Kimi-K2.5: support non-interleaved rope for vision

This commit is contained in:
Aes Sedai 2026-02-08 01:19:18 -08:00
parent 052fda6c5d
commit 0c50dd9fe4
5 changed files with 29 additions and 146 deletions

View File

@ -11106,8 +11106,8 @@ class KimiK25Model(MmprojModel):
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("projector_ln_eps", 1e-5))
self.gguf_writer.add_vision_projector_scale_factor(self.merge_kernel_size[0])
# Image size limits (from preprocessor_config.json media_proc_cfg)
# These are used to set token limits: tokens = pixels / (patch_size²)
# Image size limits
# These are used to set token limits: tokens = pixels / (patch_size ^ 2)
in_patch_limit = self.preprocessor_config.get("in_patch_limit_each_frame",
self.preprocessor_config.get("in_patch_limit", 4096))
min_patches = 8 # reasonable minimum
@ -11116,31 +11116,19 @@ class KimiK25Model(MmprojModel):
self.gguf_writer.add_vision_max_pixels(in_patch_limit * pixels_per_patch)
@staticmethod
def _permute_rope_interleaved_to_split(weights: Tensor, n_head: int) -> Tensor:
"""Permute Q/K weights from interleaved to split RoPE format.
Kimi-K2.5 uses interleaved 2D RoPE pattern (per head):
[x0_re, x0_im, y0_re, y0_im, x1_re, x1_im, y1_re, y1_im, ...]
i.e., groups of 4: (x_pair, y_pair) repeated
llama.cpp build_rope_2d expects split format (per head):
[x0_re, x0_im, x1_re, x1_im, ..., y0_re, y0_im, y1_re, y1_im, ...]
i.e., first half is all X pairs, second half is all Y pairs
This permutation is applied at conversion time so we can use build_rope_2d at runtime.
"""
def _permute_kqv(weights: Tensor, n_head: int) -> Tensor:
out_dim, in_dim = weights.shape
head_dim = out_dim // n_head
# Reshape to expose the interleaved structure:
# [n_head, head_dim//4, 2, 2, in_dim]
# where: head_dim//4 = number of (x,y) frequency pairs
# first 2 = x_or_y (0=x, 1=y)
# second 2 = re_or_im (real, imaginary parts of complex rotation)
w = weights.reshape(n_head, head_dim // 4, 2, 2, in_dim)
# Permute to split format: [n_head, 2, head_dim//4, 2, in_dim]
# Now dim 1 separates X (index 0) from Y (index 1)
w = w.permute(0, 2, 1, 3, 4)
# Reshape back: [out_dim, in_dim]
return w.reshape(out_dim, in_dim)
@staticmethod
def _permute_output_proj(weights: Tensor, n_head: int) -> Tensor:
out_dim, in_dim = weights.shape
head_dim = in_dim // n_head
w = weights.reshape(out_dim, n_head, head_dim // 4, 2, 2)
w = w.permute(0, 1, 3, 2, 4)
return w.reshape(out_dim, in_dim)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
@ -11153,8 +11141,10 @@ class KimiK25Model(MmprojModel):
assert self.hparams_vision is not None
n_head = self.hparams_vision.get("num_attention_heads", 16)
# Permute Q/K weights/biases from interleaved to split RoPE format
# This allows using the build_rope_2d at runtime
# Permute Q/K/V weights/biases from interleaved to split RoPE format
# This allows using build_rope_2d at runtime without post-permutation.
# V is also permuted so the attention output is in split format,
# which is then handled by the permuted output projection.
if "wqkv" in name:
out_dim = data_torch.shape[0]
qkv_dim = out_dim // 3
@ -11162,16 +11152,21 @@ class KimiK25Model(MmprojModel):
if "weight" in name:
wq, wk, wv = data_torch[:qkv_dim, :], data_torch[qkv_dim:2*qkv_dim, :], data_torch[2*qkv_dim:, :]
wq = self._permute_rope_interleaved_to_split(wq, n_head)
wk = self._permute_rope_interleaved_to_split(wk, n_head)
wq = self._permute_kqv(wq, n_head)
wk = self._permute_kqv(wk, n_head)
wv = self._permute_kqv(wv, n_head)
data_torch = torch.cat([wq, wk, wv], dim=0)
elif "bias" in name:
bq, bk, bv = data_torch[:qkv_dim], data_torch[qkv_dim:2*qkv_dim], data_torch[2*qkv_dim:]
# Same permutation as weights: [n_head, head_dim//4, 2, 2] -> [n_head, 2, head_dim//4, 2]
bq = bq.reshape(n_head, head_dim // 4, 2, 2).permute(0, 2, 1, 3).reshape(-1)
bk = bk.reshape(n_head, head_dim // 4, 2, 2).permute(0, 2, 1, 3).reshape(-1)
bv = bv.reshape(n_head, head_dim // 4, 2, 2).permute(0, 2, 1, 3).reshape(-1)
data_torch = torch.cat([bq, bk, bv], dim=0)
# Permute output projection from interleaved to split RoPE format
if "wo.weight" in name:
data_torch = self._permute_output_proj(data_torch, n_head)
# Temporal embeddings: (T, 1, C) → (T, C)
if "pos_emb.time_weight" in name:
T, _, C = data_torch.shape

View File

@ -1358,6 +1358,7 @@ class TensorNameMap:
MODEL_TENSOR.V_ENC_ATTN_QKV: (
"visual.blocks.{bid}.attn.qkv", # qwen3vl
"model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
"vision_tower.encoder.blocks.{bid}.wqkv" # Kimi-K2.5
),
MODEL_TENSOR.V_ENC_ATTN_Q: (

View File

@ -107,17 +107,6 @@ struct clip_graph {
const bool interleave_freq
);
// 2D RoPE with interleaved frequency
// Pattern: [x_freq0, y_freq0, x_freq1, y_freq1, ...]
// build_rope_2d uses split pattern: [x_freq0, x_freq1, ..., y_freq0, y_freq1, ...]
ggml_tensor * build_rope_2d_interleaved(
ggml_context * ctx0,
ggml_tensor * cur, // [n_dim, n_head, n_pos]
ggml_tensor * pos_w, // [n_pos] - X/width positions
ggml_tensor * pos_h, // [n_pos] - Y/height positions
const float freq_base
);
// aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
// support dynamic resolution
ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor);

View File

@ -715,88 +715,6 @@ ggml_tensor * clip_graph::build_rope_2d(
return cur;
}
// 2D RoPE with interleaved frequency
// Pattern: [x_freq0, y_freq0, x_freq1, y_freq1, ...]
// build_rope_2d uses split pattern: [x_freq0, x_freq1, ..., y_freq0, y_freq1, ...]
ggml_tensor * clip_graph::build_rope_2d_interleaved(
ggml_context * ctx0,
ggml_tensor * cur, // [n_dim, n_head, n_pos]
ggml_tensor * pos_w, // [n_pos] - X/width positions
ggml_tensor * pos_h, // [n_pos] - Y/height positions
const float freq_base
) {
const int64_t n_dim = cur->ne[0];
const int64_t n_head = cur->ne[1];
const int64_t n_pos = cur->ne[2];
GGML_ASSERT(n_dim % 4 == 0); // Must be divisible by 4 for interleaved x,y pairs
// Ensure input is contiguous (needed when using merged QKV with ggml_view)
if (!ggml_is_contiguous(cur)) {
cur = ggml_cont(ctx0, cur);
}
// Step 1: Reshape to expose interleaved structure
// cur: [n_dim, n_head, n_pos] -> [4, n_dim/4, n_head, n_pos]
ggml_tensor * reshaped = ggml_reshape_4d(ctx0, cur, 4, n_dim/4, n_head, n_pos);
// Step 2: Extract X pairs (elements 0,1 of each group of 4)
// x_pairs: [2, n_dim/4, n_head, n_pos]
ggml_tensor * x_pairs = ggml_view_4d(ctx0, reshaped,
2, n_dim/4, n_head, n_pos,
reshaped->nb[1], reshaped->nb[2], reshaped->nb[3],
0);
// Step 3: Extract Y pairs (elements 2,3 of each group of 4)
// y_pairs: [2, n_dim/4, n_head, n_pos]
ggml_tensor * y_pairs = ggml_view_4d(ctx0, reshaped,
2, n_dim/4, n_head, n_pos,
reshaped->nb[1], reshaped->nb[2], reshaped->nb[3],
2 * ggml_element_size(reshaped));
// Step 4: Make contiguous and reshape for rope_ext
// [2, n_dim/4, n_head, n_pos] -> [n_dim/2, n_head, n_pos]
x_pairs = ggml_cont(ctx0, x_pairs);
x_pairs = ggml_reshape_3d(ctx0, x_pairs, n_dim/2, n_head, n_pos);
y_pairs = ggml_cont(ctx0, y_pairs);
y_pairs = ggml_reshape_3d(ctx0, y_pairs, n_dim/2, n_head, n_pos);
// Step 5: Apply RoPE to X pairs using pos_w, Y pairs using pos_h
