This commit is contained in:
Nikhil Jain 2026-02-01 09:20:22 -03:00 committed by GitHub
commit 19343711cd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 93 additions and 120 deletions

View File

@ -146,8 +146,13 @@ struct webgpu_submission_futures {
struct webgpu_buf_pool {
std::vector<webgpu_pool_bufs> free;
std::mutex mutex;
// The pool must be synchronized because
// 1. The memset pool is shared globally by every ggml buffer,
// since allocating a pool per ggml buffer would consume too much memory.
// 2. For the per-thread buffer pools in webgpu_context,
// buffers are allocated and freed in Dawn callbacks,
// which can run on a different thread than the calling thread.
std::mutex mutex;
std::condition_variable cv;
void init(wgpu::Device device,
@ -266,7 +271,7 @@ struct webgpu_command {
#endif
};
struct webgpu_capabilities_base {
struct webgpu_capabilities {
wgpu::Limits limits;
bool supports_subgroup_matrix = false;
@ -286,11 +291,11 @@ struct webgpu_global_context_struct {
wgpu::Device device;
wgpu::Queue queue;
webgpu_capabilities_base capabilities;
webgpu_capabilities capabilities;
// Shared buffer to move data from device to host
wgpu::Buffer get_tensor_staging_buf;
wgpu::Buffer get_tensor_staging_buf;
// Global mutex for pipeline and staging buffer, will be refactored to exclude pipeline caches.
std::recursive_mutex mutex;
std::recursive_mutex mutex;
webgpu_buf_pool memset_buf_pool;
std::map<int, webgpu_pipeline> memset_pipelines; // variant or type index
@ -361,7 +366,6 @@ struct webgpu_context_struct {
std::unordered_map<ggml_webgpu_pad_pipeline_key, webgpu_pipeline, ggml_webgpu_pad_pipeline_key_hash> pad_pipelines;
size_t memset_bytes_per_thread;
};
typedef std::shared_ptr<webgpu_context_struct> webgpu_context;
@ -383,9 +387,8 @@ struct ggml_backend_webgpu_device_context {
// Per-thread data required to actually run WebGPU operations in a backend instance
struct ggml_backend_webgpu_context {
webgpu_context webgpu_ctx;
std::once_flag init_once;
std::string name;
webgpu_context webgpu_ctx;
std::string name;
};
// Per-thread data related to buffers
@ -861,20 +864,15 @@ static webgpu_command ggml_webgpu_pad(webgpu_context & ctx, ggml_tensor * src, g
};
webgpu_pipeline pipeline;
{
// TODO: remove guard once pipeline caches are per-thread
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
auto it = ctx->pad_pipelines.find(pipeline_key);
if (it != ctx->pad_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_pad_shader(ctx->p, wgsl_pad, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->pad_pipelines.emplace(pipeline_key, pipeline);
}
auto it = ctx->pad_pipelines.find(pipeline_key);
if (it != ctx->pad_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed = ggml_webgpu_preprocess_pad_shader(ctx->p, wgsl_pad, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->pad_pipelines.emplace(pipeline_key, pipeline);
}
ggml_webgpu_generic_shader_decisions decisions =
@ -944,20 +942,16 @@ static std::optional<webgpu_command> ggml_webgpu_set_rows(webgpu_context & ctx,
};
webgpu_pipeline pipeline;
// TODO: remove guard once pipeline caches are per-thread
{
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
auto it = ctx->set_rows_pipelines.find(key);
if (it != ctx->set_rows_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_set_rows_shader(ctx->p, wgsl_set_rows, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->set_rows_pipelines.emplace(key, pipeline);
}
auto it = ctx->set_rows_pipelines.find(key);
if (it != ctx->set_rows_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_set_rows_shader(ctx->p, wgsl_set_rows, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->set_rows_pipelines.emplace(key, pipeline);
}
ggml_webgpu_generic_shader_decisions decisions =
@ -1261,29 +1255,25 @@ static webgpu_command ggml_webgpu_flash_attn(webgpu_context & ctx,
};
webgpu_pipeline pipeline;
// TODO: remove guard once pipeline caches are per-thread
{
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
auto it = ctx->flash_attn_pipelines.find(key);
if (it != ctx->flash_attn_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_flash_attn_shader_lib_context shader_lib_ctx = {
.key = key,
.sg_mat_m = ctx->global_ctx->capabilities.sg_mat_m,
.sg_mat_n = ctx->global_ctx->capabilities.sg_mat_n,
.sg_mat_k = ctx->global_ctx->capabilities.sg_mat_k,
.wg_mem_limit_bytes = ctx->global_ctx->capabilities.limits.maxComputeWorkgroupStorageSize,
.max_subgroup_size = ctx->global_ctx->capabilities.max_subgroup_size
};
auto it = ctx->flash_attn_pipelines.find(key);
if (it != ctx->flash_attn_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_flash_attn_shader_lib_context shader_lib_ctx = {
.key = key,
.sg_mat_m = ctx->global_ctx->capabilities.sg_mat_m,
.sg_mat_n = ctx->global_ctx->capabilities.sg_mat_n,
.sg_mat_k = ctx->global_ctx->capabilities.sg_mat_k,
.wg_mem_limit_bytes = ctx->global_ctx->capabilities.limits.maxComputeWorkgroupStorageSize,
.max_subgroup_size = ctx->global_ctx->capabilities.max_subgroup_size
};
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_flash_attn_shader(ctx->p, wgsl_flash_attn, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->flash_attn_pipelines.emplace(key, pipeline);
