fixed flake8 lint issues
This commit is contained in:
parent
5f2ee1aecf
commit
1c88647ec6
|
|
@ -6005,6 +6005,7 @@ class Gemma3VisionModel(MmprojModel):
|
||||||
|
|
||||||
return [] # skip other tensors
|
return [] # skip other tensors
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("DeepseekOCRForCausalLM")
|
@ModelBase.register("DeepseekOCRForCausalLM")
|
||||||
class DeepseekOCRVisionModel(MmprojModel):
|
class DeepseekOCRVisionModel(MmprojModel):
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
|
|
@ -6044,7 +6045,6 @@ class DeepseekOCRVisionModel(MmprojModel):
|
||||||
|
|
||||||
return vision_config
|
return vision_config
|
||||||
|
|
||||||
|
|
||||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||||
# TODO: increase numercial stability. maybe delete later.
|
# TODO: increase numercial stability. maybe delete later.
|
||||||
return gguf.GGMLQuantizationType.F32
|
return gguf.GGMLQuantizationType.F32
|
||||||
|
|
@ -7354,8 +7354,12 @@ class DeepseekV2Model(TextModel):
|
||||||
|
|
||||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
# skip vision tensors and remove "language_model." for Kimi-VL
|
# skip vision tensors and remove "language_model." for Kimi-VL
|
||||||
if "vision_" in name or "multi_modal_projector" in name \
|
if ("vision_" in name
|
||||||
or "image_newline" in name or "model.projector" in name or "sam_model" in name or "view_seperator" in name:
|
or "multi_modal_projector" in name
|
||||||
|
or "image_newline" in name
|
||||||
|
or "model.projector" in name
|
||||||
|
or "sam_model" in name
|
||||||
|
or "view_seperator" in name):
|
||||||
return []
|
return []
|
||||||
|
|
||||||
if name.startswith("language_model."):
|
if name.startswith("language_model."):
|
||||||
|
|
@ -7435,6 +7439,7 @@ class DeepseekV2Model(TextModel):
|
||||||
if len(experts) > 0:
|
if len(experts) > 0:
|
||||||
raise ValueError(f"Unprocessed experts: {experts}")
|
raise ValueError(f"Unprocessed experts: {experts}")
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("MiniMaxM2ForCausalLM")
|
@ModelBase.register("MiniMaxM2ForCausalLM")
|
||||||
class MiniMaxM2Model(TextModel):
|
class MiniMaxM2Model(TextModel):
|
||||||
model_arch = gguf.MODEL_ARCH.MINIMAXM2
|
model_arch = gguf.MODEL_ARCH.MINIMAXM2
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue