vulkan: support GGML_UNARY_OP_XIELU
This commit is contained in:
parent
5c8a717128
commit
21ca689aad
|
|
@ -689,6 +689,7 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_gelu_quick[2];
|
||||
vk_pipeline pipeline_silu[2];
|
||||
vk_pipeline pipeline_relu[2];
|
||||
vk_pipeline pipeline_xielu[2];
|
||||
vk_pipeline pipeline_neg[2];
|
||||
vk_pipeline pipeline_tanh[2];
|
||||
vk_pipeline pipeline_sigmoid[2];
|
||||
|
|
@ -990,6 +991,8 @@ struct vk_op_push_constants {
|
|||
uint32_t KY;
|
||||
float param1;
|
||||
float param2;
|
||||
float param3;
|
||||
float param4;
|
||||
};
|
||||
|
||||
struct vk_op_glu_push_constants {
|
||||
|
|
@ -3947,6 +3950,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
CREATE_UNARY(gelu_quick)
|
||||
CREATE_UNARY(silu)
|
||||
CREATE_UNARY(relu)
|
||||
CREATE_UNARY(xielu)
|
||||
CREATE_UNARY(neg)
|
||||
CREATE_UNARY(tanh)
|
||||
CREATE_UNARY(sigmoid)
|
||||
|
|
@ -8521,6 +8525,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
return ctx->device->pipeline_gelu_quick[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_RELU:
|
||||
return ctx->device->pipeline_relu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
return ctx->device->pipeline_xielu[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_NEG:
|
||||
return ctx->device->pipeline_neg[dst->type == GGML_TYPE_F16];
|
||||
case GGML_UNARY_OP_TANH:
|
||||
|
|
@ -9667,14 +9673,14 @@ static void ggml_vk_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& su
|
|||
|
||||
ggml_vk_op_f32_opt_step_adamw(
|
||||
ctx, subctx, dst,
|
||||
{ (uint32_t)n, 0, 0.0f, 0.0f }
|
||||
{ (uint32_t)n, 0, 0.0f, 0.0f, 0.0f, 0.0f }
|
||||
);
|
||||
}
|
||||
|
||||
static void ggml_vk_opt_step_sgd(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
||||
const size_t n = ggml_nelements(dst->src[0]);
|
||||
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_OPT_STEP_SGD, { (uint32_t)n, 0, 0.0f, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_OPT_STEP_SGD, { (uint32_t)n, 0, 0.0f, 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
|
|
@ -9760,6 +9766,7 @@ static void ggml_vk_arange(ggml_backend_vk_context * ctx, vk_context& subctx, gg
|
|||
1,
|
||||
ggml_get_op_params_f32(dst, 0),
|
||||
ggml_get_op_params_f32(dst, 2),
|
||||
0.0f, 0.0f,
|
||||
};
|
||||
|
||||
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, dst, GGML_OP_ARANGE);
|
||||
|
|
@ -9781,6 +9788,7 @@ static void ggml_vk_fill(ggml_backend_vk_context * ctx, vk_context& subctx, ggml
|
|||
1,
|
||||
ggml_get_op_params_f32(dst, 0),
|
||||
0.0f,
|
||||
0.0f, 0.0f,
|
||||
};
|
||||
|
||||
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, dst, GGML_OP_FILL);
|
||||
|
|
@ -9896,13 +9904,13 @@ static void ggml_vk_set_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
}
|
||||
|
||||
static void ggml_vk_silu_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SILU_BACK, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SILU_BACK, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
|
|
@ -9913,7 +9921,7 @@ static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
const float eps = float_op_params[1];
|
||||
const uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||||
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static uint32_t ggml_vk_rms_num_partials(ggml_backend_vk_context * ctx, const ggml_tensor *node) {
|
||||
|
|
@ -10082,16 +10090,26 @@ static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
|
||||
static void ggml_vk_rms_norm_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_RMS_NORM_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_RMS_NORM_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_l2_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_L2_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_L2_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_xielu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_UNARY,
|
||||
{
|
||||
(uint32_t)ggml_nelements(src0), 0,
|
||||
op_params[1], op_params[2], op_params[3], op_params[4]
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
|
|
@ -10216,7 +10234,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
|
||||
static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
float * op_params = (float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1], 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx) {
|
||||
|
|
@ -10513,11 +10531,11 @@ static void ggml_vk_cumsum(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
}
|
||||
|
||||
static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ARGMAX, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ARGMAX, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_count_equal(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_COUNT_EQUAL, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_COUNT_EQUAL, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_solve_tri(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
|
|
@ -10776,7 +10794,7 @@ static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
|
||||
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
const float * op_params = (const float *)dst->op_params;
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f });
|
||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
#ifdef GGML_VULKAN_RUN_TESTS
|
||||
|
|
@ -12019,6 +12037,9 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
case GGML_UNARY_OP_TRUNC:
|
||||
ggml_vk_unary(ctx, compute_ctx, src0, node);
|
||||
break;
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
ggml_vk_xielu(ctx, compute_ctx, src0, node);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
|
@ -13780,6 +13801,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
case GGML_UNARY_OP_NEG:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
|
|
@ -14685,7 +14707,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
|||
} else if (tensor->op == GGML_OP_LOG) {
|
||||
tensor_clone = ggml_log(ggml_ctx, src_clone[0]);
|
||||
} else if (tensor->op == GGML_OP_TRI) {
|
||||
tensor_clone = ggml_tri(ggml_ctx, src_clone[0], ggml_get_op_params_i32(tensor, 0));
|
||||
tensor_clone = ggml_tri(ggml_ctx, src_clone[0], (ggml_tri_type)ggml_get_op_params_i32(tensor, 0));
|
||||
} else if (tensor->op == GGML_OP_DIAG) {
|
||||
tensor_clone = ggml_diag(ggml_ctx, src_clone[0]);
|
||||
} else if (tensor->op == GGML_OP_CLAMP) {
|
||||
|
|
@ -14773,6 +14795,13 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
|||
case GGML_UNARY_OP_RELU:
|
||||
tensor_clone = ggml_relu(ggml_ctx, src_clone[0]);
|
||||
break;
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
tensor_clone = ggml_xielu(ggml_ctx, src_clone[0], 0, 0, 0, 0);
|
||||
ggml_set_op_params_f32(tensor_clone, 1, ggml_get_op_params_f32(tensor, 1));
|
||||
ggml_set_op_params_f32(tensor_clone, 2, ggml_get_op_params_f32(tensor, 2));
|
||||
ggml_set_op_params_f32(tensor_clone, 3, ggml_get_op_params_f32(tensor, 3));
|
||||
ggml_set_op_params_f32(tensor_clone, 4, ggml_get_op_params_f32(tensor, 4));
|
||||
break;
|
||||
case GGML_UNARY_OP_NEG:
|
||||
tensor_clone = ggml_neg(ggml_ctx, src_clone[0]);
|
||||
break;
|
||||
|
|
|
|||
|
|
@ -6,4 +6,6 @@ layout (push_constant) uniform parameter
|
|||
uint KY;
|
||||
float param1;
|
||||
float param2;
|
||||
float param3;
|
||||
float param4;
|
||||
} p;
|
||||
|
|
|
|||
|
|
@ -853,6 +853,8 @@ void process_shaders() {
|
|||
string_to_spv("hardswish_f32", "hardswish.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("abs_f16", "abs.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("abs_f32", "abs.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
string_to_spv("xielu_f16", "xielu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("xielu_f32", "xielu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
|
||||
string_to_spv("tri_f16", "tri.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
|
||||
string_to_spv("tri_f32", "tri.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
|
||||
|
|
|
|||
|
|
@ -0,0 +1,35 @@
|
|||
#version 450
|
||||
|
||||
#include "generic_head.glsl"
|
||||
#include "types.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
|
||||
|
||||
if (i >= p.KX) {
|
||||
return;
|
||||
}
|
||||
|
||||
float x = float(data_a[i]);
|
||||
|
||||
float alpha_n = p.param1;
|
||||
float alpha_p = p.param2;
|
||||
float beta = p.param3;
|
||||
float eps = p.param4;
|
||||
|
||||
if (x > 0.0f) {
|
||||
x = alpha_p * x * x + beta * x;
|
||||
} else {
|
||||
const float min_x_eps = min(x, eps);
|
||||
x = (exp(min_x_eps) - 1 - x) * alpha_n + beta * x;
|
||||
}
|
||||
|
||||
data_d[i] = D_TYPE(x);
|
||||
}
|
||||
Loading…
Reference in New Issue