tests : add -INF blocks to the KQ mask in the FA tests (#16380)
* tests : add -INF blocks to the KQ mask in the FA tests * cont : bump -INF block size to 64 Co-authored-by: Jeff Bolz <jbolz@nvidia.com> * ggml : prevent division by zero in FA CPU op --------- Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
parent
8ae32dc9ec
commit
1d6092fc72
|
|
@ -8135,7 +8135,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||||
}
|
}
|
||||||
|
|
||||||
// V /= S
|
// V /= S
|
||||||
const float S_inv = 1.0f/S;
|
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
|
||||||
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
||||||
|
|
||||||
// dst indices
|
// dst indices
|
||||||
|
|
|
||||||
|
|
@ -131,6 +131,50 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// generate an F16 mask where certain blocks are randomly masked with -INF value
|
||||||
|
static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
|
||||||
|
GGML_ASSERT(tensor->type == GGML_TYPE_F16);
|
||||||
|
|
||||||
|
GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
|
||||||
|
|
||||||
|
std::vector<float> data_f32(ne0*ne1*ne2*ne3);
|
||||||
|
std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
|
||||||
|
|
||||||
|
std::random_device rd;
|
||||||
|
std::mt19937 gen(rd());
|
||||||
|
std::uniform_real_distribution<float> dis(min, max);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < data_f32.size(); i++) {
|
||||||
|
data_f32[i] = dis(gen);
|
||||||
|
}
|
||||||
|
|
||||||
|
// block size
|
||||||
|
const int blck0 = 128;
|
||||||
|
const int blck1 = 64;
|
||||||
|
|
||||||
|
// number of INF blocks
|
||||||
|
const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
|
||||||
|
|
||||||
|
for (int b = 0; b < n_inf_blocks; b++) {
|
||||||
|
const int p3 = (rd() % ne3);
|
||||||
|
const int p2 = (rd() % ne2);
|
||||||
|
const int p1 = (rd() % ne1);
|
||||||
|
const int p0 = (rd() % ne0);
|
||||||
|
|
||||||
|
for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
|
||||||
|
const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
|
||||||
|
|
||||||
|
for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
|
||||||
|
data_f32[idx + i0] = -INFINITY;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
|
||||||
|
|
||||||
|
ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
|
||||||
|
}
|
||||||
|
|
||||||
static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||||
std::vector<float> tv;
|
std::vector<float> tv;
|
||||||
tv.reserve(ggml_nelements(t));
|
tv.reserve(ggml_nelements(t));
|
||||||
|
|
@ -5111,6 +5155,8 @@ struct test_flash_attn_ext : public test_case {
|
||||||
if (strcmp(t->name, "s") == 0) {
|
if (strcmp(t->name, "s") == 0) {
|
||||||
// make the sink values more noticable in order to trigger a test failure when the implementation is wrong
|
// make the sink values more noticable in order to trigger a test failure when the implementation is wrong
|
||||||
init_tensor_uniform(t, -10.0f, 10.0f);
|
init_tensor_uniform(t, -10.0f, 10.0f);
|
||||||
|
} else if (strcmp(t->name, "m") == 0) {
|
||||||
|
init_tensor_kq_mask(t);
|
||||||
} else {
|
} else {
|
||||||
init_tensor_uniform(t);
|
init_tensor_uniform(t);
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue