diff --git a/src/models/kimi-linear.cpp b/src/models/kimi-linear.cpp index 4831b7bbc7..50cebb9631 100644 --- a/src/models/kimi-linear.cpp +++ b/src/models/kimi-linear.cpp @@ -134,12 +134,7 @@ llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const ll ggml_tensor * conv_weight = nullptr; if (layer.ssm_q_conv) { // Reshape conv weight from [d_conv, 1, d_inner, 1] to [d_conv, d_inner] for ggml_ssm_conv - // Cast to F32 if quantized (ggml_ssm_conv requires float weights) - ggml_tensor * q_conv_f32 = layer.ssm_q_conv; - if (q_conv_f32->type != GGML_TYPE_F32) { - q_conv_f32 = ggml_cast(ctx0, q_conv_f32, GGML_TYPE_F32); - } - conv_weight = ggml_reshape_2d(ctx0, q_conv_f32, d_conv, d_inner); + conv_weight = ggml_reshape_2d(ctx0, layer.ssm_q_conv, d_conv, d_inner); } // Apply conv1d @@ -166,7 +161,7 @@ llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const ll ggml_tensor * Kcur; if (layer.ssm_k_conv) { ggml_tensor * k_3d = ggml_reshape_3d(ctx0, k_proj, d_inner, n_seq_tokens, n_seqs); - ggml_tensor * conv_k = ggml_cont(ctx0, ggml_concat(ctx0, conv_state_k, ggml_transpose(ctx0, k_3d), 0)); + ggml_tensor * conv_k = ggml_concat(ctx0, conv_state_k, ggml_transpose(ctx0, k_3d), 0); // Save K conv state ggml_tensor * last_conv_k = ggml_view_3d(ctx0, conv_k, d_conv - 1, d_inner, n_seqs, @@ -176,11 +171,7 @@ llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const ll ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs, (kv_head * n_embd_r_total + conv_state_size) * ggml_element_size(conv_states_all)))); - ggml_tensor * k_conv_f32 = layer.ssm_k_conv; - if (k_conv_f32->type != GGML_TYPE_F32) { - k_conv_f32 = ggml_cast(ctx0, k_conv_f32, GGML_TYPE_F32); - } - ggml_tensor * k_conv_weight = ggml_reshape_2d(ctx0, k_conv_f32, d_conv, d_inner); + ggml_tensor * k_conv_weight = ggml_reshape_2d(ctx0, layer.ssm_k_conv, d_conv, d_inner); Kcur = ggml_ssm_conv(ctx0, conv_k, k_conv_weight); cb(Kcur, "K conv1d", il); Kcur = ggml_reshape_2d(ctx0, Kcur, d_inner, n_tokens); @@ -197,7 +188,7 @@ llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const ll ggml_tensor * Vcur; if (layer.ssm_v_conv) { ggml_tensor * v_3d = ggml_reshape_3d(ctx0, v_proj, d_inner, n_seq_tokens, n_seqs); - ggml_tensor * conv_v = ggml_cont(ctx0, ggml_concat(ctx0, conv_state_v, ggml_transpose(ctx0, v_3d), 0)); + ggml_tensor * conv_v = ggml_concat(ctx0, conv_state_v, ggml_transpose(ctx0, v_3d), 0); // Save V conv state ggml_tensor * last_conv_v = ggml_view_3d(ctx0, conv_v, d_conv - 1, d_inner, n_seqs, @@ -207,11 +198,7 @@ llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const ll ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs, (kv_head * n_embd_r_total + 2 * conv_state_size) * ggml_element_size(conv_states_all)))); - ggml_tensor * v_conv_f32 = layer.ssm_v_conv; - if (v_conv_f32->type != GGML_TYPE_F32) { - v_conv_f32 = ggml_cast(ctx0, v_conv_f32, GGML_TYPE_F32); - } - ggml_tensor * v_conv_weight = ggml_reshape_2d(ctx0, v_conv_f32, d_conv, d_inner); + ggml_tensor * v_conv_weight = ggml_reshape_2d(ctx0, layer.ssm_v_conv, d_conv, d_inner); Vcur = ggml_ssm_conv(ctx0, conv_v, v_conv_weight); cb(Vcur, "V conv1d", il); Vcur = ggml_reshape_2d(ctx0, Vcur, d_inner, n_tokens); @@ -243,17 +230,17 @@ llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const ll // Step 4: Compute beta (mixing coefficient) ggml_tensor * beta = ggml_mul_mat(ctx0, layer.ssm_beta, cur); - beta = ggml_cont_4d(ctx0, beta, n_head, 1, n_seq_tokens, n_seqs); + beta = ggml_reshape_4d(ctx0, beta, n_head, 1, n_seq_tokens, n_seqs); cb(beta, "kda_beta", il); // Step 5: Reshape for KDA recurrence // {n_embd, n_tokens} -> {n_embd, n_seq_tokens, n_seqs} cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs); - Qcur = ggml_cont(ctx0, ggml_reshape_4d(ctx0, Qcur, head_dim, n_head, n_seq_tokens, n_seqs)); - Kcur = ggml_cont(ctx0, ggml_reshape_4d(ctx0, Kcur, head_dim, n_head, n_seq_tokens, n_seqs)); - Vcur = ggml_cont(ctx0, ggml_reshape_4d(ctx0, Vcur, head_dim, n_head, n_seq_tokens, n_seqs)); - g1 = ggml_cont(ctx0, ggml_reshape_4d(ctx0, g1, head_dim, n_head, n_seq_tokens, n_seqs)); + Qcur = ggml_reshape_4d(ctx0, Qcur, head_dim, n_head, n_seq_tokens, n_seqs); + Kcur = ggml_reshape_4d(ctx0, Kcur, head_dim, n_head, n_seq_tokens, n_seqs); + Vcur = ggml_reshape_4d(ctx0, Vcur, head_dim, n_head, n_seq_tokens, n_seqs); + g1 = ggml_reshape_4d(ctx0, g1, head_dim, n_head, n_seq_tokens, n_seqs); cb(Qcur, "kda_Q", il); cb(Kcur, "kda_K", il); cb(Vcur, "kda_V", il);