}
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_flash_attn_shader(ctx->p, wgsl_flash_attn, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->flash_attn_pipelines.emplace(key, pipeline);
}
ggml_webgpu_flash_attn_shader_decisions decisions =
@ -1308,20 +1298,16 @@ static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * s
};
webgpu_pipeline pipeline;
{
// TODO: remove guard once pipeline caches are per-thread
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
auto it = ctx->unary_pipelines.find(pipeline_key);
if (it != ctx->unary_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_unary_shader(ctx->p, wgsl_unary, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->unary_pipelines.emplace(pipeline_key, pipeline);
}
auto it = ctx->unary_pipelines.find(pipeline_key);
if (it != ctx->unary_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_unary_shader(ctx->p, wgsl_unary, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->unary_pipelines.emplace(pipeline_key, pipeline);
}
ggml_webgpu_generic_shader_decisions decisions =
@ -1743,19 +1729,15 @@ static webgpu_command ggml_webgpu_argmax(webgpu_context & ctx, ggml_tensor * src
};
webgpu_pipeline pipeline;
{
// TODO: remove guard once pipeline caches are per-thread
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
auto it = ctx->argmax_pipelines.find(shader_lib_ctx.vec4);
if (it != ctx->argmax_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_argmax, shader_lib_ctx, "argmax");
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
ctx->argmax_pipelines.emplace(shader_lib_ctx.vec4, pipeline);
}
auto it = ctx->argmax_pipelines.find(shader_lib_ctx.vec4);
if (it != ctx->argmax_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_argmax, shader_lib_ctx, "argmax");
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
ctx->argmax_pipelines.emplace(shader_lib_ctx.vec4, pipeline);
}
uint32_t wg_x = ggml_nelements(dst);
return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x);
@ -1772,9 +1754,8 @@ static webgpu_command ggml_webgpu_argsort(webgpu_context & ctx, ggml_tensor * sr
.order = order
};
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
webgpu_pipeline argsort_pipeline;
auto it = ctx->argsort_pipelines.find(order);
webgpu_pipeline argsort_pipeline;
auto it = ctx->argsort_pipelines.find(order);
if (it != ctx->argsort_pipelines.end()) {
argsort_pipeline = it->second;
} else {
@ -1963,19 +1944,15 @@ static webgpu_command ggml_webgpu_cumsum(webgpu_context & ctx, ggml_tensor * src
.max_wg_size = ctx->global_ctx->capabilities.limits.maxComputeInvocationsPerWorkgroup,
};
webgpu_pipeline pipeline;
// TODO: remove guard once pipeline caches are per-thread
{
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
auto it = ctx->cumsum_pipelines.find(1);
if (it != ctx->cumsum_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_cumsum, shader_lib_ctx, "cumsum");
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
ctx->cumsum_pipelines.emplace(1, pipeline);
}
auto it = ctx->cumsum_pipelines.find(1);
if (it != ctx->cumsum_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_cumsum, shader_lib_ctx, "cumsum");
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
ctx->cumsum_pipelines.emplace(1, pipeline);
}
uint32_t wg_x = ggml_nrows(dst);
return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x);
@ -2009,19 +1986,15 @@ static webgpu_command ggml_webgpu_sum_rows(webgpu_context & ctx, ggml_tensor * s
};
webgpu_pipeline pipeline;
{
// TODO: remove guard once pipeline caches are per-thread
std::lock_guard<std::recursive_mutex> lock(ctx->global_ctx->mutex);
auto it = ctx->sum_rows_pipelines.find(1);
if (it != ctx->sum_rows_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_sum_rows, shader_lib_ctx, "sum_rows");
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
ctx->sum_rows_pipelines.emplace(1, pipeline);
}
auto it = ctx->sum_rows_pipelines.find(1);
if (it != ctx->sum_rows_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_sum_rows, shader_lib_ctx, "sum_rows");
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
ctx->sum_rows_pipelines.emplace(1, pipeline);
}
uint32_t wg_x = total_sum ? 1 : ggml_nrows(dst);
return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x);
@ -3016,10 +2989,10 @@ static bool create_webgpu_device(ggml_backend_webgpu_reg_context * ctx) {
#ifdef GGML_WEBGPU_GPU_PROFILE
// Initialize buffer pool for timestamp queries, used for profiling
ctx->webgpu_global_ctx->timestamp_query_buf_pool.init(ctx->webgpu_global_ctx->device, WEBGPU_NUM_TIMESTAMP_QUERY_BUFS,
WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES,
wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc,
wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst);
ctx->webgpu_global_ctx->timestamp_query_buf_pool.init(
ctx->webgpu_global_ctx->device, WEBGPU_NUM_TIMESTAMP_QUERY_BUFS, WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES,
wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc,
wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst);
#endif
GGML_LOG_INFO(