This commit is contained in:
Johannes Gäßler 2026-01-02 23:47:03 +02:00 committed by GitHub
commit 1a961f23a0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 4 additions and 6 deletions

View File

@ -393,7 +393,7 @@ static void llama_params_fit_impl(
+ std::to_string(ntbo) + " is insufficient for model");
}
tensor_buft_overrides[itbo].pattern = get_overflow_pattern(il, il == il0 ? ngl_per_device[id].overflow_type : LAYER_FRACTION_MOE);
tensor_buft_overrides[itbo].buft = overflow_bufts[id];
tensor_buft_overrides[itbo].buft = il == il0 ? overflow_bufts[id] : ggml_backend_cpu_buffer_type();
itbo++;
}
il0 += ngl_per_device[id].n_part;
@ -468,7 +468,7 @@ static void llama_params_fit_impl(
LLAMA_LOG_DEBUG("%s: id=%zu, target=%" PRId64 " MiB\n", __func__, id, targets[id]/MiB);
}
std::vector<ggml_backend_buffer_type_t> overflow_bufts; // which bufts the partial layers of a device overflow to:
std::vector<ggml_backend_buffer_type_t> overflow_bufts; // which bufts the first partial layer of a device overflows to:
overflow_bufts.reserve(nd);
for (size_t id = 0; id < nd - 1; ++id) {
overflow_bufts.push_back(ggml_backend_dev_buffer_type(devs[id + 1]));
@ -512,9 +512,6 @@ static void llama_params_fit_impl(
if (mem_high[id] > targets[id]) {
assert(ngl_per_device_high[id].n_layer > ngl_per_device[id].n_layer);
uint32_t delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer;
if (hp_nex > 0 && size_t(id) == nd - 1) {
delta--;
}
LLAMA_LOG_DEBUG("%s: start filling device %" PRIu32 ", delta=%" PRIu32 "\n", __func__, id, delta);
while (delta > 1) {
uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]);
@ -524,7 +521,8 @@ static void llama_params_fit_impl(
std::vector<ngl_t> ngl_per_device_test = ngl_per_device;
ngl_per_device_test[id].n_layer += step_size;
if (hp_nex) {
ngl_per_device_test[id].n_part += step_size;
ngl_per_device_test[id].n_part += size_t(id) == nd - 1 && ngl_per_device_test[id].n_part == 0 ?
step_size - 1 : step_size; // the first layer is the output layer which must always be full
}
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);