Refactor estimate_error()
This commit is contained in:
parent
a7ee915e19
commit
1a3e9ea4c8
|
|
@ -737,12 +737,12 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
const int64_t n_per_row = t->ne[0];
|
||||
const int64_t nrows = t->ne[1];
|
||||
const int64_t ne2 = t->ne[2] > 0 ? t->ne[2] : 1;
|
||||
const size_t sample_element_count = f32_sample.size();
|
||||
const size_t sample_row_count = n_per_row > 0 ? sample_element_count / (size_t)n_per_row : 0;
|
||||
if (sample_row_count == 0) {
|
||||
const size_t sample_elems = f32_sample.size();
|
||||
const size_t sample_rows = n_per_row > 0 ? sample_elems / (size_t)n_per_row : 0;
|
||||
|
||||
if (sample_rows == 0) {
|
||||
if (out_mse) { *out_mse = 0.0; }
|
||||
if (out_proj) { *out_proj = 0.0; }
|
||||
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
|
|
@ -751,105 +751,102 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
expected_rows += (size_t)rows_sample[s];
|
||||
}
|
||||
|
||||
if (expected_rows != sample_row_count) {
|
||||
if (expected_rows != sample_rows) {
|
||||
if (out_mse) { *out_mse = infinity; }
|
||||
if (out_proj) { *out_proj = 0.0; }
|
||||
|
||||
return infinity;
|
||||
}
|
||||
|
||||
const size_t row_sz = ggml_row_size(quant_type, n_per_row);
|
||||
const size_t buffer_sz = row_sz * sample_row_count;
|
||||
const size_t buf_sz = row_sz * sample_rows;
|
||||
|
||||
if (quantized_buffer.size() < buffer_sz) { quantized_buffer.resize(buffer_sz); }
|
||||
if (dequantized_buffer.size() < sample_element_count) { dequantized_buffer.resize(sample_element_count); }
|
||||
if (quantized_buffer.size() < buf_sz) { quantized_buffer.resize(buf_sz); }
|
||||
if (dequantized_buffer.size() < sample_elems) { dequantized_buffer.resize(sample_elems); }
|
||||
|
||||
const bool has_values = values_sample != nullptr;
|
||||
const bool has_activations = activations_sample != nullptr;
|
||||
|
||||
// Bias denominators per slice
|
||||
std::vector<double> bias_denominator_per_slice(ne2, 0.0);
|
||||
std::vector<double> bias_denom(ne2, 0.0);
|
||||
if (has_activations) {
|
||||
for (int64_t s = 0; s < ne2; ++s) {
|
||||
const float * values = has_values ? values_sample + s * n_per_row : nullptr;
|
||||
const float * activations = activations_sample + s * n_per_row;
|
||||
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
|
||||
const float * a = activations_sample + s * n_per_row;
|
||||
double denom = 0.0;
|
||||
for (int64_t j = 0; j < n_per_row; ++j) {
|
||||
const double w = values ? std::max(0.0f, values[j]) : 1.0;
|
||||
const double a = activations[j];
|
||||
denom += w * a * a;
|
||||
const double w = v ? std::max(0.0f, v[j]) : 1.0;
|
||||
const double aj = a[j];
|
||||
denom += w * aj * aj;
|
||||
}
|
||||
|
||||
bias_denominator_per_slice[s] = denom;
|
||||
bias_denom[s] = denom;
|
||||
}
|
||||
}
|
||||
|
||||
// Weighted per-row squared norms
|
||||
std::vector<double> row_sq_norm(sample_row_count, 0.0);
|
||||
// Row squared norms (weighted if values present)
|
||||
std::vector<double> row_sq_norm(sample_rows, 0.0);
|
||||
{
|
||||
size_t offset = 0;
|
||||
size_t row_idx = 0;
|
||||
size_t off = 0;
|
||||
size_t ridx = 0;
|
||||
for (int64_t s = 0; s < ne2; ++s) {
|
||||
const int64_t rs = rows_sample[s];
|
||||
if (rs == 0) { continue; }
|
||||
|
||||
const float * values = has_values ? values_sample + s * n_per_row : nullptr;
|
||||
for (int64_t r = 0; r < rs; ++r, ++row_idx) {
|
||||
const float * x = f32_sample.data() + offset;
|
||||
double rsn = 0.0;
|
||||
if (values) {
|
||||
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
|
||||
for (int64_t r = 0; r < rs; ++r, ++ridx) {
|
||||
const float * x = f32_sample.data() + off;
|
||||
double sum = 0.0;
|
||||
if (v) {
|
||||
for (int64_t j = 0; j < n_per_row; ++j) {
|
||||
const double w = std::max(0.0f, values[j]);
|
||||
const double w = std::max(0.0f, v[j]);
|
||||
const double xx = x[j];
|
||||
rsn += w * xx * xx;
|
||||
sum += w * xx * xx;
|
||||
}
|
||||
} else {
|
||||
for (int64_t j = 0; j < n_per_row; ++j) {
|
||||
const double xx = x[j];
|
||||
rsn += xx * xx;
|
||||
sum += xx * xx;
|
||||
}
|
||||
}
|
||||
row_sq_norm[row_idx] = rsn;
|
||||
offset += (size_t)n_per_row;
|
||||
|
||||
row_sq_norm[ridx] = sum;
|
||||
off += (size_t)n_per_row;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Quantize sampled rows per slice -> quantized_buffer
|
||||
// Quantize per slice into quantized_buffer
|
||||
{
|
||||
size_t q_offset = 0;
|
||||
size_t f_offset = 0;
|
||||
for (int64_t slice = 0; slice < ne2; ++slice) {
|
||||
const int64_t rs = rows_sample[slice];
|
||||
size_t qoff = 0;
|
||||
size_t foff = 0;
|
||||
for (int64_t s = 0; s < ne2; ++s) {
|
||||
const int64_t rs = rows_sample[s];
|
||||
if (rs == 0) { continue; }
|
||||
|
||||
const float * value = has_values ? values_sample + slice * n_per_row : nullptr;
|
||||
(void)ggml_quantize_chunk(quant_type, f32_sample.data() + f_offset, quantized_buffer.data() + q_offset, 0, rs, n_per_row, value);
|
||||
q_offset += row_sz * (size_t)rs;
|
||||
f_offset += (size_t)rs * (size_t)n_per_row;
|
||||
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
|
||||
(void)ggml_quantize_chunk(quant_type, f32_sample.data() + foff, quantized_buffer.data() + qoff, 0, rs, n_per_row, v);
|
||||
qoff += row_sz * (size_t)rs;
|
||||
foff += (size_t)rs * (size_t)n_per_row;
|
||||
}
|
||||
}
|
||||
|
||||
// quantized_buffer -> dequantized_buffer
|
||||
// Dequantize into dequantized_buffer
|
||||
{
|
||||
const ggml_type_traits * traits = ggml_get_type_traits(quant_type);
|
||||
const bool is_fp16 = quant_type == GGML_TYPE_F16;
|
||||
const bool is_bf16 = quant_type == GGML_TYPE_BF16;
|
||||
if (!is_fp16 && !is_bf16 && traits && traits->to_float) {
|
||||
traits->to_float(quantized_buffer.data(), dequantized_buffer.data(), (int)(sample_row_count * (size_t)n_per_row));
|
||||
if (traits && traits->to_float && quant_type != GGML_TYPE_F16 && quant_type != GGML_TYPE_BF16) {
|
||||
traits->to_float(quantized_buffer.data(), dequantized_buffer.data(), (int)(sample_rows * (size_t)n_per_row));
|
||||
} else {
|
||||
for (size_t r = 0; r < sample_row_count; ++r) {
|
||||
uint8_t * src = quantized_buffer.data() + r * row_sz;
|
||||
for (size_t r = 0; r < sample_rows; ++r) {
|
||||
const uint8_t * src = quantized_buffer.data() + r * row_sz;
|
||||
float * dst = dequantized_buffer.data() + r * (size_t)n_per_row;
|
||||
if (is_fp16) {
|
||||
if (quant_type == GGML_TYPE_F16) {
|
||||
ggml_fp16_to_fp32_row((const ggml_fp16_t *)src, dst, (int)n_per_row);
