Merge 1bb128d3e6 into cc2aa81513
This commit is contained in:
commit
092283af46
|
|
@ -4056,6 +4056,87 @@ class InternVisionModel(MmprojModel):
|
|||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register(
|
||||
"NemotronH_Nano_VL_V2",
|
||||
"RADIOModel",
|
||||
)
|
||||
class NemotronNanoV2VLModel(MmprojModel):
|
||||
# ViT-Huge architecture parameters for RADIO v2.5-h
|
||||
_vit_hidden_size = 1280
|
||||
_vit_intermediate_size = 5120
|
||||
_vit_num_layers = 32
|
||||
_vit_num_heads = 16
|
||||
|
||||
def get_vision_config(self) -> dict[str, Any] | None:
|
||||
# RADIO config doesn't have standard ViT parameters, so they need to be constructed manually
|
||||
vision_config = self.global_config.get("vision_config")
|
||||
if vision_config is None:
|
||||
return None
|
||||
# Add ViT-H parameters
|
||||
vision_config = {
|
||||
**vision_config,
|
||||
"hidden_size": self._vit_hidden_size,
|
||||
"intermediate_size": self._vit_intermediate_size,
|
||||
"num_hidden_layers": self._vit_num_layers,
|
||||
"num_attention_heads": self._vit_num_heads,
|
||||
"image_size": self.global_config.get("force_image_size", 512),
|
||||
}
|
||||
return vision_config
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
if "image_mean" not in self.preprocessor_config:
|
||||
self.preprocessor_config["image_mean"] = [0.485, 0.456, 0.406]
|
||||
if "image_std" not in self.preprocessor_config:
|
||||
self.preprocessor_config["image_std"] = [0.229, 0.224, 0.225]
|
||||
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.global_config
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.NEMOTRON_V2_VL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(1e-6)
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
downsample_ratio = hparams.get("downsample_ratio", 0.5)
|
||||
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
if ".position_embd." in new_name or "pos_embed" in new_name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if "input_conditioner" in name:
|
||||
return
|
||||
|
||||
# RADIO's pos_embed doesn't have .weight suffix, but clip.cpp expects it
|
||||
if "patch_generator.pos_embed" in name:
|
||||
if not name.endswith(".weight"):
|
||||
name += ".weight"
|
||||
# Downsample position embeddings for fixed 512x512 image size
|
||||
import torch.nn.functional as F
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
image_size = self.global_config.get("force_image_size", 512)
|
||||
patch_size = self.hparams["patch_size"]
|
||||
target_patches_per_side = image_size // patch_size # 32
|
||||
max_patches_per_side = int((data_torch.shape[1]) ** 0.5) # 128
|
||||
if target_patches_per_side != max_patches_per_side:
|
||||
# Reshape to grid, interpolate, flatten back
|
||||
data_torch = data_torch.reshape(1, max_patches_per_side, max_patches_per_side, n_embd)
|
||||
data_torch = data_torch.permute(0, 3, 1, 2).float() # [1, n_embd, 128, 128]
|
||||
data_torch = F.interpolate(data_torch, size=(target_patches_per_side, target_patches_per_side),
|
||||
mode='bilinear', align_corners=True)
|
||||
data_torch = data_torch.permute(0, 2, 3, 1) # [1, 32, 32, n_embd]
|
||||
data_torch = data_torch.reshape(1, target_patches_per_side * target_patches_per_side, n_embd)
|
||||
|
||||
# Reshape linear patch embedding to conv2d format for ggml_conv_2d
|
||||
# From [n_embd, patch_size*patch_size*3] to [n_embd, 3, patch_size, patch_size]
|
||||
if "patch_generator.embedder" in name:
|
||||
patch_size = self.hparams["patch_size"]
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
data_torch = data_torch.reshape(n_embd, 3, patch_size, patch_size)
|
||||
|
||||
if name.startswith("vision_model.radio_model.model.") or name.startswith("mlp1."):
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("WavTokenizerDec")
|
||||
class WavTokenizerDecModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
|
||||
|
|
@ -7037,6 +7118,8 @@ class Mamba2Model(TextModel):
|
|||
if hparams is None:
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
if "llm_config" in hparams:
|
||||
hparams["text_config"] = hparams["llm_config"]
|
||||
super().__init__(dir_model, *args, hparams=hparams, **kwargs)
|
||||
self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
|
||||
self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
|
||||
|
|
@ -9525,6 +9608,14 @@ class NemotronHModel(GraniteHybridModel):
|
|||
self.gguf_writer.add_add_bos_token(True)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# Skip vision model and projector tensors for VLM models (handled by mmproj) (e.g., Nemotron Nano 12B v2 VL)
|
||||
if name.startswith(("vision_model.", "mlp1.")):
|
||||
return
|
||||
|
||||
# Strip language_model. prefix for VLM models (e.g., Nemotron Nano 12B v2 VL)
|
||||
if name.startswith("language_model."):
|
||||
name = name[len("language_model."):]
|
||||
|
||||
if self.is_moe and bid is not None:
|
||||
if name.endswith("mixer.gate.e_score_correction_bias"):
|
||||
new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
|
|
|
|||
|
|
@ -3774,6 +3774,7 @@ class VisionProjectorType:
|
|||
MUSIC_FLAMINGO = "musicflamingo" # audio
|
||||
GLM4V = "glm4v"
|
||||
YOUTUVL = "youtuvl"
|
||||
NEMOTRON_V2_VL = "nemotron_v2_vl"
|
||||
|
||||
|
||||
# Items here are (block size, type size)
|
||||
|
|
|
|||
|
|
@ -1330,6 +1330,7 @@ class TensorNameMap:
|
|||
"model.vision_tower.embeddings.cls_token", # Intern-S1
|
||||
"vision_model.class_embedding", # llama 4
|
||||
"model.vision.patch_embedding.cls_embedding", # cogvlm
|
||||
"vision_model.radio_model.model.patch_generator.cls_token.token", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_EMBD_PATCH: (
|
||||
|
|
@ -1344,6 +1345,7 @@ class TensorNameMap:
|
|||
"vision_tower.patch_embed.proj", # kimi-vl
|
||||
"model.vision.patch_embedding.proj", # cogvlm
|
||||
"siglip2.vision_model.embeddings.patch_embedding",
|
||||
"vision_model.radio_model.model.patch_generator.embedder", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_EMBD_NORM: (
|
||||
|
|
@ -1360,12 +1362,14 @@ class TensorNameMap:
|
|||
"visual.pos_embed", # qwen3vl
|
||||
"model.vision.patch_embedding.position_embedding", # cogvlm
|
||||
"visual.embeddings.position_embedding", # glm4v
|
||||
"vision_model.radio_model.model.patch_generator.pos_embed", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_QKV: (
|
||||
"visual.blocks.{bid}.attn.qkv", # qwen3vl
|
||||
"model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
|
||||
"vision_tower.encoder.blocks.{bid}.wqkv" # Kimi-K2.5
|
||||
"vision_tower.encoder.blocks.{bid}.wqkv", # Kimi-K2.5
|
||||
"vision_model.radio_model.model.blocks.{bid}.attn.qkv", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_Q: (
|
||||
|
|
@ -1430,6 +1434,7 @@ class TensorNameMap:
|
|||
"vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
|
||||
"model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.layer_norm1",
|
||||
"vision_model.radio_model.model.blocks.{bid}.norm1", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_O: (
|
||||
|
|
@ -1446,6 +1451,7 @@ class TensorNameMap:
|
|||
"vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
|
||||
"model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.out_proj", # youtuvl
|
||||
"vision_model.radio_model.model.blocks.{bid}.attn.proj", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
|
||||
|
|
@ -1461,6 +1467,7 @@ class TensorNameMap:
|
|||
"vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
|
||||
"model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.layer_norm2",
|
||||
"vision_model.radio_model.model.blocks.{bid}.norm2", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_UP: (
|
||||
|
|
@ -1477,6 +1484,7 @@ class TensorNameMap:
|
|||
"vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
|
||||
"model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.mlp.fc1",
|
||||
"vision_model.radio_model.model.blocks.{bid}.mlp.fc1", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_GATE: (
|
||||
|
|
@ -1499,6 +1507,7 @@ class TensorNameMap:
|
|||
"vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
|
||||
"model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.mlp.fc2",
|
||||
"vision_model.radio_model.model.blocks.{bid}.mlp.fc2", # Nemotron Nano v2 VL
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_LAYER_SCALE_1: (
|
||||
|
|
|
|||
|
|
@ -20,6 +20,7 @@ add_library(mtmd
|
|||
models/internvl.cpp
|
||||
models/kimivl.cpp
|
||||
models/kimik25.cpp
|
||||
models/nemotron-v2-vl.cpp
|
||||
models/llama4.cpp
|
||||
models/llava.cpp
|
||||
models/minicpmv.cpp
|
||||
|
|
|
|||
|
|
@ -236,6 +236,7 @@ enum projector_type {
|
|||
PROJECTOR_TYPE_GLM4V,
|
||||
PROJECTOR_TYPE_YOUTUVL,
|
||||
PROJECTOR_TYPE_KIMIK25,
|
||||
PROJECTOR_TYPE_NEMOTRON_V2_VL,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
@ -270,6 +271,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
|||
{ PROJECTOR_TYPE_GLM4V, "glm4v"},
|
||||
{ PROJECTOR_TYPE_YOUTUVL, "youtuvl"},
|
||||
{ PROJECTOR_TYPE_KIMIK25, "kimik25"},
|
||||
{ PROJECTOR_TYPE_NEMOTRON_V2_VL, "nemotron_v2_vl"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ enum ffn_op_type {
|
|||
FFN_GELU_ERF,
|
||||
FFN_SILU,
|
||||
FFN_GELU_QUICK,
|
||||
FFN_RELU_SQR,
|
||||
};
|
||||
|
||||
enum norm_type {
|
||||
|
|
|
|||
|
|
@ -559,6 +559,12 @@ ggml_tensor * clip_graph::build_ffn(
|
|||
cur = ggml_gelu_quick(ctx0, cur);
|
||||
cb(cur, "ffn_gelu_quick", il);
|
||||
} break;
|
||||
case FFN_RELU_SQR:
|
||||
{
|
||||
cur = ggml_relu(ctx0, cur);
|
||||
cur = ggml_sqr(ctx0, cur);
|
||||
cb(cur, "ffn_relu_sqr", il);
|
||||
} break;
|
||||
}
|
||||
|
||||
if (down) {
|
||||
|
|
@ -810,6 +816,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
{
|
||||
builder = std::make_unique<clip_graph_internvl>(ctx, img);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_NEMOTRON_V2_VL:
|
||||
{
|
||||
builder = std::make_unique<clip_graph_nemotron_v2_vl>(ctx, img);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_LLAMA4:
|
||||
{
|
||||
builder = std::make_unique<clip_graph_llama4>(ctx, img);
|
||||
|
|
@ -1110,6 +1120,7 @@ struct clip_model_loader {
|
|||
}
|
||||
} break;
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
case PROJECTOR_TYPE_NEMOTRON_V2_VL:
|
||||
{
|
||||
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
|
||||
} break;
|
||||
|
|
@ -1767,6 +1778,12 @@ struct clip_model_loader {
|
|||
model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
|
||||
model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_NEMOTRON_V2_VL:
|
||||
{
|
||||
model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
|
||||
model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
|
||||
model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_GLMA:
|
||||
{
|
||||
model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
|
||||
|
|
@ -3088,6 +3105,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
|||
case PROJECTOR_TYPE_GLM_EDGE:
|
||||
case PROJECTOR_TYPE_GEMMA3:
|
||||
case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
|
||||
case PROJECTOR_TYPE_NEMOTRON_V2_VL:
|
||||
{
|
||||
clip_image_u8 resized_image;
|
||||
int sz = params.image_size;
|
||||
|
|
@ -3397,6 +3415,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
|||
case PROJECTOR_TYPE_GEMMA3:
|
||||
case PROJECTOR_TYPE_IDEFICS3:
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
case PROJECTOR_TYPE_NEMOTRON_V2_VL:
|
||||
case PROJECTOR_TYPE_LLAMA4:
|
||||
{
|
||||
// both X and Y are downscaled by the scale factor
|
||||
|
|
@ -3805,6 +3824,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
case PROJECTOR_TYPE_GEMMA3NV:
|
||||
case PROJECTOR_TYPE_IDEFICS3:
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
case PROJECTOR_TYPE_NEMOTRON_V2_VL:
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
case PROJECTOR_TYPE_GLMA:
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
|
|
@ -3968,6 +3988,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
|
||||
return ctx->model.mm_2_w->ne[1];
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
case PROJECTOR_TYPE_NEMOTRON_V2_VL:
|
||||
return ctx->model.mm_3_w->ne[1];
|
||||
case PROJECTOR_TYPE_LLAMA4:
|
||||
return ctx->model.mm_model_proj->ne[1];
|
||||
|
|
|
|||
|
|
@ -42,6 +42,11 @@ struct clip_graph_internvl : clip_graph {
|
|||
ggml_cgraph * build() override;
|
||||
};
|
||||
|
||||
struct clip_graph_nemotron_v2_vl : clip_graph {
|
||||
clip_graph_nemotron_v2_vl(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
|
||||
ggml_cgraph * build() override;
|
||||
};
|
||||
|
||||
struct clip_graph_llama4 : clip_graph {
|
||||
clip_graph_llama4(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
|
||||
ggml_cgraph * build() override;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,35 @@
|
|||
#include "models.h"
|
||||
|
||||
ggml_cgraph * clip_graph_nemotron_v2_vl::build() {
|
||||
GGML_ASSERT(model.class_embedding != nullptr);
|
||||
GGML_ASSERT(model.position_embeddings != nullptr);
|
||||
|
||||
const int n_registers = model.class_embedding->ne[1];
|
||||
const int n_pos = n_patches + n_registers;
|
||||
|
||||
ggml_tensor * inp = build_inp();
|
||||
|
||||
// add position embeddings (pre-downsampled during GGUF conversion for fixed 512x512 input)
|
||||
inp = ggml_add(ctx0, inp, model.position_embeddings);
|
||||
cb(inp, "inp_pos", -1);
|
||||
|
||||
inp = ggml_concat(ctx0, model.class_embedding, inp, 1);
|
||||
|
||||
ggml_tensor * cur = build_vit(inp, n_pos, NORM_TYPE_NORMAL, hparams.ffn_op, nullptr, nullptr);
|
||||
|
||||
cur = ggml_view_2d(ctx0, cur,
|
||||
n_embd, n_patches,
|
||||
ggml_row_size(cur->type, n_embd),
|
||||
n_registers * ggml_row_size(cur->type, n_embd));
|
||||
|
||||
cur = build_patch_merge_permute(cur, model.hparams.n_merge);
|
||||
|
||||
{
|
||||
cur = build_norm(cur, model.mm_0_w, nullptr, NORM_TYPE_RMS, 1e-6, -1);
|
||||
cur = build_ffn(cur, model.mm_1_w, nullptr, nullptr, nullptr, model.mm_3_w, nullptr, FFN_RELU_SQR, -1);
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
Loading…
Reference in New Issue