x_pairs = ggml_rope_ext(
ctx0,
x_pairs,
pos_w,
nullptr,
n_dim/2,
0, 0, freq_base,
1.0f, 0.0f, 1.0f, 0.0f, 0.0f
);
y_pairs = ggml_rope_ext(
ctx0,
y_pairs,
pos_h,
nullptr,
n_dim/2,
0, 0, freq_base,
1.0f, 0.0f, 1.0f, 0.0f, 0.0f
);
// Step 6: Reshape back to [2, n_dim/4, n_head, n_pos] for interleaving
x_pairs = ggml_reshape_4d(ctx0, x_pairs, 2, n_dim/4, n_head, n_pos);
y_pairs = ggml_reshape_4d(ctx0, y_pairs, 2, n_dim/4, n_head, n_pos);
// Step 7: Interleave X and Y pairs back together
// Concatenate along dimension 0: [4, n_dim/4, n_head, n_pos]
ggml_tensor * result = ggml_concat(ctx0, x_pairs, y_pairs, 0);
// Step 8: Reshape back to original: [n_dim, n_head, n_pos]
result = ggml_reshape_3d(ctx0, result, n_dim, n_head, n_pos);
return result;
}
// Generic function to stack frames for audio processing
// Abstracts out the StackAudioFrames logic used by ultravox
ggml_tensor * clip_graph::build_stack(ggml_tensor * cur, int32_t stack_factor, int32_t n_embed) {

View File

@ -42,33 +42,13 @@ ggml_cgraph * clip_graph_kimik25::build() {
ggml_tensor * learned_pos_embd = resize_position_embeddings_3d(GGML_SCALE_MODE_BICUBIC);
// Kimi-K2.5 uses interleaved 2D RoPE pattern: [x0_re, x0_im, y0_re, y0_im, x1_re, x1_im, ...]
// Q/K weights are permuted during conversion from interleaved to split format.
// build_rope_2d expects split format and outputs split format.
// We need to convert the output back to interleaved format for the attention mechanism.
// Kimi-K2.5 uses interleaved 2D RoPE pattern natively, but all attention weights
// (Q, K, V, O) are permuted during conversion to use split format throughout.
// This allows using build_rope_2d without any runtime format conversion.
// The dot product in attention is order-independent, so keeping everything in
// split format produces mathematically equivalent results.
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
const int64_t n_dim = cur->ne[0];
const int64_t n_head = cur->ne[1];
const int64_t n_pos = cur->ne[2];
// Apply RoPE in split format
cur = build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
// Convert output from split format back to interleaved format
// Split: [x0_re, x0_im, x1_re, x1_im, ..., y0_re, y0_im, y1_re, y1_im, ...]
// Interleaved: [x0_re, x0_im, y0_re, y0_im, x1_re, x1_im, y1_re, y1_im, ...]
//
// Reshape to [2, n_dim/4, 2, n_head, n_pos] where:
// - first dim 2 = re/im pair
// - n_dim/4 = number of frequency pairs per axis
// - second dim 2 = X half (0) vs Y half (1)
// Then permute to interleave X and Y
// Finally reshape back to [n_dim, n_head, n_pos]
cur = ggml_reshape_4d(ctx0, cur, 2, n_dim/4, 2, n_head * n_pos);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); // [2, 2, n_dim/4, n_head*n_pos]
cur = ggml_cont(ctx0, cur);
cur = ggml_reshape_3d(ctx0, cur, n_dim, n_head, n_pos);
return cur;
};