|
||||
} else if (is_bf16) {
|
||||
} else if (quant_type == GGML_TYPE_BF16) {
|
||||
ggml_bf16_to_fp32_row((const ggml_bf16_t *)src, dst, (int)n_per_row);
|
||||
} else {
|
||||
if (!traits || !traits->to_float) {
|
||||
if (out_mse) { *out_mse = infinity; }
|
||||
if (out_proj) { *out_proj = 0.0; }
|
||||
|
||||
return infinity;
|
||||
}
|
||||
traits->to_float(src, dst, (int)n_per_row);
|
||||
|
|
@ -858,94 +855,77 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
}
|
||||
}
|
||||
|
||||
// Compute error
|
||||
size_t offset = 0;
|
||||
size_t row_idx = 0;
|
||||
double total_mse = 0.0;
|
||||
double total_proj = 0.0;
|
||||
double total_bias = 0.0;
|
||||
for (int64_t slice = 0; slice < ne2; ++slice) {
|
||||
const int64_t rs = rows_sample[slice];
|
||||
if (rs == 0) { continue; }
|
||||
|
||||
const float * values = has_values ? values_sample + slice * n_per_row : nullptr;
|
||||
const float * activations = has_activations ? activations_sample + slice * n_per_row : nullptr;
|
||||
const double bias_denom = has_activations ? bias_denominator_per_slice[slice] : 0.0;
|
||||
std::vector<double> row_mse_norm;
|
||||
std::vector<double> row_proj_norm;
|
||||
row_mse_norm.reserve(rs);
|
||||
if (activations) { row_proj_norm.reserve(rs); }
|
||||
|
||||
for (int64_t r = 0; r < rs; ++r, ++row_idx) {
|
||||
const float * x = f32_sample.data() + offset;
|
||||
const float * y = dequantized_buffer.data() + offset;
|
||||
double weighted_mse = 0.0;
|
||||
double bias_num = 0.0;
|
||||
if (values && activations) {
|
||||
for (int64_t j = 0; j < n_per_row; ++j) {
|
||||
const double w = std::max(0.0f, values[j]);
|
||||
const double e = y[j] - x[j];
|
||||
const double a = activations[j];
|
||||
weighted_mse += w * e * e;
|
||||
bias_num += w * e * a;
|
||||
}
|
||||
} else if (values) {
|
||||
for (int64_t j = 0; j < n_per_row; ++j) {
|
||||
const double w = std::max(0.0f, values[j]);
|
||||
const double e = y[j] - x[j];
|
||||
weighted_mse += w * e * e;
|
||||
}
|
||||
} else {
|
||||
for (int64_t j = 0; j < n_per_row; ++j) {
|
||||
const double e = y[j] - x[j];
|
||||
weighted_mse += e * e;
|
||||
}
|
||||
}
|
||||
|
||||
const double denom_x = row_sq_norm[row_idx];
|
||||
double m_norm = weighted_mse / (denom_x + epsilon);
|
||||
row_mse_norm.push_back(std::isfinite(m_norm) ? m_norm : infinity);
|
||||
|
||||
if (activations) {
|
||||
double p_norm = 0.0;
|
||||
if (bias_denom > 0.0) {
|
||||
const double proj = bias_num * bias_num / (bias_denom + epsilon);
|
||||
p_norm = std::isfinite(proj) ? proj : 0.0;
|
||||
}
|
||||
row_proj_norm.push_back(p_norm);
|
||||
}
|
||||
|
||||
offset += (size_t)n_per_row;
|
||||
}
|
||||
|
||||
// Trimmed sum to avoid outlier rows dominating the results
|
||||
// Compute error per slice with trimmed aggregation
|
||||
auto trimmed_sum = [&](std::vector<double> & v) -> double {
|
||||
const int64_t n = (int64_t)v.size();
|
||||
if (n == 0) { return 0.0; }
|
||||
if (n < 50) { return std::accumulate(v.begin(), v.end(), 0.0); }
|
||||
|
||||
int64_t k = (int64_t)std::floor(0.02 * (double)n); // trim 2% each side
|
||||
k = std::clamp<int64_t>(k, 0, n / 32); // cap at ~3.125%
|
||||
int64_t k = (int64_t) std::floor(0.02 * (double) n); // trim 2% on each side
|
||||
k = std::clamp<int64_t>(k, 0, n / 32); // but no more than ~3%
|
||||
std::nth_element(v.begin(), v.begin() + k, v.end());
|
||||
std::nth_element(v.begin() + k, v.begin() + (n - k), v.end());
|
||||
return std::accumulate(v.begin() + k, v.begin() + (n - k), 0.0);
|
||||
};
|
||||
|
||||
size_t off = 0;
|
||||
size_t ridx = 0;
|
||||
double total_mse = 0.0;
|
||||
double total_proj = 0.0;
|
||||
double total_bias = 0.0;
|
||||
for (int64_t s = 0; s < ne2; ++s) {
|
||||
const int64_t rs = rows_sample[s];
|
||||
if (rs == 0) { continue; }
|
||||
|
||||
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
|
||||
const float * a = has_activations ? activations_sample + s * n_per_row : nullptr;
|
||||
const double denom_bias = has_activations ? bias_denom[s] : 0.0;
|
||||
std::vector<double> row_mse_norm;
|
||||
row_mse_norm.reserve(rs);
|
||||
std::vector<double> row_proj_norm;
|
||||
if (a) { row_proj_norm.reserve(rs); }
|
||||
|
||||
for (int64_t r = 0; r < rs; ++r, ++ridx) {
|
||||
const float * x = f32_sample.data() + off;
|
||||
const float * y = dequantized_buffer.data() + off;
|
||||
double w_mse = 0.0;
|
||||
double bias_num = 0.0;
|
||||
for (int64_t j = 0; j < n_per_row; ++j) {
|
||||
const double wj = v ? std::max(0.0f, v[j]) : 1.0;
|
||||
const double e = y[j] - x[j];
|
||||
w_mse += wj * e * e;
|
||||
if (a) { bias_num += wj * e * a[j]; }
|
||||
}
|
||||
|
||||
const double denom_x = row_sq_norm[ridx];
|
||||
const double m_norm = w_mse / (denom_x + epsilon);
|
||||
row_mse_norm.push_back(std::isfinite(m_norm) ? m_norm : infinity);
|
||||
|
||||
if (a) {
|
||||
double p_norm = 0.0;
|
||||
if (denom_bias > 0.0) {
|
||||
const double proj = bias_num * bias_num / (denom_bias + epsilon);
|
||||
p_norm = std::isfinite(proj) ? proj : 0.0;
|
||||
}
|
||||
|
||||
row_proj_norm.push_back(p_norm);
|
||||
}
|
||||
|
||||
off += (size_t)n_per_row;
|
||||
}
|
||||
|
||||
const double scale_rows = (double)nrows / std::max(1.0, (double)rs);
|
||||
const double slice_mse = trimmed_sum(row_mse_norm) * scale_rows;
|
||||
const double slice_proj = activations ? trimmed_sum(row_proj_norm) * scale_rows : 0.0;
|
||||
const double slice_proj = a ? trimmed_sum(row_proj_norm) * scale_rows : 0.0;
|
||||
|
||||
total_mse += slice_mse;
|
||||
total_proj += slice_proj;
|
||||
|
||||
// per-slice lambda if provided, otherwise use scalar
|
||||
const double bl = slice_bias_lambda ? (double)std::max(0.0f, slice_bias_lambda[slice]) : (double)tensor_bias_lambda;
|
||||
const double bl = slice_bias_lambda ? (double)std::max(0.0f, slice_bias_lambda[s]) : (double)tensor_bias_lambda;
|
||||
total_bias += bl * slice_proj;
|
||||
|
||||
if (!std::isfinite(total_mse) || !std::isfinite(total_proj) || !std::isfinite(total_bias)) {
|
||||
if (out_mse) { *out_mse = infinity; }
|
||||
if (out_proj) { *out_proj = 0.0; }
|
||||
|
||||
return infinity;
|
||||
}
|
||||
}
|
||||
|
|
@ -954,7 +934,6 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
if (out_proj) { *out_proj = total_proj; }
|
||||
|
||||
const double total_err = slice_bias_lambda ? total_mse + total_bias : total_mse + tensor_bias_lambda * total_proj;
|
||||
|
||||
return std::isfinite(total_err) ? total_err : infinity;
|
||||
};
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue