Merge branch 'ggml-org:master' into Q8_0_SVE_implementaion_quantize_an_dequantize_function

This commit is contained in:
Prashant Vithule 2025-06-11 14:11:45 +05:30 committed by GitHub
commit 1536f89188
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 732 additions and 377 deletions

View File

@ -306,6 +306,7 @@ jobs:
id: cmake_test
run: |
cd build
export GGML_VK_VISIBLE_DEVICES=0
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600

View File

@ -556,8 +556,11 @@ class TextModel(ModelBase):
logger.info(f"gguf: experts used count = {n_experts_used}")
if (head_dim := self.hparams.get("head_dim")) is not None:
self.gguf_writer.add_key_length(head_dim)
self.gguf_writer.add_value_length(head_dim)
# Workaround for incorrect AutoConfig value for DeepSeekV3 (is set correctly in DeepSeekV2Model class)
# https://github.com/huggingface/transformers/blob/19224c3642705c5b6988c9f5f4251f83323d05ae/src/transformers/models/deepseek_v3/configuration_deepseek_v3.py#L210
if self.hparams.get("model_type") != "deepseek_v3":
self.gguf_writer.add_key_length(head_dim)
self.gguf_writer.add_value_length(head_dim)
self.gguf_writer.add_file_type(self.ftype)
logger.info(f"gguf: file type = {self.ftype}")
@ -4798,25 +4801,6 @@ class OlmoeModel(TextModel):
class JinaBertV2Model(BertModel):
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.intermediate_size = self.hparams["intermediate_size"]
def get_tensors(self):
for name, data in super().get_tensors():
if 'gated_layer' in name:
d1 = data[:self.intermediate_size, :]
name1 = name.replace('gated_layers', 'gated_layers_w')
name1 = name1.replace('up_gated_layer', 'gated_layers_v')
d2 = data[self.intermediate_size:, :]
name2 = name.replace('gated_layers', 'gated_layers_v')
name2 = name2.replace('up_gated_layer', 'gated_layers_w')
yield name1, d1
yield name2, d2
continue
yield name, data
def set_vocab(self):
tokenizer_class = 'BertTokenizer'
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
@ -4832,14 +4816,6 @@ class JinaBertV2Model(BertModel):
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# if name starts with "bert.", remove the prefix
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
if name.startswith("bert."):
name = name[5:]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("OpenELMForCausalLM")
class OpenELMModel(TextModel):

View File

@ -212,6 +212,7 @@ endif()
add_library(ggml
ggml-backend-reg.cpp)
add_library(ggml::ggml ALIAS ggml)
target_link_libraries(ggml PUBLIC ggml-base)

View File

@ -518,11 +518,14 @@ void ggml_barrier(struct ggml_threadpool * tp);
#elif defined(__GNUC__)
// GCC/Clang on *nix
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(weak name = alias) // NOLINT
#elif defined(_MSC_VER) && defined (_WIN64)
#elif defined(_MSC_VER) && defined(_WIN64)
// MSVC
// Note: C name mangling varies across different calling conventions
// see https://learn.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(comment(linker, "/alternatename:" #name "=" #alias))
#elif defined(_MSC_VER) && defined(WIN32)
// ref: https://github.com/ggml-org/whisper.cpp/pull/3239#issuecomment-2958224591
# define GGML_WEAK_ALIAS(name, alias) GGML_DO_PRAGMA(comment(linker, "/alternatename:_" #name "=_" #alias))
#else
# error "Unsupported compiler for GGML_WEAK_ALIAS"
#endif

View File

@ -80,6 +80,7 @@ set(GGML_OPENCL_KERNELS
mul_mv_q4_0_f32_1d_8x_flat
mul_mv_q4_0_f32_1d_16x_flat
mul_mv_q6_k
mul_mv_id_q4_0_f32_8x_flat
mul
norm
relu

View File

@ -321,6 +321,7 @@ struct ggml_backend_opencl_context {
cl_program program_upscale;
cl_program program_concat;
cl_program program_tsembd;
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
@ -366,6 +367,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_concat_f32_contiguous;
cl_kernel kernel_concat_f32_non_contiguous;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
@ -1112,7 +1114,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// repeat
// repeat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
@ -1256,6 +1258,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
}
}
// mul_mv_id_q4_0_f32_8x_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
#endif
backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
GGML_LOG_CONT(".");
}
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
@ -2178,6 +2196,13 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
return false;
case GGML_OP_MUL_MAT_ID:
if (op->src[0]->type == GGML_TYPE_Q4_0) {
if (op->src[1]->type == GGML_TYPE_F32) {
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
}
return false;
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
@ -5536,6 +5561,136 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
}
}
static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const ggml_tensor * src2 = dst->src[2];
GGML_ASSERT(src2);
GGML_ASSERT(src2->extra);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
#ifdef GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
#endif
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb02 = src0->nb[2];
const int ne10 = src1->ne[0];
const int ne11 = src1->ne[1];
const int ne12 = src1->ne[2];
const int ne13 = src1->ne[3];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
const int ne20 = src2->ne[0];
const int ne21 = src2->ne[1];
const cl_ulong nb21 = src2->nb[1];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
const int r2 = ne12/ne02;
const int r3 = ne13/ne03;
const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
GGML_ASSERT(ne00 == ne10);
int sgs = 32; // subgroup size
int nsg = 1; // number of subgroups
int nrows = 1; // number of row in src1
int ndst = 4; // number of values produced by each subgroup
cl_kernel kernel;
// subgroup mat vec
switch (src0->type) {
case GGML_TYPE_Q4_0: {
kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
if (backend_ctx->gpu_family == INTEL) {
sgs = 16;
nsg = 1;
ndst = 8;
} else if (backend_ctx->gpu_family == ADRENO) {
sgs = 64;
nsg = 1;
ndst = 8;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
break;
}
default:
GGML_ASSERT(false && "not implemented");;
}
int _ne1 = 1;
int ne123 = dst_rows;
size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -6444,6 +6599,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_mul_mat;
break;
case GGML_OP_MUL_MAT_ID:
if (!any_on_device) {
return false;
}
func = ggml_cl_mul_mat_id;
break;
case GGML_OP_SCALE:
if (!any_on_device) {
return false;

View File

@ -0,0 +1,283 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK4_0 32
typedef char int8_t;
typedef uchar uint8_t;
typedef short int16_t;
typedef ushort uint16_t;
typedef int int32_t;
typedef uint uint32_t;
//------------------------------------------------------------------------------
// block_q4_0
//------------------------------------------------------------------------------
struct block_q4_0
{
half d;
uint8_t qs[QK4_0 / 2];
};
// This function requires the original shuffled weights.
// As a reminder, the original weights are shuffled so that (q[0], q[16]) are
// packed together in a byte, so are (q[1], q[17]) and so on.
inline float block_q_4_0_dot_y_flat(
global uchar * x,
global half * dh,
float sumy,
float16 yl,
int il
) {
float d = *dh;
global ushort * qs = ((global ushort *)x + il/2);
float acc = 0.f;
acc += yl.s0 * (qs[0] & 0x000F);
acc += yl.s1 * (qs[0] & 0x0F00);
acc += yl.s8 * (qs[0] & 0x00F0);
acc += yl.s9 * (qs[0] & 0xF000);
acc += yl.s2 * (qs[1] & 0x000F);
acc += yl.s3 * (qs[1] & 0x0F00);
acc += yl.sa * (qs[1] & 0x00F0);
acc += yl.sb * (qs[1] & 0xF000);
acc += yl.s4 * (qs[2] & 0x000F);
acc += yl.s5 * (qs[2] & 0x0F00);
acc += yl.sc * (qs[2] & 0x00F0);
acc += yl.sd * (qs[2] & 0xF000);
acc += yl.s6 * (qs[3] & 0x000F);
acc += yl.s7 * (qs[3] & 0x0F00);
acc += yl.se * (qs[3] & 0x00F0);
acc += yl.sf * (qs[3] & 0xF000);
return d * (sumy * -8.f + acc);
}
//
// This variant outputs 8 values.
//
#undef N_DST
#undef N_SIMDGROUP
#undef N_SIMDWIDTH
#ifdef INTEL_GPU
#define N_DST 8 // each SIMD group works on 8 rows
#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_DST 8
#define N_SIMDGROUP 1
#define N_SIMDWIDTH 64
#endif
inline void mul_vec_q_n_f32_8x_flat(
global char * src0_q,
global half * src0_d,
global float * src1,
global float * dst,
int ne00,
int ne01,
int ne02,
int ne10,
int ne12,
int ne0,
int ne1,
int r2,
int r3
) {
const ulong nb = ne00/QK4_0;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = 0;
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
int i12 = im%ne12;
int i13 = im/ne12;
// The number of scales is the same as the number of blocks.
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
global uchar * x = (global uchar *) src0_q + offset0_q;
global half * d = (global half *) src0_d + offset0_d;
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
float16 yl;
float8 sumf = 0.f;
int ix = get_sub_group_local_id()/2;
int il = 8*(get_sub_group_local_id()%2);
global float * yb = y + ix*QK4_0 + il;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
float sumy = 0.f;
sumy += yb[0];
sumy += yb[1];
sumy += yb[2];
sumy += yb[3];
sumy += yb[4];
sumy += yb[5];
sumy += yb[6];
sumy += yb[7];
sumy += yb[16];
sumy += yb[17];
sumy += yb[18];
sumy += yb[19];
sumy += yb[20];
sumy += yb[21];
sumy += yb[22];
sumy += yb[23];
yl.s0 = yb[0];
yl.s1 = yb[1]/256.f;
yl.s2 = yb[2];
yl.s3 = yb[3]/256.f;
yl.s4 = yb[4];
yl.s5 = yb[5]/256.f;
yl.s6 = yb[6];
yl.s7 = yb[7]/256.f;
yl.s8 = yb[16]/16.f;
yl.s9 = yb[17]/4096.f;
yl.sa = yb[18]/16.f;
yl.sb = yb[19]/4096.f;
yl.sc = yb[20]/16.f;
yl.sd = yb[21]/4096.f;
yl.se = yb[22]/16.f;
yl.sf = yb[23]/4096.f;
sumf.s0 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
sumf.s1 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
sumf.s2 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
sumf.s3 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
sumf.s4 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
sumf.s5 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
sumf.s6 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
sumf.s7 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
yb += QK4_0 * (N_SIMDWIDTH/2);
}
float8 tot = (float8)(
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7)
);
if (get_sub_group_local_id() == 0) {
if (first_row + 0 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
}
if (first_row + 1 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
}
if (first_row + 2 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
}
if (first_row + 3 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
}
if (first_row + 4 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
}
if (first_row + 5 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
}
if (first_row + 6 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
}
if (first_row + 7 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
}
}
}
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_id_q4_0_f32_8x_flat(
global char * src0_q,
global half * src0_d,
global float * src1,
ulong offset1,
global char * src2,
ulong offset2,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
ulong nb00,
ulong nb02,
int ne10,
int ne11,
int ne12,
ulong nb11,
ulong nb12,
int ne20,
int ne21,
ulong nb21,
int ne0,
int ne1,
int r2,
int r3
) {
src1 = (global float *)((global char *)src1 + offset1);
src2 = (global char *)((global char *)src2 + offset2);
dst = (global float *)((global char *)dst + offsetd);
const int iid1 = get_group_id(2)/ne20;
const int idx = get_group_id(2)%ne20;
const int i02 = ((global int *)(src2 + iid1*nb21))[idx];
const int i11 = idx%ne11;
const int i12 = iid1;
const int i1 = idx;
const int i2 = i12;
global char * src0_q_cur = src0_q + (i02*nb02/nb00)*(QK4_0/2);
global half * src0_d_cur = src0_d + (i02*nb02/nb00);
global float * src1_cur = (global float *)((global char *) src1 + i11*nb11 + i12*nb12);
global float * dst_cur = dst + i1*ne0 + i2*ne1*ne0;
mul_vec_q_n_f32_8x_flat(src0_q_cur, src0_d_cur, src1_cur, dst_cur, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
}

View File

@ -53,6 +53,9 @@ struct socket_t {
}
};
// macro for nicer error messages on server crash
#define RPC_STATUS_ASSERT(x) if (!(x)) GGML_ABORT("Remote RPC server crashed or returned malformed response")
// all RPC structures must be packed
#pragma pack(push, 1)
// ggml_tensor is serialized into rpc_tensor
@ -425,7 +428,7 @@ static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cm
static bool check_server_version(const std::shared_ptr<socket_t> & sock) {
rpc_msg_hello_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_HELLO, nullptr, 0, &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
if (response.major != RPC_PROTO_MAJOR_VERSION || response.minor > RPC_PROTO_MINOR_VERSION) {
fprintf(stderr, "RPC server version mismatch: %d.%d.%d\n", response.major, response.minor, response.patch);
return false;
@ -481,7 +484,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
rpc_msg_free_buffer_req request = {ctx->remote_ptr};
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
delete ctx;
}
@ -493,7 +496,7 @@ static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
rpc_msg_buffer_get_base_rsp response;
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
return ctx->base_ptr;
}
@ -545,7 +548,7 @@ static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_
request.tensor = serialize_tensor(tensor);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
}
return GGML_STATUS_SUCCESS;
}
@ -560,7 +563,7 @@ static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggm
request.hash = fnv_hash((const uint8_t*)data, size);
rpc_msg_set_tensor_hash_rsp response;
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, &request, sizeof(request), &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
if (response.result) {
// the server has the same data, no need to send it
return;
@ -573,7 +576,7 @@ static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggm
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size());
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
}
static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
@ -583,7 +586,7 @@ static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, con
request.offset = offset;
request.size = size;
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
}
static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
@ -601,7 +604,7 @@ static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
request.dst = serialize_tensor(dst);
rpc_msg_copy_tensor_rsp response;
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
return response.result;
}
@ -609,7 +612,7 @@ static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
}
static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
@ -635,7 +638,7 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
rpc_msg_alloc_buffer_rsp response;
auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
if (response.remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
@ -650,7 +653,7 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
rpc_msg_get_alignment_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
return response.alignment;
}
@ -662,7 +665,7 @@ static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_typ
static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
rpc_msg_get_max_size_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
return response.max_size;
}
@ -683,7 +686,7 @@ static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_ty
rpc_msg_get_alloc_size_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
return response.alloc_size;
} else {
@ -761,7 +764,7 @@ static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, g
rpc_msg_graph_compute_rsp response;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
return (enum ggml_status)response.result;
}
@ -835,7 +838,7 @@ bool ggml_backend_is_rpc(ggml_backend_t backend) {
static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
rpc_msg_get_device_memory_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
GGML_ASSERT(status);
RPC_STATUS_ASSERT(status);
*free = response.free_mem;
*total = response.total_mem;
}

