Use activations to calculate the stats
This commit is contained in:
parent
11dd5a44eb
commit
09bc7c24e7
|
|
@ -38,10 +38,12 @@ static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count";
|
|||
static const char * const LLM_KV_IMATRIX_CHUNK_SIZE = "imatrix.chunk_size";
|
||||
|
||||
struct Stats {
|
||||
std::vector<float> activations;
|
||||
std::vector<float> values;
|
||||
std::vector<int64_t> counts;
|
||||
};
|
||||
|
||||
//ToDo: rename sqract variables to be more generic like 'values'
|
||||
struct tensor_statistics {
|
||||
std::string tensor;
|
||||
Stats stats;
|
||||
|
|
@ -139,14 +141,28 @@ static void compute_statistics(std::vector<tensor_statistics> & tstats, const st
|
|||
const int row_size = e.values.size() / n_mat;
|
||||
|
||||
std::vector<float> activations;
|
||||
activations.reserve(e.values.size());
|
||||
|
||||
for (int i = 0; i < n_mat; ++i) {
|
||||
for (int j = 0; j < row_size; ++j) {
|
||||
activations.push_back(e.values[i*row_size + j] / e.counts[i]);
|
||||
if (e.activations.empty()) {
|
||||
activations.reserve(e.values.size());
|
||||
|
||||
for (int i = 0; i < n_mat; ++i) {
|
||||
for (int j = 0; j < row_size; ++j) {
|
||||
activations.push_back(e.values[i*row_size + j] / e.counts[i]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
activations.reserve(e.activations.size());
|
||||
|
||||
for (int i = 0; i < n_mat; ++i) {
|
||||
for (int j = 0; j < row_size; ++j) {
|
||||
activations.push_back(e.activations[i*row_size + j] / e.counts[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//ToDo: rename act_ variables to be more generic like 'values'
|
||||
const float act_total = std::accumulate(activations.begin(), activations.end(), 0.0f);
|
||||
const float act_max = *std::max_element(activations.begin(), activations.end());
|
||||
const float act_min = *std::min_element(activations.begin(), activations.end());
|
||||
|
|
@ -282,6 +298,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
e.counts.resize(n_as, e.counts[0]);
|
||||
}
|
||||
if (e.values.empty()) {
|
||||
e.activations.resize(src1->ne[0]*n_as, 0);
|
||||
e.values.resize(src1->ne[0]*n_as, 0);
|
||||
e.counts.resize(n_as, 0);
|
||||
}
|
||||
|
|
@ -313,6 +330,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
e.counts[ex]++;
|
||||
|
||||
for (int64_t j = 0; j < src1->ne[0]; ++j) {
|
||||
e.activations[e_start + j] += x[j];
|
||||
e.values[e_start + j] += x[j] * x[j];
|
||||
if (!std::isfinite((float)e.values[e_start + j])) {
|
||||
LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str());
|
||||
|
|
@ -338,6 +356,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
const int64_t n_mat = src1->ne[2] * src1->ne[3];
|
||||
|
||||
if (e.values.empty()) {
|
||||
e.activations.resize(src1->ne[0] * n_mat, 0);
|
||||
e.values.resize(src1->ne[0] * n_mat, 0);
|
||||
e.counts.resize(n_mat, 0);
|
||||
}
|
||||
|
|
@ -359,6 +378,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]);
|
||||
e.counts[mat_id]++;
|
||||
for (int64_t j = 0; j < src1->ne[0]; ++j) {
|
||||
e.activations[mat_start + j] += x[j];
|
||||
e.values[mat_start + j] += x[j] * x[j];
|
||||
if (!std::isfinite((float)e.values[j])) {
|
||||
LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str());
|
||||
|
|
@ -532,6 +552,7 @@ void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
|
|||
}
|
||||
|
||||
to_store.push_back(kv.first);
|
||||
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.activations.size(), GGML_MEM_ALIGN);
|
||||
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN);
|
||||
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN);
|
||||
}
|
||||
|
|
@ -584,6 +605,16 @@ void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
|
|||
|
||||
gguf_add_tensor(ctx_gguf, in_sum2);
|
||||
gguf_add_tensor(ctx_gguf, counts);
|
||||
|
||||
if (!stat.activations.empty()) {
|
||||
const int32_t nact = (int32_t) stat.activations.size();
|
||||
struct ggml_tensor * in_sum = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nact / nmat, nmat);
|
||||
ggml_format_name(in_sum, "%s.in_sum", name.c_str()); // ToDo: consider a better name. 'in_act' maybe?
|
||||
for (int32_t j = 0; j < nval; ++j) {
|
||||
((float *) in_sum->data)[j] = (float) stat.activations[j];
|
||||
}
|
||||
gguf_add_tensor(ctx_gguf, in_sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -722,6 +753,7 @@ bool IMatrixCollector::load_imatrix(const char * file_name) {
|
|||
}
|
||||
}
|
||||
|
||||
const std::string in_sum_suffix{ ".in_sum" };
|
||||
const std::string in_sum2_suffix{ ".in_sum2" };
|
||||
const std::string counts_suffix{ ".counts" };
|
||||
|
||||
|
|
@ -729,7 +761,7 @@ bool IMatrixCollector::load_imatrix(const char * file_name) {
|
|||
// checking for completeness of *each* loaded imatrix file
|
||||
// and also makes it easier to re-use a similar implementation in quantize.cpp
|
||||
// Using an ordered map to get a deterministic iteration order.
|
||||
std::map<std::string, std::pair<struct ggml_tensor *, struct ggml_tensor *>> sums_counts_for;
|
||||
std::map<std::string, std::tuple<struct ggml_tensor *, struct ggml_tensor *, struct ggml_tensor *>> sums_counts_for;
|
||||
|
||||
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
std::string name = cur->name;
|
||||
|
|
@ -738,19 +770,24 @@ bool IMatrixCollector::load_imatrix(const char * file_name) {
|
|||
|
||||
if (string_remove_suffix(name, in_sum2_suffix)) {
|
||||
// in_sum2
|
||||
sums_counts_for[std::move(name)].first = cur;
|
||||
std::get<0>(sums_counts_for[std::move(name)]) = cur;
|
||||
} else if (string_remove_suffix(name, counts_suffix)) {
|
||||
// counts
|
||||
sums_counts_for[std::move(name)].second = cur;
|
||||
} else {
|
||||
std::get<1>(sums_counts_for[std::move(name)]) = cur;
|
||||
} else if (string_remove_suffix(name, in_sum_suffix)) {
|
||||
// in_sum
|
||||
std::get<2>(sums_counts_for[std::move(name)]) = cur;
|
||||
}
|
||||
else {
|
||||
// ignore other tensors
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto & sc : sums_counts_for) {
|
||||
const std::string & name = sc.first;
|
||||
const struct ggml_tensor * in_sum2 = sc.second.first;
|
||||
const struct ggml_tensor * counts = sc.second.second;
|
||||
const struct ggml_tensor * in_sum2 = std::get<0>(sc.second);
|
||||
const struct ggml_tensor * counts = std::get<1>(sc.second);
|
||||
const struct ggml_tensor * in_sum = std::get<2>(sc.second);
|
||||
|
||||
if (!in_sum2 || !counts) {
|
||||
LOG_ERR("%s: mismatched sums and counts for %s\n", __func__, name.c_str());
|
||||
|
|
@ -764,6 +801,7 @@ bool IMatrixCollector::load_imatrix(const char * file_name) {
|
|||
int64_t nval = ggml_nelements(in_sum2);
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(nval, 0.0f);
|
||||
e.activations.resize(nval, 0.0f);
|
||||
} else if ((size_t) nval != e.values.size()) {
|
||||
LOG_ERR("%s: mismatched sums size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) nval, e.values.size());
|
||||
gguf_free(ctx_gguf);
|
||||
|
|
@ -791,6 +829,12 @@ bool IMatrixCollector::load_imatrix(const char * file_name) {
|
|||
for (int64_t j = 0; j < ncounts; j++) {
|
||||
e.counts[j] += std::lround(((const float *) counts->data)[j]);
|
||||
}
|
||||
// ToDo: fix blow up when GGUF does not have in_sum
|
||||
if (in_sum->data != nullptr) {
|
||||
for (int64_t j = 0; j < nval; j++) {
|
||||
e.activations[j] += ((const float *) in_sum->data)[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: extract into its own method; this is also used by the legacy format
|
||||
|
|
|
|||
Loading…
Reference in New Issue