json slots_data = json::array();
|
||||
|
||||
virtual json to_json() override;
|
||||
};
|
||||
|
||||
struct server_task_result_slot_save_load : server_task_result {
|
||||
std::string filename;
|
||||
bool is_save; // true = save, false = load
|
||||
|
||||
size_t n_tokens;
|
||||
size_t n_bytes;
|
||||
double t_ms;
|
||||
|
||||
virtual json to_json() override;
|
||||
};
|
||||
|
||||
struct server_task_result_slot_erase : server_task_result {
|
||||
size_t n_erased;
|
||||
|
||||
virtual json to_json() override;
|
||||
};
|
||||
|
||||
struct server_task_result_apply_lora : server_task_result {
|
||||
virtual json to_json() override;
|
||||
};
|
||||
|
||||
struct server_prompt_checkpoint {
|
||||
llama_pos pos_min;
|
||||
llama_pos pos_max;
|
||||
|
||||
std::vector<uint8_t> data;
|
||||
|
||||
size_t size() const {
|
||||
return data.size();
|
||||
}
|
||||
};
|
||||
|
||||
struct server_prompt {
|
||||
server_tokens tokens;
|
||||
|
||||
std::vector<uint8_t> data;
|
||||
|
||||
std::list<server_prompt_checkpoint> checkpoints;
|
||||
|
||||
size_t size() const {
|
||||
size_t res = data.size();
|
||||
|
||||
for (const auto & checkpoint : checkpoints) {
|
||||
res += checkpoint.size();
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int n_tokens() const {
|
||||
return tokens.size();
|
||||
}
|
||||
};
|
||||
|
||||
struct server_prompt_cache {
|
||||
server_prompt_cache(int32_t limit_size_mib, size_t limit_tokens) {
|
||||
this->limit_size = 1024ull*1024ull*(limit_size_mib < 0 ? 0 : limit_size_mib);
|
||||
this->limit_tokens = limit_tokens;
|
||||
}
|
||||
|
||||
std::list<server_prompt> states;
|
||||
|
||||
// in bytes, 0 = no limit
|
||||
size_t limit_size = 0;
|
||||
|
||||
// in tokens, 0 = no limit
|
||||
size_t limit_tokens = 0;
|
||||
|
||||
size_t size() const;
|
||||
|
||||
size_t n_tokens() const;
|
||||
|
||||
server_prompt * alloc(const server_prompt & prompt, size_t state_size);
|
||||
|
||||
bool load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot);
|
||||
|
||||
void update();
|
||||
};
|
||||
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue