support qwen3vl series.

Co-authored-by: Thireus ☠ <Thireus@users.noreply.github.com>
Co-authored-by: yairpatch <yairpatch@users.noreply.github.com>
Co-authored-by: LETS-BEE <LETS-BEE@users.noreply.github.com>
This commit is contained in:
JJJYmmm 2025-10-26 19:18:15 +08:00
parent 5d195f17bc
commit 1e4fd19446
17 changed files with 1019 additions and 37 deletions

View File

@ -3843,7 +3843,43 @@ class Qwen2MoeModel(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
name = name.replace("language_model.", "") # InternVL
if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
# handle aggregated expert tensors
# GGUF stores dimensions reversed from PyTorch, so:
# PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
# Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
# Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
mapped = f"{name}.weight" if not name.endswith(".weight") else name
# Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
# Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
# Need PyTorch: (128, 2048, 768) [reversed of GGML]
# So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
permuted = data_torch.permute(0, 2, 1).contiguous()
return [(self.map_tensor_name(mapped), permuted)]
if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
split_dim = data_torch.shape[-1] // 2
gate = data_torch[..., :split_dim].contiguous()
up = data_torch[..., split_dim:].contiguous()
# Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
# Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
# Need PyTorch: (128, 768, 2048) [reversed of GGML]
# So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
base_name = name.removesuffix(".weight")
base = base_name.rsplit('.', 1)[0]
mapped_gate = f"{base}.gate_proj.weight"
mapped_up = f"{base}.up_proj.weight"
perm_gate = gate.permute(0, 2, 1).contiguous()
perm_up = up.permute(0, 2, 1).contiguous()
return [
(self.map_tensor_name(mapped_gate), perm_gate),
(self.map_tensor_name(mapped_up), perm_up),
]
if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
# skip visual tensors
return []
if name.find("experts") != -1:
@ -3991,6 +4027,201 @@ class Qwen3MoeModel(Qwen2MoeModel):
super().set_vocab()
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
class Qwen3VLVisionModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_vision is not None
# Compute image_size if not present
if "image_size" not in self.hparams_vision:
# For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
patch_size = self.hparams_vision.get("patch_size", 16)
# num_position_embeddings = (image_size / patch_size) ** 2
# So image_size = sqrt(num_position_embeddings) * patch_size
image_size = int(num_pos**0.5 * patch_size)
self.hparams_vision["image_size"] = image_size
# Rename config values for compatibility
self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
self.deepstack_layers: list[int] = list(self.hparams_vision.get("deepstack_visual_indexes", []))
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
self.gguf_writer.add_vision_use_gelu(True)
if self.hparams_vision is not None:
merge_size = self.hparams_vision.get("spatial_merge_size")
if merge_size is not None:
self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
# Use text config's rms_norm_eps for vision attention layernorm eps
rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
if self.deepstack_layers:
self.gguf_writer.add_vision_deepstack_layers(self.deepstack_layers)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Skip text model tensors - they go in the text model file
if name.startswith("model.language_model.") or name.startswith("lm_head."):
return []
if name.startswith("model.visual."):
name = name.replace("model.visual.", "visual.", 1)
if name.startswith("visual.deepstack_merger_list."):
prefix, rest = name.split(".", maxsplit=3)[2:]
idx = int(prefix)
target = rest
tensor_type: gguf.MODEL_TENSOR
if target.startswith("norm."):
tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
suffix = target.split(".", 1)[1]
elif target.startswith("linear_fc1."):
tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
suffix = target.split(".", 1)[1]
elif target.startswith("linear_fc2."):
tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
suffix = target.split(".", 1)[1]
else:
raise ValueError(f"Unexpected deepstack tensor: {name}")
new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
return [(new_name, data_torch)]
if name.startswith("visual.merger."):
suffix = name.split(".", 2)[2]
if suffix.startswith("linear_fc"):
fc_idx_str, tail = suffix.split(".", 1)
fc_num = int(fc_idx_str.replace("linear_fc", ""))
# Qwen3VL has linear_fc1 and linear_fc2
# Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
if fc_num == 1:
fc_idx = 0
elif fc_num == 2:
fc_idx = 2
else:
raise ValueError(f"unexpected fc index {fc_num} in {name}")
new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
elif suffix.startswith("norm."):
new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
else:
raise ValueError(f"Unexpected merger tensor: {name}")
return [(new_name, data_torch)]
if name == "visual.patch_embed.proj.weight":
# split Conv3D into Conv2Ds along temporal dimension
c1, c2, kt, _, _ = data_torch.shape
del c1, c2
if kt != 2:
raise ValueError("Current implementation only supports temporal_patch_size of 2")
return [
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
]
if name == "visual.patch_embed.proj.bias":
# Include the bias - it's used by the C++ code
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
if name.startswith("visual."):
if ".qkv." in name:
if data_torch.ndim == 2:
c3, _ = data_torch.shape
else:
c3 = data_torch.shape[0]
if c3 % 3 != 0:
raise ValueError(f"Unexpected QKV shape for {name}: {data_torch.shape}")
c = c3 // 3
wq = data_torch[:c]
wk = data_torch[c: c * 2]
wv = data_torch[c * 2:]
base = name.replace("qkv", "{placeholder}")
return [
(self.map_tensor_name(base.format(placeholder="q")), wq),
(self.map_tensor_name(base.format(placeholder="k")), wk),
(self.map_tensor_name(base.format(placeholder="v")), wv),
]
return [(self.map_tensor_name(name), data_torch)]
# Fall back to parent class for other tensors
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen3VLForConditionalGeneration")
class Qwen3VLTextModel(Qwen3Model):
model_arch = gguf.MODEL_ARCH.QWEN3VL
def set_gguf_parameters(self):
super().set_gguf_parameters()
# Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
text_config = self.hparams.get("text_config", {})
# rope_scaling is deprecated in V5, use rope_parameters instead
rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
if rope_scaling.get("mrope_section"):
# mrope_section contains [time, height, width] dimensions
mrope_section = rope_scaling["mrope_section"]
# Pad to 4 dimensions [time, height, width, extra]
while len(mrope_section) < 4:
mrope_section.append(0)
self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
logger.info(f"MRoPE sections: {mrope_section[:4]}")
vision_config = self.hparams.get("vision_config", {})
deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Skip vision tensors - they go in the mmproj file
if name.startswith("model.visual."):
return []
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen3VLMoeForConditionalGeneration")
class Qwen3VLMoeTextModel(Qwen3MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
def set_gguf_parameters(self):
super().set_gguf_parameters()
# Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
text_config = self.hparams.get("text_config", {})
# rope_scaling is deprecated in V5, use rope_parameters instead
rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
if rope_scaling.get("mrope_section"):
# mrope_section contains [time, height, width] dimensions
mrope_section = rope_scaling["mrope_section"]
# Pad to 4 dimensions [time, height, width, extra]
while len(mrope_section) < 4:
mrope_section.append(0)
self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
logger.info(f"MRoPE sections: {mrope_section[:4]}")
vision_config = self.hparams.get("vision_config", {})
deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Skip vision tensors - they go in the mmproj file
if name.startswith("model.visual."):
return []
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("GPT2LMHeadModel")
class GPT2Model(TextModel):
model_arch = gguf.MODEL_ARCH.GPT2

View File

@ -242,6 +242,7 @@
#define GGML_ROPE_TYPE_NEOX 2
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
#define GGML_ROPE_TYPE_IMROPE 40 // binary: 101000
#define GGML_MROPE_SECTIONS 4

View File

@ -5474,7 +5474,7 @@ static void ggml_rope_cache_init(
}
static void ggml_mrope_cache_init(
float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool is_imrope, bool indep_sects,
float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
float * cache, float sin_sign, float theta_scale) {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
@ -5509,14 +5509,24 @@ static void ggml_mrope_cache_init(
}
float theta = theta_t;
if (sector >= sections[0] && sector < sec_w) {
theta = theta_h;
}
else if (sector >= sec_w && sector < sec_w + sections[2]) {
theta = theta_w;
}
else if (sector >= sec_w + sections[2]) {
theta = theta_e;
if (is_imrope) { // qwen3vl apply interleaved mrope
if (sector % 3 == 1 && sector < 3 * sections[1]) {
theta = theta_h;
} else if (sector % 3 == 2 && sector < 3 * sections[2]) {
theta = theta_w;
} else {
theta = theta_e;
}
} else {
if (sector >= sections[0] && sector < sec_w) {
theta = theta_h;
}
else if (sector >= sec_w && sector < sec_w + sections[2]) {
theta = theta_w;
}
else if (sector >= sec_w + sections[2]) {
theta = theta_e;
}
}
rope_yarn(
@ -5589,6 +5599,7 @@ static void ggml_compute_forward_rope_f32(
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
const bool is_imrope = mode & GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
@ -5627,7 +5638,7 @@ static void ggml_compute_forward_rope_f32(
const int64_t p_w = pos[i2 + ne2 * 2];
const int64_t p_e = pos[i2 + ne2 * 3];
ggml_mrope_cache_init(
p_t, p_h, p_w, p_e, sections, is_vision,
p_t, p_h, p_w, p_e, sections, is_imrope, is_vision,
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
@ -5775,6 +5786,7 @@ static void ggml_compute_forward_rope_f16(
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_imrope = mode & GGML_ROPE_TYPE_IMROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
@ -5813,7 +5825,7 @@ static void ggml_compute_forward_rope_f16(
const int64_t p_w = pos[i2 + ne2 * 2];
const int64_t p_e = pos[i2 + ne2 * 3];
ggml_mrope_cache_init(
p_t, p_h, p_w, p_e, sections, is_vision,
p_t, p_h, p_w, p_e, sections, is_imrope, is_vision,
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}

View File

@ -125,7 +125,7 @@ template<bool forward, bool has_ff, typename T>
static __global__ void rope_multi(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections) {
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections, const bool is_imrope) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
@ -152,17 +152,27 @@ static __global__ void rope_multi(
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
if (is_imrope) {
if (sector % 3 == 1 && sector < 3 * sections.v[1]) { // h
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
} else if (sector % 3 == 2 && sector < 3 * sections.v[2]) { // w
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
} else { // t
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
}
} else {
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
}
}
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
@ -276,7 +286,7 @@ template<bool forward, typename T>
static void rope_multi_cuda(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, const bool is_imrope, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
@ -287,11 +297,11 @@ static void rope_multi_cuda(
if (freq_factors == nullptr) {
rope_multi<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
attn_factor, corr_dims, theta_scale, freq_factors, sections, is_imrope);
} else {
rope_multi<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
attn_factor, corr_dims, theta_scale, freq_factors, sections, is_imrope);
}
}
@ -369,6 +379,7 @@ void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_imrope = mode & GGML_ROPE_TYPE_IMROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
@ -406,11 +417,11 @@ void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
if (src0->type == GGML_TYPE_F32) {
rope_multi_cuda<forward>(
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, is_imrope, stream);
} else if (src0->type == GGML_TYPE_F16) {
rope_multi_cuda<forward>(
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, is_imrope, stream);
} else {
GGML_ABORT("fatal error");
}

View File

@ -111,6 +111,7 @@ class Keys:
EXPERTS_PER_GROUP = "{arch}.experts_per_group"
MOE_EVERY_N_LAYERS = "{arch}.moe_every_n_layers"
NEXTN_PREDICT_LAYERS = "{arch}.nextn_predict_layers"
NUM_DEEPSTACK_LAYERS = "{arch}.n_deepstack_layers"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
@ -277,6 +278,7 @@ class Keys:
USE_GELU = "clip.use_gelu"
USE_SILU = "clip.use_silu"
N_WA_PATTERN = "clip.vision.n_wa_pattern" # used by qwen2.5vl
DEEPSTACK_LAYERS = "clip.vision.deepstack_layers"
class Attention:
HEAD_COUNT = "clip.vision.attention.head_count"
@ -350,6 +352,8 @@ class MODEL_ARCH(IntEnum):
QWEN2VL = auto()
QWEN3 = auto()
QWEN3MOE = auto()
QWEN3VL = auto()
QWEN3VLMOE = auto()
PHI2 = auto()
PHI3 = auto()
PHIMOE = auto()
@ -430,6 +434,7 @@ class VISION_PROJECTOR_TYPE(IntEnum):
GLM_EDGE = auto()
MERGER = auto()
GEMMA3 = auto()
QWEN3VL = auto()
class MODEL_TENSOR(IntEnum):
@ -640,6 +645,9 @@ class MODEL_TENSOR(IntEnum):
V_RESMPL_QUERY = auto() # minicpmv
V_TOK_EMBD_IMG_BREAK = auto() # pixtral
V_MM_PATCH_MERGER = auto() # mistral small 3.1
V_DS_NORM = auto() # qwen3vl
V_DS_FC1 = auto() # qwen3vl
V_DS_FC2 = auto() # qwen3vl
# audio (mtmd)
A_ENC_EMBD_POS = auto()
A_ENC_CONV1D = auto()
@ -695,6 +703,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.QWEN2VL: "qwen2vl",
MODEL_ARCH.QWEN3: "qwen3",
MODEL_ARCH.QWEN3MOE: "qwen3moe",
MODEL_ARCH.QWEN3VL: "qwen3vl",
MODEL_ARCH.QWEN3VLMOE: "qwen3vlmoe",
MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PHIMOE: "phimoe",
@ -986,6 +996,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_RESMPL_QUERY: "resampler.query",
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: "v.token_embd.img_break", # pixtral
MODEL_TENSOR.V_MM_PATCH_MERGER: "mm.patch_merger", # mistral small 3.1
MODEL_TENSOR.V_DS_NORM: "v.deepstack.{bid}.norm",
MODEL_TENSOR.V_DS_FC1: "v.deepstack.{bid}.fc1",
MODEL_TENSOR.V_DS_FC2: "v.deepstack.{bid}.fc2",
# audio (mtmd)
MODEL_TENSOR.A_ENC_EMBD_POS: "a.position_embd",
MODEL_TENSOR.A_ENC_CONV1D: "a.conv1d.{bid}",
@ -1054,6 +1067,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_RESMPL_QUERY,
MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK,
MODEL_TENSOR.V_MM_PATCH_MERGER,
MODEL_TENSOR.V_DS_NORM,
MODEL_TENSOR.V_DS_FC1,
MODEL_TENSOR.V_DS_FC2,
# audio
MODEL_TENSOR.A_ENC_EMBD_POS,
MODEL_TENSOR.A_ENC_CONV1D,
@ -1495,6 +1511,40 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.QWEN3VL: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN3VLMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.PLAMO: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -3055,6 +3105,7 @@ class VisionProjectorType:
LLAMA4 = "llama4"
QWEN2VL = "qwen2vl_merger"
QWEN25VL = "qwen2.5vl_merger"
QWEN3VL = "qwen3vl_merger"
ULTRAVOX = "ultravox"
INTERNVL = "internvl"
QWEN2A = "qwen2a" # audio

View File

@ -860,6 +860,9 @@ class GGUFWriter:
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
def add_num_deepstack_layers(self, count: int) -> None:
self.add_uint32(Keys.LLM.NUM_DEEPSTACK_LAYERS.format(arch=self.arch), count)
def add_rope_dimension_count(self, count: int) -> None:
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
@ -1070,6 +1073,9 @@ class GGUFWriter:
def add_vision_n_wa_pattern(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.N_WA_PATTERN, value)
def add_vision_deepstack_layers(self, layers: Sequence[int]) -> None:
self.add_array(Keys.ClipVision.DEEPSTACK_LAYERS, layers)
# audio models

View File

@ -1185,6 +1185,7 @@ class TensorNameMap:
"model.vision_model.embeddings.position_embedding", # SmolVLM
"vision_model.positional_embedding_vlm", # llama 4
"vision_tower.patch_embed.pos_emb", # kimi-vl
"visual.pos_embed", # qwen3vl
),
MODEL_TENSOR.V_ENC_ATTN_Q: (
@ -1282,6 +1283,7 @@ class TensorNameMap:
"vision_model.model.layers.{bid}.mlp.fc1", # llama4
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
"visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
"vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
),
@ -1301,6 +1303,7 @@ class TensorNameMap:
"vision_model.model.layers.{bid}.mlp.fc2", # llama4
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
"visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
"vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
),
@ -1397,6 +1400,18 @@ class TensorNameMap:
"patch_merger.merging_layer", # mistral
),
MODEL_TENSOR.V_DS_NORM: (
"model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
),
MODEL_TENSOR.V_DS_FC1: (
"model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
),
MODEL_TENSOR.V_DS_FC2: (
"model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
),
# audio (mtmd)
MODEL_TENSOR.A_ENC_EMBD_POS: (

View File

@ -83,6 +83,7 @@ extern "C" {
LLAMA_ROPE_TYPE_NORM = 0,
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
LLAMA_ROPE_TYPE_IMROPE = GGML_ROPE_TYPE_IMROPE,
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
};

View File

@ -32,6 +32,8 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_QWEN2VL, "qwen2vl" },
{ LLM_ARCH_QWEN3, "qwen3" },
{ LLM_ARCH_QWEN3MOE, "qwen3moe" },
{ LLM_ARCH_QWEN3VL, "qwen3vl" },
{ LLM_ARCH_QWEN3VLMOE, "qwen3vlmoe" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PHIMOE, "phimoe" },
@ -145,6 +147,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERTS_PER_GROUP, "%s.experts_per_group" },
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
{ LLM_KV_NEXTN_PREDICT_LAYERS, "%s.nextn_predict_layers" },
{ LLM_KV_NUM_DEEPSTACK_LAYERS, "%s.n_deepstack_layers" },
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
@ -779,6 +782,45 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_QWEN3VL,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_QWEN3VLMOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_PHI2,
{

View File

@ -36,6 +36,8 @@ enum llm_arch {
LLM_ARCH_QWEN2VL,
LLM_ARCH_QWEN3,
LLM_ARCH_QWEN3MOE,
LLM_ARCH_QWEN3VL,
LLM_ARCH_QWEN3VLMOE,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
@ -149,6 +151,7 @@ enum llm_kv {
LLM_KV_EXPERTS_PER_GROUP,
LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_NEXTN_PREDICT_LAYERS,
LLM_KV_NUM_DEEPSTACK_LAYERS,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,

View File

@ -148,7 +148,7 @@ bool llama_hparams::is_recurrent(uint32_t il) const {
}
uint32_t llama_hparams::n_pos_per_embd() const {
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
return rope_type == LLAMA_ROPE_TYPE_MROPE || rope_type == LLAMA_ROPE_TYPE_IMROPE ? 4 : 1;
}
bool llama_hparams::is_swa(uint32_t il) const {

View File

@ -183,6 +183,9 @@ struct llama_hparams {
std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
// qwen3vl deepstack
uint32_t n_deepstack_layers = 0;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;

View File

@ -1340,7 +1340,7 @@ ggml_tensor * llama_kv_cache::build_rope_shift(
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE
// @ngxson : this is a workaround
// for M-RoPE, we want to rotate the whole vector when doing KV shift
// a normal RoPE should work, we just need to use the correct ordering

View File

@ -1026,6 +1026,20 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_QWEN3VL:
{
ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, 0);
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 28: type = LLM_TYPE_1_7B; break;
case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
case 64: type = LLM_TYPE_32B; break;
default: type = LLM_TYPE_UNKNOWN;
}
// for deepstack patch, we consider the embd to be [main_embd, deepstack_embd_1, deepstack_embd_2, ...]
hparams.n_embd = hparams.n_embd * (hparams.n_deepstack_layers + 1);
} break;
case LLM_ARCH_QWEN3MOE:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
@ -1037,6 +1051,20 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_QWEN3VLMOE:
{
ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, 0);
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 48: type = LLM_TYPE_30B_A3B; break;
case 94: type = LLM_TYPE_235B_A22B; break;
default: type = LLM_TYPE_UNKNOWN;
}
// for deepstack patch, we consider the embd to be [main_embd, deepstack_embd_1, deepstack_embd_2, ...]
hparams.n_embd = hparams.n_embd * (hparams.n_deepstack_layers + 1);
} break;
case LLM_ARCH_PHI2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@ -3278,7 +3306,13 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_QWEN3:
case LLM_ARCH_QWEN3VL:
{
int64_t n_embd = hparams.n_embd;
// for deepstack features, we consider the embd to be [main_embd, deepstack_embd_1, deepstack_embd_2, ...]
if (arch == LLM_ARCH_QWEN3VL) {
n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1);
}
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
@ -3312,7 +3346,13 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_QWEN3MOE:
case LLM_ARCH_QWEN3VLMOE:
{
// for deepstack features, we consider the embd to be [main_embd, deepstack_embd_1, deepstack_embd_2, ...]
int64_t n_embd = hparams.n_embd;
if (arch == LLM_ARCH_QWEN3VL) {
n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1);
}
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
@ -6377,6 +6417,10 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
// MRoPE (Multi-axis Rotary Position Embedding) sections
if (const auto & s = hparams.rope_sections; s[0] || s[1] || s[2] || s[3]) {
LLAMA_LOG_INFO("%s: mrope sections = [%d, %d, %d, %d]\n", __func__, s[0], s[1], s[2], s[3]);
}
if (!classifier_labels.empty()) {
LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
@ -6442,7 +6486,7 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
}
if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE) {
if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE) {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
}
@ -9606,6 +9650,301 @@ struct llm_build_qwen3moe : public llm_graph_context {
}
};
struct llm_build_qwen3vl : public llm_graph_context {
llm_build_qwen3vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_full = hparams.n_embd; // main embd + deepstack embds
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
const int64_t n_embd = n_embd_full / (n_deepstack_layers + 1);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
if (ubatch.embd) {
// Image input: split main embd and deepstack embds
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
for (size_t i = 0; i < n_deepstack_layers; i++) {
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
}
inpL = inpL_main;
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_multi(
ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_multi(
ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
cur = ggml_add(ctx0, cur, deepstack_features[il]);
cb(cur, "deepstack_out", il);
}
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_qwen3vlmoe : public llm_graph_context {
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_full = hparams.n_embd; // main embd + deepstack embds
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
const int64_t n_embd = n_embd_full / (n_deepstack_layers + 1);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
if (ubatch.embd) {
// Image input: split main embd and deepstack embds
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
for (size_t i = 0; i < n_deepstack_layers; i++) {
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
}
inpL = inpL_main;
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_multi(
ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_multi(
ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
cur = moe_out;
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
cur = ggml_add(ctx0, cur, deepstack_features[il]);
cb(cur, "deepstack_out", il);
}
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_phi2 : public llm_graph_context {
llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@ -19881,6 +20220,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_qwen3moe>(*this, params);
} break;
case LLM_ARCH_QWEN3VL:
{
llm = std::make_unique<llm_build_qwen3vl>(*this, params);
} break;
case LLM_ARCH_QWEN3VLMOE:
{
llm = std::make_unique<llm_build_qwen3vlmoe>(*this, params);
} break;
case LLM_ARCH_PHI2:
{
llm = std::make_unique<llm_build_phi2>(*this, params);
@ -20394,6 +20741,9 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_QWEN2VL:
return LLAMA_ROPE_TYPE_MROPE;
case LLM_ARCH_QWEN3VL:
case LLM_ARCH_QWEN3VLMOE:
return LLAMA_ROPE_TYPE_IMROPE;
// all model arches should be listed explicitly here
case LLM_ARCH_UNKNOWN:

View File

@ -39,6 +39,7 @@
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
#define KEY_DEEPSTACK_LAYERS "clip.vision.deepstack_layers"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
@ -127,6 +128,7 @@ enum projector_type {
PROJECTOR_TYPE_MINICPMV,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_QWEN2VL,
PROJECTOR_TYPE_QWEN3VL,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL,
@ -150,6 +152,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
{ PROJECTOR_TYPE_QWEN3VL, "qwen3vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},

View File

@ -196,6 +196,8 @@ struct clip_hparams {
int32_t n_wa_pattern = 0;
int32_t spatial_merge_size = 0;
std::vector<int32_t> deepstack_layers; // qwen3vl deepstack layers
// audio
int32_t n_mel_bins = 0; // whisper preprocessor
int32_t proj_stack_factor = 0; // ultravox
@ -359,6 +361,17 @@ struct clip_model {
ggml_tensor * mm_norm_pre_w = nullptr;
ggml_tensor * mm_norm_mid_w = nullptr;
// qwen3vl deepstack
struct deepstack_merger {
ggml_tensor * norm_w = nullptr;
ggml_tensor * norm_b = nullptr;
ggml_tensor * fc1_w = nullptr;
ggml_tensor * fc1_b = nullptr;
ggml_tensor * fc2_w = nullptr;
ggml_tensor * fc2_b = nullptr;
};
std::vector<deepstack_merger> deepstack_mergers;
bool audio_has_avgpool() const {
return proj_type == PROJECTOR_TYPE_QWEN2A
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
@ -831,6 +844,201 @@ struct clip_graph {
return gf;
}
// Qwen3VL
ggml_cgraph * build_qwen3vl() {
GGML_ASSERT(model.patch_bias != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
GGML_ASSERT(model.class_embedding == nullptr);
GGML_ASSERT(!hparams.deepstack_layers.empty());
const int batch_size = 1;
const int n_pos = n_patches;
const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
norm_type norm_t = NORM_TYPE_NORMAL;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
GGML_ASSERT(img.nx % (patch_size * 2) == 0);
GGML_ASSERT(img.ny % (patch_size * 2) == 0);
// second conv dimension
{
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_cont_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
inp = ggml_cont_3d(
ctx0, inp,
n_embd, n_patches_x * n_patches_y, batch_size);
}
// add patch bias
if (model.patch_bias != nullptr) {
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
}
// calculate absolute position embedding and apply
ggml_tensor * learned_pos_embd = resize_position_embeddings();
learned_pos_embd = ggml_cont_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
learned_pos_embd = ggml_reshape_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
learned_pos_embd = ggml_cont_3d(
ctx0, learned_pos_embd,
n_embd, n_patches_x * n_patches_y, batch_size);
inp = ggml_add(ctx0, inp, learned_pos_embd);
cb(inp, "inp_pos_emb", -1);
ggml_tensor * inpL = inp;
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
}
// deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
ggml_tensor * deepstack_features = nullptr;
const int merge_factor = hparams.spatial_merge_size > 0 ? hparams.spatial_merge_size * hparams.spatial_merge_size : 4; // default 2x2=4 for qwen3vl
// loop over layers
for (int il = 0; il < n_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
cb(cur, "ln1", il);
// self-attention
{
ggml_tensor * Qcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
ggml_tensor * Kcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
ggml_tensor * Vcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// apply M-RoPE
Qcur = ggml_rope_multi(
ctx0, Qcur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
Kcur = ggml_rope_multi(
ctx0, Kcur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
cb(Qcur, "Qcur_rope", il);
cb(Kcur, "Kcur_rope", il);
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
if (std::find(hparams.deepstack_layers.begin(), hparams.deepstack_layers.end(), il) != hparams.deepstack_layers.end()) {
const int deepstack_idx = std::find(hparams.deepstack_layers.begin(), hparams.deepstack_layers.end(), il) - hparams.deepstack_layers.begin();
auto & merger = model.deepstack_mergers[deepstack_idx];
ggml_tensor * feat = ggml_dup(ctx0, cur);
feat = ggml_reshape_3d(ctx0, feat, n_embd * merge_factor, n_pos / merge_factor, batch_size);
feat = build_norm(feat, merger.norm_w, merger.norm_b, norm_t, eps, il);
feat = ggml_mul_mat(ctx0, merger.fc1_w, feat);
feat = ggml_add(ctx0, feat, merger.fc1_b);
feat = ggml_gelu(ctx0, feat);
feat = ggml_mul_mat(ctx0, merger.fc2_w, feat);
feat = ggml_add(ctx0, feat, merger.fc2_b);
if(!deepstack_features) {
deepstack_features = feat;
} else {
// concat along the feature dimension
deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
}
}
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
}
// multimodal projection
ggml_tensor * embeddings = inpL;
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
ggml_cgraph * build_minicpmv() {
const int batch_size = 1;
@ -2103,6 +2311,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{
res = graph.build_qwen2vl();
} break;
case PROJECTOR_TYPE_QWEN3VL:
{
res = graph.build_qwen3vl();
} break;
case PROJECTOR_TYPE_MINICPMV:
{
res = graph.build_minicpmv();
@ -2421,6 +2633,13 @@ struct clip_model_loader {
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
} break;
case PROJECTOR_TYPE_QWEN3VL:
{
hparams.image_size = 1024; // still need this?
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
get_arr_int(KEY_DEEPSTACK_LAYERS, hparams.deepstack_layers, false);
} break;
case PROJECTOR_TYPE_LLAMA4:
{
hparams.rope_theta = 10000.0f;
@ -2459,6 +2678,15 @@ struct clip_model_loader {
LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
if (hparams.spatial_merge_size > 0) {
LOG_INF("%s: spatial_merge_size: %d\n", __func__, hparams.spatial_merge_size);
}
if (!hparams.deepstack_layers.empty()) {
LOG_INF("%s: deepstack_layers: ", __func__);
for (size_t i = 0; i < hparams.deepstack_layers.size(); i++) {
LOG_CNT("%d%s", hparams.deepstack_layers[i], i < hparams.deepstack_layers.size() - 1 ? ", " : "\n");
}
}
} else if (is_audio) {
LOG_INF("\n--- audio hparams ---\n");
LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
@ -2691,6 +2919,26 @@ struct clip_model_loader {
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_QWEN3VL:
{
model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
if (!hparams.deepstack_layers.empty()) {
model.deepstack_mergers.resize(hparams.deepstack_layers.size());
for (size_t i = 0; i < hparams.deepstack_layers.size(); i++) {
auto & merger = model.deepstack_mergers[i];
merger.norm_w = get_tensor(string_format("v.deepstack.%d.norm.weight", (int)i), false);
merger.norm_b = get_tensor(string_format("v.deepstack.%d.norm.bias", (int)i), false);
merger.fc1_w = get_tensor(string_format("v.deepstack.%d.fc1.weight", (int)i), false);
merger.fc1_b = get_tensor(string_format("v.deepstack.%d.fc1.bias", (int)i), false);
merger.fc2_w = get_tensor(string_format("v.deepstack.%d.fc2.weight", (int)i), false);
merger.fc2_b = get_tensor(string_format("v.deepstack.%d.fc2.bias", (int)i), false);
}
}
} break;
case PROJECTOR_TYPE_GEMMA3:
{
model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
@ -3554,7 +3802,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
res_imgs->grid_y = inst.grid_size.height;
return true;
} else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
} else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
clip_image_u8 resized;
auto patch_size = params.patch_size * 2;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
@ -3774,7 +4022,7 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->model.hparams;
const int n_total = clip_n_output_tokens(ctx, img);
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
}
return n_total;
@ -3782,7 +4030,7 @@ int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 *
int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->model.hparams;
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
}
return 1;
@ -3838,6 +4086,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
case PROJECTOR_TYPE_QWEN3VL:
{
// dynamic size (2 conv, so double patch size)
int patch_size = params.patch_size * 2;
@ -4142,6 +4391,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
set_input_f32("pos_embed", pos_embed);
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN3VL:
{
const int merge_ratio = 2;
const int pw = image_size_width / patch_size;
@ -4387,6 +4637,8 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
return ctx->model.mm_1_b->ne[0];
case PROJECTOR_TYPE_QWEN3VL:
return ctx->model.mm_1_b->ne[0] * ((int)ctx->model.hparams.deepstack_layers.size() + 1); // main path + deepstack paths
case PROJECTOR_TYPE_GEMMA3:
return ctx->model.mm_input_proj_w->ne[0];
case PROJECTOR_TYPE_IDEFICS3:
@ -4421,7 +4673,8 @@ bool clip_is_glm(const struct clip_ctx * ctx) {
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
}
bool clip_is_llava(const struct clip_ctx * ctx) {

View File

@ -258,7 +258,7 @@ struct mtmd_context {
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
img_end = "[IMG_END]";
} else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL) {
} else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL || proj == PROJECTOR_TYPE_QWEN3VL) {
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
img_beg = "<|vision_start|>";
img_end = "<|vision_end|>";