View File

@ -78,7 +78,7 @@ static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
#define VK_VENDOR_ID_INTEL 0x8086
#define VK_VENDOR_ID_NVIDIA 0x10de
#define VK_DEVICE_DESCRIPTOR_POOL_SIZE 32
#define VK_DEVICE_DESCRIPTOR_POOL_SIZE 256
#define GGML_VK_MAX_NODES 8192
@ -114,13 +114,11 @@ struct vk_queue {
bool transfer_only;
};
#define MAX_PARAMETER_COUNT 8
struct vk_pipeline_struct {
std::string name;
vk::ShaderModule shader_module;
vk::DescriptorSetLayout dsl;
std::vector<vk::DescriptorPool> descriptor_pools;
std::vector<vk::DescriptorSet> descriptor_sets;
uint32_t descriptor_set_idx;
vk::PipelineLayout layout;
vk::Pipeline pipeline;
uint32_t push_constant_size;
@ -341,6 +339,8 @@ struct vk_device_struct {
// set to true to indicate that some shaders need to be compiled after the dryrun
bool need_compiles {};
vk::DescriptorSetLayout dsl;
vk_matmul_pipeline pipeline_matmul_f32 {};
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline pipeline_matmul_bf16 {};
@ -458,7 +458,6 @@ struct vk_device_struct {
vk_pipeline pipeline_flash_attn_split_k_reduce;
std::unordered_map<std::string, vk_pipeline_ref> pipelines;
std::unordered_map<std::string, uint64_t> pipeline_descriptor_set_requirements;
std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
@ -498,6 +497,8 @@ struct vk_device_struct {
}
pipelines.clear();
device.destroyDescriptorSetLayout(dsl);
device.destroy();
}
};
@ -930,6 +931,11 @@ struct ggml_backend_vk_context {
vk_context_ref transfer_ctx;
std::vector<vk_context_ref> tensor_ctxs;
std::vector<vk::DescriptorPool> descriptor_pools;
std::vector<vk::DescriptorSet> descriptor_sets;
uint32_t descriptor_set_idx {};
uint32_t pipeline_descriptor_set_requirements {};
};
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
@ -1060,39 +1066,19 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " <<
disable_robustness << ", " << require_full_subgroups << ", " << required_subgroup_size << ")");
GGML_ASSERT(parameter_count > 0);
GGML_ASSERT(parameter_count <= MAX_PARAMETER_COUNT);
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
pipeline->shader_module = device->device.createShaderModule(shader_module_create_info);
std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
for (uint32_t i = 0; i < parameter_count; i++) {
dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
dsl_binding_flags.push_back({});
}
vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
vk::PushConstantRange pcr(
vk::ShaderStageFlagBits::eCompute,
0,
pipeline->push_constant_size
);
vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
{},
dsl_binding);
descriptor_set_layout_create_info.setPNext(&dslbfci);
pipeline->dsl = device->device.createDescriptorSetLayout(descriptor_set_layout_create_info);
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
pipeline->descriptor_set_idx = 0;
vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline->dsl, pcr);
vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), device->dsl, pcr);
pipeline->layout = device->device.createPipelineLayout(pipeline_layout_create_info);
std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size());
@ -1167,15 +1153,6 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline) {
VK_LOG_DEBUG("ggml_pipeline_destroy_pipeline(" << pipeline->name << ")");
for (auto& pool : pipeline->descriptor_pools) {
device.destroyDescriptorPool(pool);
}
pipeline->descriptor_pools.clear();
pipeline->descriptor_sets.clear();
pipeline->descriptor_set_idx = 0;
device.destroyDescriptorSetLayout(pipeline->dsl);
device.destroyPipelineLayout(pipeline->layout);
device.destroyShaderModule(pipeline->shader_module);
@ -1183,60 +1160,49 @@ static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline)
device.destroyPipeline(pipeline->pipeline);
}
static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) {
static void ggml_pipeline_request_descriptor_sets(ggml_backend_vk_context *ctx, vk_pipeline& pipeline, uint32_t n) {
VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")");
device->pipeline_descriptor_set_requirements[pipeline->name] += n;
ctx->pipeline_descriptor_set_requirements += n;
if (!pipeline->compiled) {
pipeline->needed = true;
device->need_compiles = true;
ctx->device->need_compiles = true;
}
}
static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) {
std::lock_guard<std::mutex> guard(device->mutex);
static void ggml_pipeline_allocate_descriptor_sets(ggml_backend_vk_context * ctx) {
for (auto& pair : device->pipeline_descriptor_set_requirements) {
vk_pipeline pipeline = device->pipelines.at(pair.first).lock();
const uint64_t n = pair.second;
VK_LOG_DEBUG("ggml_pipeline_allocate_descriptor_sets(" << pipeline->name << ", " << n << ")");
if (pipeline->descriptor_sets.size() >= pipeline->descriptor_set_idx + n) {
// Enough descriptors are available
continue;
}
uint32_t to_alloc = pipeline->descriptor_set_idx + n - pipeline->descriptor_sets.size();
uint32_t pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE - pipeline->descriptor_sets.size() % VK_DEVICE_DESCRIPTOR_POOL_SIZE;
uint32_t pool_idx = pipeline->descriptor_sets.size() / VK_DEVICE_DESCRIPTOR_POOL_SIZE;
while (to_alloc > 0) {
const uint32_t alloc_count = std::min(pool_remaining, to_alloc);
to_alloc -= alloc_count;
pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE;
if (pool_idx >= pipeline->descriptor_pools.size()) {
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
}
std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
for (uint32_t i = 0; i < alloc_count; i++) {
layouts[i] = pipeline->dsl;
}
vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline->descriptor_pools[pool_idx], alloc_count, layouts.data());
std::vector<vk::DescriptorSet> sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info);
pipeline->descriptor_sets.insert(pipeline->descriptor_sets.end(), sets.begin(), sets.end());
pool_idx++;
}
if (ctx->descriptor_sets.size() >= ctx->pipeline_descriptor_set_requirements) {
// Enough descriptors are available
return;
}
}
static void ggml_pipeline_cleanup(vk_pipeline& pipeline) {
VK_LOG_DEBUG("ggml_pipeline_cleanup(" << pipeline->name << ")");
pipeline->descriptor_set_idx = 0;
vk_device& device = ctx->device;
uint32_t to_alloc = ctx->pipeline_descriptor_set_requirements - ctx->descriptor_sets.size();
uint32_t pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE - ctx->descriptor_sets.size() % VK_DEVICE_DESCRIPTOR_POOL_SIZE;
uint32_t pool_idx = ctx->descriptor_sets.size() / VK_DEVICE_DESCRIPTOR_POOL_SIZE;
while (to_alloc > 0) {
const uint32_t alloc_count = std::min(pool_remaining, to_alloc);
to_alloc -= alloc_count;
pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE;
if (pool_idx >= ctx->descriptor_pools.size()) {
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, MAX_PARAMETER_COUNT * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
ctx->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
}
std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
for (uint32_t i = 0; i < alloc_count; i++) {
layouts[i] = device->dsl;
}
vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(ctx->descriptor_pools[pool_idx], alloc_count, layouts.data());
std::vector<vk::DescriptorSet> sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info);
ctx->descriptor_sets.insert(ctx->descriptor_sets.end(), sets.begin(), sets.end());
pool_idx++;
}
}
static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_device& device, vk_queue& q) {
@ -3369,6 +3335,22 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
}
std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
for (uint32_t i = 0; i < MAX_PARAMETER_COUNT; i++) {
dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
dsl_binding_flags.push_back({});
}
vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
{},
dsl_binding);
descriptor_set_layout_create_info.setPNext(&dslbfci);
device->dsl = device->device.createDescriptorSetLayout(descriptor_set_layout_create_info);
ggml_vk_load_shaders(device);
if (!device->single_queue) {
@ -3595,11 +3577,11 @@ static void ggml_vk_instance_init() {
vk_perf_logger_enabled = getenv("GGML_VK_PERF_LOGGER") != nullptr;
size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
// Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan
char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES");
if (devices_env != nullptr) {
size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
std::string devices(devices_env);
std::replace(devices.begin(), devices.end(), ',', ' ');
@ -3615,9 +3597,9 @@ static void ggml_vk_instance_init() {
} else {
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
// Make sure at least one device exists
// If no vulkan devices are found, return early
if (devices.empty()) {
std::cerr << "ggml_vulkan: Error: No devices found." << std::endl;
GGML_LOG_INFO("ggml_vulkan: No devices found.\n");
return;
}
@ -3700,9 +3682,20 @@ static void ggml_vk_instance_init() {
}
}
// If no dedicated GPUs found, fall back to GPU 0
// If no dedicated GPUs found, fall back to the first non-CPU device.
// If only CPU devices are available, return without devices.
if (vk_instance.device_indices.empty()) {
vk_instance.device_indices.push_back(0);
for (size_t i = 0; i < devices.size(); i++) {
if (devices[i].getProperties().deviceType != vk::PhysicalDeviceType::eCpu) {
vk_instance.device_indices.push_back(i);
break;
}
}
}
if (vk_instance.device_indices.empty()) {
GGML_LOG_INFO("ggml_vulkan: No devices found.\n");
return;
}
}
GGML_LOG_DEBUG("ggml_vulkan: Found %zu Vulkan devices:\n", vk_instance.device_indices.size());
@ -4143,10 +4136,10 @@ static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context&
std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.range << "), ";
}
std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))");
GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size());
GGML_ASSERT(descriptor_buffer_infos.size() == pipeline->parameter_count);
GGML_ASSERT(ctx->descriptor_set_idx < ctx->descriptor_sets.size());
GGML_ASSERT(descriptor_buffer_infos.size() <= MAX_PARAMETER_COUNT);
vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++];
vk::DescriptorSet& descriptor_set = ctx->descriptor_sets[ctx->descriptor_set_idx++];
vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {});
@ -4953,18 +4946,18 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
}
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
}
if (quantize_y) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_q8_1, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_q8_1, 1);
}
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, 1);
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_matmul_split_k_reduce, 1);
}
return;
}
@ -5146,12 +5139,12 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
// Request descriptor sets
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
}
ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1);
ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1);
return;
}
@ -5284,7 +5277,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
if (dryrun) {
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], 1);
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], 1);
return;
}
@ -5373,7 +5366,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
if (dryrun) {
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1);
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1);
return;
}
@ -5560,12 +5553,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
}
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
}
return;
}
@ -5754,12 +5747,12 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
// Request descriptor sets
if (qx_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
}
if (qy_needs_dequant) {
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
}
ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1);
ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1);
return;
}
@ -6079,9 +6072,9 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
if (dryrun) {
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_flash_attn_split_k_reduce, 1);
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_flash_attn_split_k_reduce, 1);
}
return;
}
@ -6644,7 +6637,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
return;
}
@ -7025,7 +7018,7 @@ static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx
GGML_ASSERT(pipeline != nullptr);
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
return;
}
@ -7164,7 +7157,7 @@ static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_cont
GGML_ASSERT(pipeline != nullptr);
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
return;
}
@ -7842,9 +7835,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
}
}
ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it);
ggml_pipeline_request_descriptor_sets(ctx, p, num_it);
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it);
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_matmul_split_k_reduce, num_it);
if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
// Resize buffer
@ -7859,7 +7852,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
ggml_pipeline_allocate_descriptor_sets(ctx);
vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
@ -8025,9 +8018,6 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
ggml_vk_destroy_buffer(d_Y);
ggml_vk_destroy_buffer(d_D);
ggml_pipeline_cleanup(p);
ggml_pipeline_cleanup(ctx->device->pipeline_matmul_split_k_reduce);
free(x);
free(y);
free(d);
@ -8105,13 +8095,13 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
ggml_vk_quantize_data(x, qx, ne, quant);
ggml_vk_dequantize_data(qx, x_ref, ne, quant);
ggml_pipeline_request_descriptor_sets(ctx->device, p, 1);
ggml_pipeline_request_descriptor_sets(ctx, p, 1);
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
ggml_pipeline_allocate_descriptor_sets(ctx);
ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
@ -8205,13 +8195,13 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
//
// vk_pipeline p = ggml_vk_get_quantize_pipeline(ctx, quant);
//
// ggml_pipeline_request_descriptor_sets(ctx->device, p, 1);
// ggml_pipeline_request_descriptor_sets(ctx, p, 1);
//
// if (ctx->device->need_compiles) {
// ggml_vk_load_shaders(ctx->device);
// }
//
// ggml_pipeline_allocate_descriptor_sets(ctx->device);
// ggml_pipeline_allocate_descriptor_sets(ctx);
//
// ggml_vk_buffer_write(x_buf, 0, x, x_sz);
//
@ -8364,9 +8354,9 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
// y[i] = i % k;
}
ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it);
ggml_pipeline_request_descriptor_sets(ctx, p, num_it);
if (split_k > 1) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it);
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_matmul_split_k_reduce, num_it);
if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
// Resize buffer
@ -8377,14 +8367,14 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
}
}
if (mmq) {
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_quantize_q8_1, num_it);
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_quantize_q8_1, num_it);
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_pipeline_allocate_descriptor_sets(ctx->device);
ggml_pipeline_allocate_descriptor_sets(ctx);
ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
ggml_vk_buffer_write(y_buf, 0, y, y_sz);
@ -8786,7 +8776,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
// These operations all go through ggml_vk_op_f32, so short-circuit and
// do the only thing needed for the dryrun.
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, node, node->op);
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
return false;
}
default:
@ -9178,17 +9168,6 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
}
ctx->gc.temp_buffers.clear();
for (auto& dsr : ctx->device->pipeline_descriptor_set_requirements) {
vk_pipeline_ref plr = ctx->device->pipelines[dsr.first];
if (plr.expired()) {
continue;
}
vk_pipeline pl = plr.lock();
ggml_pipeline_cleanup(pl);
}
ggml_vk_queue_cleanup(ctx->device, ctx->device->compute_queue);
ggml_vk_queue_cleanup(ctx->device, ctx->device->transfer_queue);
@ -9211,7 +9190,8 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
ctx->tensor_ctxs.clear();
ctx->gc.contexts.clear();
ctx->device->pipeline_descriptor_set_requirements.clear();
ctx->pipeline_descriptor_set_requirements = 0;
ctx->descriptor_set_idx = 0;
}
// Clean up on backend free
@ -9238,6 +9218,12 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
ctx->device->device.destroyFence(ctx->fence);
ctx->device->device.destroyFence(ctx->almost_ready_fence);
for (auto& pool : ctx->descriptor_pools) {
ctx->device->device.destroyDescriptorPool(pool);
}
ctx->descriptor_pools.clear();
ctx->descriptor_sets.clear();
}
static int ggml_vk_get_device_count() {
@ -9611,7 +9597,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ggml_vk_load_shaders(ctx->device);
}
ggml_vk_preallocate_buffers(ctx);
ggml_pipeline_allocate_descriptor_sets(ctx->device);
ggml_pipeline_allocate_descriptor_sets(ctx);
int last_node = cgraph->n_nodes - 1;

View File

@ -333,7 +333,9 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
"encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
"model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
"encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
"encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
"model.layers.{bid}.residual_mlp.w3", # arctic
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
"transformer.h.{bid}.mlp.c_fc_1", # exaone
@ -370,7 +372,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
"model.layers.{bid}.feed_forward.w1", # internlm2
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
"transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
"transformer.h.{bid}.mlp.c_fc_0", # exaone

View File

@ -1 +1 @@
94a83ba5a725ae2aee79df75dd99b2119d0478cc
6a7d170c04789f6ebcf320ed03c1b16973f93bd7

View File

@ -250,22 +250,6 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
}
}
void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
const int64_t n_kv = kv_state->get_n_kv();
if (s_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer));
float * data = (float *) s_mask->data;
// clear unused states
for (int i = 0; i < n_kv; ++i) {
data[i] = kv_state->s_mask(i);
}
}
}
void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
@ -650,6 +634,7 @@ ggml_tensor * llm_graph_context::build_ffn(
{
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
int64_t split_point = cur->ne[0] / 2;
// TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
@ -663,7 +648,7 @@ ggml_tensor * llm_graph_context::build_ffn(
{
// Split into two equal parts
int64_t split_point = cur->ne[0] / 2;
// TODO: these conts should not be needed
// TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
@ -986,23 +971,6 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
return cur;
}
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_state);
const auto n_kv = kv_state->get_n_kv();
auto & cur = inp->s_mask;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
@ -1455,43 +1423,53 @@ ggml_tensor * llm_graph_context::build_attn(
return cur;
}
ggml_tensor * llm_graph_context::build_copy_mask_state(
ggml_tensor * llm_graph_context::build_recurrent_state(
ggml_cgraph * gf,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const {
int32_t state_size,
int32_t n_seqs,
bool avoid_copies) const {
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
const auto n_kv = kv_state->get_n_kv();
const auto kv_head = kv_state->get_head();
const auto rs_zero = kv_state->get_rs_z();
ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_state->get_size());
ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_state->get_size());
// copy states
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
// this shrinks the tensors's ne[1] to n_kv
states = ggml_get_rows(ctx0, states, state_copy);
// Clear a single state which will then be copied to the other cleared states.
// Note that this is a no-op when the view is zero-sized.
ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
// clear states of sequences which are starting at the beginning of this batch
// FIXME: zero-out NANs?
states = ggml_mul(ctx0, states, state_mask);
ggml_tensor * output_states;
// copy states which won't be changed further (between n_seqs and n_kv)
if (!avoid_copies) {
// copy states
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
// {state_size, kv_size} -> {state_size, n_seqs}
output_states = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_seqs, 0));
ggml_build_forward_expand(gf, output_states);
} else {
// FIXME: make the gathering operation happen before the copy below
// (maybe with an optional lambda function passed as a parameter instead of `avoid_copies`?)
output_states = states;
}
// copy extra states which won't be changed further (between n_seqs and n_kv)
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_kv - n_seqs, n_seqs*state_copy->nb[0]));
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs )*n_state*ggml_element_size(states)),
ggml_view_1d(ctx0, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
states_extra,
ggml_view_1d(ctx0, s, state_size*(n_kv - n_seqs), (kv_head + n_seqs)*state_size*ggml_element_size(s))));
// the part of the states that will be used and modified
return ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0);
return output_states;
}
ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
ggml_cgraph * gf,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
@ -1502,8 +1480,8 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
ggml_tensor * token_shift_all = kv_state->get_k_l(il);
ggml_tensor * token_shift = build_copy_mask_state(
gf, token_shift_all, state_copy, state_mask,
ggml_tensor * token_shift = build_recurrent_state(
gf, token_shift_all, state_copy,
hparams.n_embd_k_s(), n_seqs);
token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);

