SYCL: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators (#16613)

* SYCL: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators

Clean up unrelated changes from previous commit

* Chore: remove empty lines and fix indentation

* Clean up: remove leftover blank lines and fix spacing

* chore: fix trailing whitespace and ensure final newline

* Cleanup: remove redundant declarations already defined in header

* Sync docs/ops.md with updated backend operation support

* docs: update ops.md after rebase

* docs: update ops.md - Vulkan supports SSM_CONV and SSM_SCAN
This commit is contained in:
safranowith 2025-10-20 11:08:32 +03:00 committed by GitHub
parent 7062dd8460
commit 2330de7b84
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 313 additions and 25 deletions

View File

@ -22,7 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | | CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ | | CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ | | CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
@ -42,7 +42,7 @@ Legend:
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | | FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | | GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
@ -84,7 +84,7 @@ Legend:
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | | ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | | ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
@ -111,6 +111,6 @@ Legend:
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ | | TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | | TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ | | UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |

View File

@ -31,6 +31,14 @@
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","XIELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","XIELU","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@ -95,6 +103,14 @@
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","XIELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
"SYCL0","XIELU","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
"SYCL0","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
"SYCL0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"

Can't render this file because it is too large.

View File

@ -3263,27 +3263,27 @@
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan" "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan"
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan" "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan"
"Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan" "Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" "Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" "Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" "Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" "Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"

Can't render this file because it is too large.

View File

@ -150,6 +150,26 @@ static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) {
return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x); return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x);
} }
template<typename T>
static __dpct_inline__ T op_floor(T x) {
return sycl::floor(x);
}
template<typename T>
static __dpct_inline__ T op_ceil(T x) {
return sycl::ceil(x);
}
template<typename T>
static __dpct_inline__ T op_round(T x) {
return sycl::round(x);
}
template<typename T>
static __dpct_inline__ T op_trunc(T x) {
return sycl::trunc(x);
}
template<typename T> template<typename T>
static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) { SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
@ -304,6 +324,34 @@ static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl:
} }
} }
template<typename T>
static void unary_op_floor_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_floor(x[i]);
}
}
template<typename T>
static void unary_op_ceil_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_ceil(x[i]);
}
}
template<typename T>
static void unary_op_round_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_round(x[i]);
}
}
template<typename T>
static void unary_op_trunc_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_trunc(x[i]);
}
}
template<typename T> template<typename T>
static void upscale(const T *x, T *dst, const int nb00, const int nb01, static void upscale(const T *x, T *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11, const int nb02, const int nb03, const int ne10, const int ne11,
@ -897,6 +945,58 @@ static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tens
}, min_val, max_val); }, min_val, max_val);
} }
static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_floor_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_round_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_trunc_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
@ -1122,3 +1222,23 @@ void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/0); scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/0);
ggml_sycl_detail::ggml_sycl_op_arange(ctx, dst); ggml_sycl_detail::ggml_sycl_op_arange(ctx, dst);
} }
void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_floor(ctx, dst);
}
void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_ceil(ctx, dst);
}
void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_round(ctx, dst);
}
void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_trunc(ctx, dst);
}

View File

@ -80,6 +80,10 @@ void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

View File

@ -3698,6 +3698,18 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_ELU:
ggml_sycl_elu(ctx, dst); ggml_sycl_elu(ctx, dst);
break; break;
case GGML_UNARY_OP_FLOOR:
ggml_sycl_floor(ctx, dst);
break;
case GGML_UNARY_OP_CEIL:
ggml_sycl_ceil(ctx, dst);
break;
case GGML_UNARY_OP_ROUND:
ggml_sycl_round(ctx, dst);
break;
case GGML_UNARY_OP_TRUNC:
ggml_sycl_trunc(ctx, dst);
break;
default: default:
return false; return false;
} }
@ -4262,6 +4274,10 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_SGN: case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_ABS: case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_TRUNC:
#if defined (GGML_SYCL_F16) #if defined (GGML_SYCL_F16)
return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type); return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type);
#else #else

View File

@ -3759,6 +3759,130 @@ struct test_clamp : public test_case {
} }
}; };
// GGML_OP_FLOOR
struct test_floor : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_floor(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 2, 2, 2})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_floor(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -10.0f, 10.0f);
}
}
};
// GGML_OP_CEIL
struct test_ceil : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_ceil(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 2, 2, 2})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_ceil(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -10.0f, 10.0f);
}
}
};
// GGML_OP_ROUND
struct test_round : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_round(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 2, 2, 2})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_round(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -10.0f, 10.0f);
}
}
};
// GGML_OP_TRUNC
struct test_trunc : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
std::string vars() override {
return VARS_TO_STR2(type, ne);
}
test_trunc(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 2, 2, 2})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_trunc(ctx, a);
ggml_set_name(out, "out");
return out;
}
void initialize_tensors(ggml_context * ctx) override {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, -10.0f, 10.0f);
}
}
};
// GGML_OP_DIAG_MASK_INF // GGML_OP_DIAG_MASK_INF
struct test_diag_mask_inf : public test_case { struct test_diag_mask_inf : public test_case {
const ggml_type type; const ggml_type type;
@ -6585,6 +6709,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_cos (type)); test_cases.emplace_back(new test_cos (type));
test_cases.emplace_back(new test_clamp (type)); test_cases.emplace_back(new test_clamp (type));
test_cases.emplace_back(new test_leaky_relu(type)); test_cases.emplace_back(new test_leaky_relu(type));
test_cases.emplace_back(new test_floor (type));
test_cases.emplace_back(new test_ceil (type));
test_cases.emplace_back(new test_round (type));
test_cases.emplace_back(new test_trunc (type));
test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_log (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
@ -6592,6 +6720,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3})); test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
} }
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));