View File

@ -200,18 +200,6 @@ public:
const llama_kv_cache_recurrent_state * kv_state;
};
class llm_graph_input_s_mask : public llm_graph_input_i {
public:
llm_graph_input_s_mask(const llama_kv_cache_recurrent_state * kv_state) : kv_state(kv_state) {}
virtual ~llm_graph_input_s_mask() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_mask; // F32 [1, n_kv]
const llama_kv_cache_recurrent_state * kv_state;
};
class llm_graph_input_cross_embd : public llm_graph_input_i {
public:
llm_graph_input_cross_embd(
@ -521,7 +509,6 @@ struct llm_graph_context {
ggml_tensor * build_inp_mean() const;
ggml_tensor * build_inp_cls() const;
ggml_tensor * build_inp_s_copy() const;
ggml_tensor * build_inp_s_mask() const;
ggml_tensor * build_inp_cross_embd() const;
ggml_tensor * build_inp_pos_bucket_enc() const;
@ -606,18 +593,17 @@ struct llm_graph_context {
// recurrent
//
ggml_tensor * build_copy_mask_state(
ggml_tensor * build_recurrent_state(
ggml_cgraph * gf,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const;
int32_t state_size,
int32_t n_seqs,
bool avoid_copies = false) const;
ggml_tensor * build_rwkv_token_shift_load(
ggml_cgraph * gf,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const;

View File

@ -406,21 +406,12 @@ bool llama_kv_cache_recurrent::prepare(const std::vector<llama_ubatch> & ubatche
bool success = true;
// TODO: here we have to verify that all ubatches can fit in the cells
// however, the current implementation is broken because it relies on s_copy() and s_mask() to update the cells
// during the compute of each ubatch. to reproduce, uncomment the following loop and run:
//
// $ llama-parallel -m ./mamba-130m/ggml-model-f16.gguf -np 5 -ns 8
//
// recovery from failures when the batch does not fit in the KV cache will not work correctly until this is fixed
//
GGML_UNUSED(ubatches);
//for (const auto & ubatch : ubatches) {
// if (!find_slot(ubatch)) {
// success = false;
// break;
// }
//}
for (const auto & ubatch : ubatches) {
if (!find_slot(ubatch)) {
success = false;
break;
}
}
// restore the original state
cells = std::move(org_cells);
@ -431,14 +422,13 @@ bool llama_kv_cache_recurrent::prepare(const std::vector<llama_ubatch> & ubatche
}
bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > used + 2*n_tokens) {
if (head > used + 2*n_seqs) {
head = 0;
}
@ -534,16 +524,16 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
GGML_ASSERT(!orig_cell.is_empty()); // has at least one remaining seq_id
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < size; ++i) {
next_empty_cell += 1;
if (next_empty_cell >= size) { next_empty_cell -= size; }
kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
}
}
@ -553,8 +543,8 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
const int32_t dst_id = s + min;
const int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
kv_cell & dst_cell = cells[dst_id];
kv_cell & src_cell = cells[src_id];
@ -563,12 +553,14 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cells[seq_id].tail = dst_id;
// swap tails
for (uint32_t i = 0; i < size; ++i) {
int32_t & tail = cells[i].tail;
if (tail == src_id) {
tail = dst_id;
} else if (tail == dst_id) {
tail = src_id;
}
}
}
}
@ -576,7 +568,7 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
const int32_t cell_id = s + min;
kv_cell & cell = cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
@ -594,6 +586,38 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
}
}
// Find first cell without src refs, to use as the zero-ed state
{
// TODO: bake-in src refcounts in the cell metadata
std::vector<int32_t> refcounts(size, 0);
for (size_t i = 0; i < size; ++i) {
const int32_t src = cells[i].src;
if (src >= 0) {
refcounts[src] += 1;
}
}
rs_z = -1;
for (int i = min; i <= max; ++i) {
if (refcounts[i] == 0) {
rs_z = i;
break;
}
}
for (int i = min; i <= max; ++i) {
if (cells[i].src < 0) {
GGML_ASSERT(rs_z >= 0);
cells[i].src0 = rs_z;
} else {
// Stage the source ids for all used cells to allow correct seq_* behavior
// and still make these values available when setting the inputs
cells[i].src0 = cells[i].src;
}
cells[i].src = i; // avoid moving or clearing twice
}
}
// allow getting the range of used cells, from head to head + n
head = min;
n = max - min + 1;
@ -605,47 +629,8 @@ bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) {
}
bool llama_kv_cache_recurrent::get_can_shift() const {
return false;
}
int32_t llama_kv_cache_recurrent::s_copy(int i) const {
const uint32_t cell_id = i + head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
// prevent out-of-bound sources
if (cell.src < 0 || (uint32_t) cell.src >= size) {
cell.src = cell_id;
}
int32_t res = cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (cell.src != (int32_t) cell_id) {
cell.src = cell_id;
}
return res;
}
float llama_kv_cache_recurrent::s_mask(int i) const {
const uint32_t cell_id = i + head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
float res = (float) (cell.src >= 0);
// only clear once
if (cell.src < 0) {
cell.src = cell_id;
}
return res;
// shifting the pos is trivial for recurrent models
return true;
}
size_t llama_kv_cache_recurrent::total_size() const {
@ -1111,6 +1096,10 @@ uint32_t llama_kv_cache_recurrent_state::get_head() const {
return is_full ? 0 : kv->head;
}
int32_t llama_kv_cache_recurrent_state::get_rs_z() const {
return is_full ? 0 : kv->rs_z;
}
uint32_t llama_kv_cache_recurrent_state::get_size() const {
return kv->size;
}
@ -1124,9 +1113,5 @@ ggml_tensor * llama_kv_cache_recurrent_state::get_v_l(int32_t il) const {
}
int32_t llama_kv_cache_recurrent_state::s_copy(int i) const {
return kv->s_copy(i);
}
float llama_kv_cache_recurrent_state::s_mask(int i) const {
return kv->s_mask(i);
return kv->cells[i + kv->head].src0;
}

View File

@ -57,10 +57,6 @@ public:
bool get_can_shift() const override;
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
int32_t s_copy(int i) const;
float s_mask(int i) const;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
@ -73,10 +69,14 @@ public:
// computed before each graph build
uint32_t n = 0;
// first zero-ed state
int32_t rs_z = -1;
// TODO: optimize for recurrent state needs
struct kv_cell {
llama_pos pos = -1;
int32_t src = -1; // used to copy states
int32_t src = -1; // used to know where states should be copied from
int32_t src0 = -1; // like src, but only used when setting the inputs (allowing to copy once)
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
@ -157,13 +157,13 @@ public:
uint32_t get_n_kv() const;
uint32_t get_head() const;
int32_t get_rs_z() const;
uint32_t get_size() const;
ggml_tensor * get_k_l(int32_t il) const;
ggml_tensor * get_v_l(int32_t il) const;
int32_t s_copy(int i) const;
float s_mask(int i) const;
private:
const llama_memory_status status;

View File

@ -512,8 +512,6 @@ int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const {
head_cur = 0;
}
// otherwise, one cell per token.
if (n_tokens > cells.size()) {
LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
return -1;

View File

@ -2224,8 +2224,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
@ -6043,7 +6043,7 @@ struct llm_build_bert : public llm_graph_context {
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
cur = build_ffn(cur,
@ -8857,7 +8857,6 @@ struct llm_build_mamba : public llm_graph_context {
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * state_copy = build_inp_s_copy();
ggml_tensor * state_mask = build_inp_s_mask();
for (int il = 0; il < n_layer; ++il) {
// norm
@ -8866,8 +8865,7 @@ struct llm_build_mamba : public llm_graph_context {
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
//cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
cur = build_mamba_layer(gf, cur, state_copy, ubatch, il);
if (il == n_layer - 1) {
// skip computing output for unused tokens
@ -8908,7 +8906,6 @@ struct llm_build_mamba : public llm_graph_context {
ggml_cgraph * gf,
ggml_tensor * cur,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
@ -8935,12 +8932,12 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * ssm_states_all = kv_state->get_v_l(il);
// (ab)using the KV cache to store the states
ggml_tensor * conv = build_copy_mask_state(
gf, conv_states_all, state_copy, state_mask,
ggml_tensor * conv = build_recurrent_state(
gf, conv_states_all, state_copy,
hparams.n_embd_k_s(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
ggml_tensor * ssm = build_copy_mask_state(
gf, ssm_states_all, state_copy, state_mask,
ggml_tensor * ssm = build_recurrent_state(
gf, ssm_states_all, state_copy,
hparams.n_embd_v_s(), n_seqs);
ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
@ -11656,7 +11653,6 @@ struct llm_build_rwkv6_base : public llm_graph_context {
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
@ -11780,8 +11776,8 @@ struct llm_build_rwkv6_base : public llm_graph_context {
k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
}
ggml_tensor * wkv_state = build_copy_mask_state(
gf, kv_state->get_v_l(il), state_copy, state_mask,
ggml_tensor * wkv_state = build_recurrent_state(
gf, kv_state->get_v_l(il), state_copy,
hparams.n_embd_v_s(), n_seqs);
ggml_tensor * wkv_output;
@ -11837,7 +11833,6 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base {
inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
ggml_tensor * state_copy = build_inp_s_copy();
ggml_tensor * state_mask = build_inp_s_mask();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
@ -11848,7 +11843,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base {
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(
gf, state_copy, state_mask, ubatch, il
gf, state_copy, ubatch, il
);
ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
@ -11864,7 +11859,7 @@ struct llm_build_rwkv6 : public llm_build_rwkv6_base {
1
);
cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, ubatch, il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
@ -11935,7 +11930,6 @@ struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * state_copy = build_inp_s_copy();
ggml_tensor * state_mask = build_inp_s_mask();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
@ -11946,7 +11940,7 @@ struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(
gf, state_copy, state_mask, ubatch, il
gf, state_copy, ubatch, il
);
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
@ -11959,7 +11953,7 @@ struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
1
);
cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, ubatch, il);
token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
@ -12051,7 +12045,6 @@ struct llm_build_rwkv7_base : public llm_graph_context {
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch,
int il) const {
@ -12134,8 +12127,8 @@ struct llm_build_rwkv7_base : public llm_graph_context {
v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
ggml_tensor * wkv_state = build_copy_mask_state(
gf, kv_state->get_v_l(il), state_copy, state_mask,
ggml_tensor * wkv_state = build_recurrent_state(
gf, kv_state->get_v_l(il), state_copy,
hparams.n_embd_v_s(), n_seqs);
ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
@ -12193,7 +12186,6 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base {
inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
ggml_tensor * state_copy = build_inp_s_copy();
ggml_tensor * state_mask = build_inp_s_mask();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
@ -12204,7 +12196,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base {
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(
gf, state_copy, state_mask, ubatch, il
gf, state_copy, ubatch, il
);
ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
@ -12220,7 +12212,7 @@ struct llm_build_rwkv7 : public llm_build_rwkv7_base {
1
);
cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, v_first, ubatch, il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
@ -12287,7 +12279,6 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base {
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * state_copy = build_inp_s_copy();
ggml_tensor * state_mask = build_inp_s_mask();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
@ -12298,7 +12289,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base {
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(
gf, state_copy, state_mask, ubatch, il
gf, state_copy, ubatch, il
);
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
@ -12311,7 +12302,7 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base {
1
);
cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, v_first, ubatch, il);
token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));

View File

@ -3556,9 +3556,6 @@ struct server_context {
const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
// keep track of total number of tokens generated in the draft
slot.n_draft_total += draft.size();
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
@ -3566,6 +3563,9 @@ struct server_context {
continue;
}
// keep track of total number of drafted tokens tested
slot.n_draft_total += draft.size();
// construct the speculation batch
common_batch_clear(slot.batch_spec);
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
@ -3584,7 +3584,7 @@ struct server_context {
slot.n_past += ids.size();
slot.n_decoded += ids.size();
// update how many tokens out of draft was accepted
// update how many tokens out of those tested were accepted
slot.n_draft_accepted += ids.size() - 1;
slot.cache_tokens.push_back(id);